JPH04132213A - Vapor phase growth apparatus of semiconductor thin film - Google Patents

Vapor phase growth apparatus of semiconductor thin film

Info

Publication number
JPH04132213A
JPH04132213A JP25191390A JP25191390A JPH04132213A JP H04132213 A JPH04132213 A JP H04132213A JP 25191390 A JP25191390 A JP 25191390A JP 25191390 A JP25191390 A JP 25191390A JP H04132213 A JPH04132213 A JP H04132213A
Authority
JP
Japan
Prior art keywords
temperature
thin film
cooling
adjusted
uniform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25191390A
Other languages
Japanese (ja)
Inventor
Nozomi Matsuo
松尾 望
Toshio Kikuta
俊夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP25191390A priority Critical patent/JPH04132213A/en
Publication of JPH04132213A publication Critical patent/JPH04132213A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily execute a maintenance control operation without making an apparatus complicated and to obtain a crystal thin film whose film thickness, composition and impurity concentration are uniform by a method wherein a flow path, for cooling-liquid use, which is installed on the outer circumference of a reaction furnace is divided into two or more independent flow paths and the temperature and the flow rate of a cooling liquid can independently be adjusted for the individual flow paths. CONSTITUTION:A partition plate 5 inside a cooling jacket 2 is formed to be a concentric-circle shape instead of a spiral shape; and the cooling jacket 2 is divided into five independent flow paths I, II, III, IV, V. The flow rate or the temperature of a cooling liquid can be adjusted and controlled independently of each other for the five independent flow paths. The flow rate and the temperature of cooling water are adjusted for the individual flow paths. The temperature of a raw-material gas is made nearly uniform at the upper part of an InP substrate 4; and the composition ratio of As is made uniform. Depending on the design of a reaction furnace, it is not always required to make the temperature of the raw- material gas uniform. In a word, the temperature and the flow rate of the cooling liquid are adjusted the temperature distribution of the raw-material gas and the surface temperature distribution of the substrate are adjusted; and a film thickness, a composition, an impurity concentration and the like are made uniform.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体薄膜気相成長装置の反応炉の改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement of a reactor for a semiconductor thin film vapor phase growth apparatus.

(従来の技術) 第7図に従来の半導体薄膜気相成長装置として、有機金
属化学気相成長装置を例にとり説明を行う、第7図はI
nP/InGaAsP系の半導体薄膜を作製する有機金
属化学気相成長装置の一例を示すものである。第7図(
イ)はその有機金属化学気相成長装置の反応炉の上部の
断面図、(ロ)はその上部の上面冷却ジャケットの液路
の説明図、(ハ)は(イ)の(a)部の拡大断面図であ
る。
(Prior art) Fig. 7 shows an example of a conventional semiconductor thin film vapor phase growth apparatus, using an organometallic chemical vapor deposition apparatus.
This figure shows an example of an organometallic chemical vapor deposition apparatus for producing an nP/InGaAsP-based semiconductor thin film. Figure 7 (
(a) is a cross-sectional view of the upper part of the reactor of the organometallic chemical vapor deposition apparatus, (b) is an explanatory diagram of the liquid path of the upper surface cooling jacket in the upper part, and (c) is a diagram of part (a) of (b). It is an enlarged sectional view.

図中1は石英あるいはステンレス鋼で作製された反応炉
、2は冷却液用の通路を有する冷却ジャケット、3はカ
ーボン製の基板保持台、4はInP単結晶基板、5は冷
却ジャケット内に冷却液用の通路を形成するために設け
られた仕切り板、6は冷却ジャケットに設けられた冷却
液導入口、7は冷却ジャケットに設けられた冷却液排出
口である。
In the figure, 1 is a reactor made of quartz or stainless steel, 2 is a cooling jacket with a cooling liquid passage, 3 is a carbon substrate holder, 4 is an InP single crystal substrate, and 5 is cooled in the cooling jacket. A partition plate is provided to form a liquid passage, 6 is a coolant inlet provided in the cooling jacket, and 7 is a coolant outlet provided in the cooling jacket.

InP/InGaAsP系の結晶薄膜をInP単結晶基
板4上に形成するためには、従来、高周波誘導加熱方式
や抵抗加熱方式、赤外線加熱方式を用い、基板保持台3
を加熱することによってInP基板4を500〜800
℃に加熱した状態で反応炉1内にH,ガスで希釈された
TMGa ()リメチルガリウム)、TMIn(トリメ
チルインジウム)等の有機金属ガス及びAsHs (ア
ルシン)、PH,(フォスフイン)等の水素化金属ガス
8を供給し、これらの原料ガスの熱分解反応を利用して
InP基板4上にInP/InGaAsP系の結晶薄膜
を形成する。例えばInP結晶薄膜を形成する場合には
H2ガス中に流量制御されたTMInとPH,を、In
GaAsP結晶薄膜を形成する場合にはH2ガス中に流
量制御されたTMIn、TMGaとAsHs、PH3を
それぞれ混合させる。また、半導体中のp形、n形を制
御するためにはp形ではDMZn (ジメチル亜鉛)等
、n形では5iH4(モノシラン)等の不純物ガスを原
料ガス中に混合させて、結晶薄膜中にZn、 SL等を
それぞれにドーピングする。
Conventionally, in order to form an InP/InGaAsP-based crystal thin film on an InP single crystal substrate 4, a high frequency induction heating method, a resistance heating method, or an infrared heating method is used.
The InP substrate 4 is heated to 500 to 800
In the reactor 1 heated to ℃, organic metal gas such as H, TMGa (limethyl gallium), TMIn (trimethyl indium), etc. diluted with gas, and hydrogen such as AsHs (arsine), PH, (phosphine), etc. An InP/InGaAsP-based crystal thin film is formed on the InP substrate 4 using the thermal decomposition reaction of these raw material gases. For example, when forming an InP crystal thin film, TMIn and PH, whose flow rate is controlled in H2 gas, are
When forming a GaAsP crystal thin film, TMIn, TMGa, AsHs, and PH3 are mixed in H2 gas with controlled flow rates. In addition, in order to control the p-type and n-type in semiconductors, impurity gases such as DMZn (dimethylzinc) for p-type and 5iH4 (monosilane) for n-type are mixed into the raw material gas, and the impurity gases are mixed into the crystal thin film. Dope each with Zn, SL, etc.

この場合、結晶薄膜形成時には、反応炉内壁lの温度上
昇を防いで安全性を確保し、かつ結晶薄膜の品質を維持
するため第1図に示すように冷却ジャケット2内に冷却
水等の冷却液を流し、反2炉1の壁面の冷却を行う、こ
の冷却において冷却液の流路は(ロ)に示すように反応
炉の外側から中央部に向かう1本のらせん状流路9とし
て形成されている。
In this case, during the formation of the crystalline thin film, in order to prevent the temperature rise of the inner wall l of the reactor and ensure safety, and to maintain the quality of the crystalline thin film, cooling water or the like is provided in the cooling jacket 2 as shown in Fig. 1. The liquid flows through the reactor to cool the wall surface of the second reactor 1. In this cooling, the coolant flow path is formed as one spiral flow path 9 going from the outside of the reactor to the center, as shown in (b). has been done.

ところで以上の方法により、半導体基板上に結晶薄膜を
形成する際、直径2インチ、3インチまたはそれ以上の
大きさを有する半導体基板面内における結晶薄膜の膜厚
、組成、不純物濃度の均一性が工業上重要となる0例え
ば膜厚の基板面内における変動は±2%以下が要求され
In+−++GajSyP+−y等の混晶半導体の組成
については例えばGa組成比Xの基板面内における変動
が±1%以下であることが要求される。同様に不純物濃
度の基板内面における変動は例えば±5%以下に抑える
必要がある。
By the way, when forming a crystalline thin film on a semiconductor substrate using the above method, it is possible to maintain uniformity in the thickness, composition, and impurity concentration of the crystalline thin film within the plane of the semiconductor substrate having a diameter of 2 inches, 3 inches, or more. For example, the variation in the film thickness within the substrate plane is required to be ±2% or less, which is industrially important.For example, for the composition of a mixed crystal semiconductor such as In+-++GajSyP+-y, the variation in the Ga composition ratio X within the substrate plane is required to be ±2% or less. It is required that it be 1% or less. Similarly, fluctuations in impurity concentration on the inner surface of the substrate must be suppressed to, for example, ±5% or less.

膜厚均一性を決定する要因としては反応炉内での原料ガ
スの流れの状態、ガス濃度の分布、基板表面温度分布、
ガス温度分布等があげられ、反応炉によってそれぞれこ
れらを調整し′て最適条件を見出す必要がある。このう
ち、基板表面温度分布やガス温度分布については、温度
分布を±5℃以下の精度で調整することが要求され、先
に述べた加熱方式において、種々の工夫がなされてきた
Factors that determine film thickness uniformity include the flow of raw material gas in the reactor, gas concentration distribution, substrate surface temperature distribution,
These include gas temperature distribution, etc., and it is necessary to find the optimum conditions by adjusting each of these depending on the reactor. Among these, regarding the substrate surface temperature distribution and gas temperature distribution, it is required to adjust the temperature distribution with an accuracy of ±5° C. or less, and various improvements have been made in the heating method described above.

(発明が解決しようとする課題) このような従来の温度分布調整手段の一例を第8図(イ
)に示す、同図は第1図(イ)に対応する反応炉の上部
の断面図であり、温度分布の調整手段を設けた抵抗加熱
方式の一例を示すもので、図中10.11.12は、そ
れぞれに独立して制御可能なカーボン製のヒーター、3
′はカーボン製のヒーター上に設置されたカーボンプレ
ートである。第8図の装置で温度分布を調整するために
はカーボンヒーター10.11.12にそれぞれ異なる
電流を供給し、第8図(ロ)に示すように基板の温度分
布を均一とし、また基板に接するガス温度の分布を調整
する。ただし、図は1例であり、必ずしも温度分布を図
のように基板面内で均一にする必要はなく、要は結晶薄
膜の膜厚、組成、不純物濃度等が均一となるように独立
したカーボンヒーター10.11.12のそれぞれを調
整することが重要である。
(Problem to be Solved by the Invention) An example of such a conventional temperature distribution adjustment means is shown in FIG. 8 (a), which is a sectional view of the upper part of the reactor corresponding to FIG. 1 (a). 10, 11 and 12 in the figure are carbon heaters that can be controlled independently, 3
' is a carbon plate installed on a carbon heater. In order to adjust the temperature distribution with the device shown in Figure 8, different currents are supplied to the carbon heaters 10, 11, and 12, respectively, so that the temperature distribution of the substrate is uniform as shown in Figure 8 (b), and the temperature distribution of the substrate is Adjust the temperature distribution of the gas in contact with it. However, the figure is just an example, and it is not necessarily necessary to make the temperature distribution uniform within the substrate surface as shown in the figure.The point is to make the crystal thin film uniform in thickness, composition, impurity concentration, etc. It is important to adjust each of the heaters 10.11.12.

上に例を示した方法によっても、温度分布を調整し、均
一な結晶薄膜を得ることは従来でも可能であったが、こ
の方法は反応炉内に複数のカーボンヒーターを必要とし
、かつカーボンヒーターそれぞれに対し、電流を供給す
る設備が必要となるため、反応炉の構造が複雑となり、
設備費や装置の維持、管理の面で不利であった。
Conventionally, it was possible to adjust the temperature distribution and obtain a uniform crystalline thin film using the method shown in the example above, but this method requires multiple carbon heaters in the reactor. Each requires equipment to supply current, making the structure of the reactor complex.
It was disadvantageous in terms of equipment costs and equipment maintenance and management.

したがって、本発明の目的は、反応炉内部における温度
分布の調整を簡便な方法で行い、装置を複雑にすること
なく、維持、管理を容易にした構造であって、膜厚、組
成、不純物濃度等が基板面内において均一な結晶薄膜を
得ることができる、改良された反応炉を提供することに
ある。
Therefore, an object of the present invention is to provide a structure in which temperature distribution inside a reactor can be adjusted in a simple manner, and maintenance and management can be facilitated without complicating the apparatus, and which is capable of controlling film thickness, composition, impurity concentration, etc. An object of the present invention is to provide an improved reactor that can obtain a uniform crystal thin film within the plane of a substrate.

(課題を解決するための手段) 本発明の上記目的は、反応炉の外周に冷却液用の流路を
設け、前記冷却液用の流路を2つ以上の独立した流路に
分割して、この独立した流路各々に対して、冷却液の供
給を可能とし、かつ冷却液の温度あるいは流量を核流路
に対応して独立に調整可能としたことを特徴とする半導
体薄膜気相成長装置によって達成された。
(Means for Solving the Problems) The above object of the present invention is to provide a flow path for a cooling liquid on the outer periphery of a reactor, and to divide the flow path for the cooling liquid into two or more independent flow paths. A semiconductor thin film vapor phase growth method characterized in that a cooling liquid can be supplied to each of the independent channels, and the temperature or flow rate of the cooling liquid can be adjusted independently according to the core channels. achieved by the device.

(実施例) 次に本発明を図示の実施例に基づきさらに詳細に説明す
る。
(Example) Next, the present invention will be explained in more detail based on the illustrated example.

第1図は本発明の1実施例としての有機金属化学気相成
長装置を示し、(イ)は反応炉上部の断面図、(ロ)は
上部の冷却水の通路を平面図で示す説明図である。第1
図では冷却ジャケット14内の仕切り板15を第7図に
示すらせん状から同心円状とし、冷却ジャケット14を
図に示すように11■、■、■、■の5つの独立した流
路に分割している。冷却液は上記5つの独立した流路に
対し、それぞれ独立に流量あるいは温度を調整して制御
可能としている。なお第1図において16.17は各流
路の、冷却液導入口及び冷却液排出口をそれぞれ示す、
なお、第7図と同符号は同じものを示す。
FIG. 1 shows an organometallic chemical vapor deposition apparatus as an embodiment of the present invention, in which (a) is a sectional view of the upper part of the reactor, and (b) is an explanatory diagram showing a top view of the cooling water passage in the upper part. It is. 1st
In the figure, the partition plate 15 inside the cooling jacket 14 is changed from the spiral shape shown in FIG. ing. The cooling liquid can be controlled by independently adjusting the flow rate or temperature of each of the five independent flow paths. In FIG. 1, 16 and 17 indicate the coolant inlet and coolant outlet of each flow path, respectively.
Note that the same reference numerals as in FIG. 7 indicate the same things.

第2図、第3図及び第4図は第1図に示す半導体薄膜気
相成長装置を用いて、Ir++−xGaJsyP+−y
結晶薄膜をInP基板上に作製した場合の各流路の冷却
の影響を示すものである。第2図(イ)は各流路におけ
る冷却水量、(ロ)は各流路における原料ガス温度、(
ハ)は各流路におけるAs組成、をそれぞれ示す、第3
図(イ)、(ロ)、(ハ)も第2図(イ)、(ロ)、(
ハ)に対応する。第2図は冷却水流量及び温度を各流路
に対し等しくした場合であり、この場合、原料ガス温度
が図に示すような分布をもつためIn+−xGaJsy
P+−y結晶薄膜中のAsの組成比yが基板面内で図の
ように不均一となってしまうことが分かる。これに対し
第3図は冷却水の流量を各流路に対して調整した例、第
4図は冷却水の温度を各流路に対して調整した例であり
、それぞれ原料ガス温度をInP基板上部においてほぼ
均一とすることによりAsの組成比yを均一にすること
を可能としている。ただし、ここでは原料ガス温度を均
一にすることで組成比を均一にした例を示しているが、
反応炉の設計によっては必ずしも原料ガス温度を均一に
する必要はなく、要は冷却液の温度や流量を調整して原
料ガス温度分布や基板表面温度分布を調整し、膜厚、組
成、不純物濃度等を均一化することが重要である。
FIGS. 2, 3, and 4 show Ir++-xGaJsyP+-y using the semiconductor thin film vapor phase growth apparatus shown in FIG.
This figure shows the influence of cooling on each channel when a crystal thin film is produced on an InP substrate. Figure 2 (a) shows the amount of cooling water in each flow path, (b) shows the raw material gas temperature in each flow path, and (
C) shows the As composition in each channel, the third
Figures (A), (B), and (C) are also shown in Figure 2 (A), (B), and (
Corresponds to c). Figure 2 shows the case where the cooling water flow rate and temperature are equal for each flow path. In this case, since the raw material gas temperature has a distribution as shown in the figure,
It can be seen that the composition ratio y of As in the P+-y crystal thin film becomes non-uniform within the substrate plane as shown in the figure. On the other hand, Fig. 3 shows an example in which the flow rate of the cooling water is adjusted for each channel, and Fig. 4 shows an example in which the temperature of the cooling water is adjusted in each channel. By making it almost uniform in the upper part, it is possible to make the As composition ratio y uniform. However, here is an example in which the composition ratio is made uniform by making the raw material gas temperature uniform.
Depending on the design of the reactor, it is not necessarily necessary to make the raw material gas temperature uniform; the key is to adjust the temperature and flow rate of the cooling liquid to adjust the raw material gas temperature distribution and substrate surface temperature distribution, and to adjust the film thickness, composition, and impurity concentration. It is important to equalize the

なお、反応容器の材料としてはステンレス鋼やアルミ等
の金属材料が石英等に比べ熱伝導率が大きいため冷却水
によるガスの温度調整効果が大となり有利である。ただ
し、これは本発明の適用範囲に制限を与えるものではな
く、反応容器の材質は装置の設計思想により適宜選択さ
れるべきものであることは言うまでもない。
Note that metal materials such as stainless steel and aluminum have higher thermal conductivity than quartz and the like as materials for the reaction vessel, and therefore are advantageous because the effect of controlling the gas temperature by cooling water is greater. However, this does not limit the scope of application of the present invention, and it goes without saying that the material of the reaction vessel should be appropriately selected depending on the design concept of the apparatus.

第5図及び第6図は本発明の他の実施例を示すものであ
る。このように反応炉の構造は第1図の構造に限られる
ものでない、第5図において21はバレル型の反応炉、
22は冷却ジャケット、23は基板保持台、24は基板
、25は冷却ジャケットを流路1.U、■、■、v、v
rに仕切る仕切り板である。26.27は各流路I〜■
のそれぞれの冷却液導入口及び排出口を示す、28は原
料ガスを示す、第6図において、31は横型反応炉であ
り、32〜38は第5図の22〜27に対応する部位を
示す、このように第5図に示すいわゆるバレル型の反応
炉及び第6図に示す横型の反応炉等積々の構造の反応炉
に対し、本発明の適用が可能であり、いずれの場合も冷
却ジャケットを2つ以上の流路に分割し、各々の流路に
対し、冷却液の流量及び温度を調整することにより結晶
薄膜の膜厚、組成、不純物濃度の均一性を向上させるこ
とが可能である。
FIGS. 5 and 6 show other embodiments of the present invention. In this way, the structure of the reactor is not limited to the structure shown in FIG. 1. In FIG. 5, 21 is a barrel-type reactor;
22 is a cooling jacket, 23 is a substrate holding stand, 24 is a substrate, and 25 is a cooling jacket connected to the flow path 1. U, ■, ■, v, v
It is a partition plate that divides into r. 26.27 is each flow path I~■
28 indicates the raw material gas. In FIG. 6, 31 is a horizontal reactor, and 32 to 38 indicate parts corresponding to 22 to 27 in FIG. 5. As described above, the present invention can be applied to reactors with stacked structures, such as the so-called barrel-type reactor shown in FIG. 5 and the horizontal reactor shown in FIG. By dividing the jacket into two or more channels and adjusting the flow rate and temperature of the cooling liquid for each channel, it is possible to improve the uniformity of the thickness, composition, and impurity concentration of the crystalline thin film. be.

なお1以上の説明では冷却液として水を用いた例を示し
たが、エチルアルコールやその他の不凍液、あるいは液
化窒素等を用いた場合にも本発明は十分に適用可能であ
り、反応炉の構造や用途、目的により選択されるべきで
ある。
In the above explanation, an example was given in which water was used as the coolant, but the present invention is also fully applicable to cases where ethyl alcohol, other antifreeze, or liquefied nitrogen is used, and the structure of the reactor The choice should be made depending on the usage, purpose, and purpose.

また、上の例では半導体結晶薄膜の例として、InP/
■nGaAsP系の材料を用いたが、その他のGaAs
/GaAlAs系の材料やSi等の材料に対しても本発
明は広(適用可能である。さらに、上の例では半導体薄
膜気相成長装置の例として有機金属化学気相成長装置を
あげたが、他のクロライドVPE装置、ハライドVPE
装置等広く半導体薄膜気相成長装置に対し、本発明は容
易に適用可能であることは言うまでもない。
In addition, in the above example, InP/
■Although nGaAsP-based material was used, other GaAs
The present invention is widely applicable to /GaAlAs-based materials and materials such as Si.Furthermore, in the above example, an organometallic chemical vapor deposition apparatus was cited as an example of a semiconductor thin film vapor phase growth apparatus. , other chloride VPE equipment, halide VPE
It goes without saying that the present invention can be easily applied to a wide range of semiconductor thin film vapor phase growth devices.

(発明の効果) 以上説明したように、本発明によれば反応炉冷却ジャケ
ットの流路を分割し、分割された各々の流路に対し、独
立に流量あるいは温度を調整した冷却液を導入すること
により簡単な構造によって反応炉内部の温度分布を調整
可能であり、原料ガスの温度分布を容易に制御でき、装
置を複雑にすることな(維持管理を容易にした構造で基
板面内における膜厚、組成、不純物濃度等の均一性良好
な半導体結晶薄膜を得ることができ工業的価値が大きい
(Effects of the Invention) As explained above, according to the present invention, the flow path of the reactor cooling jacket is divided, and a cooling liquid whose flow rate or temperature is independently adjusted is introduced into each divided flow path. As a result, the temperature distribution inside the reactor can be adjusted with a simple structure, and the temperature distribution of the raw material gas can be easily controlled, without complicating the equipment (with a structure that facilitates maintenance and management, it is possible to adjust the temperature distribution inside the reactor). It is possible to obtain a semiconductor crystal thin film with good uniformity in thickness, composition, impurity concentration, etc., and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例としての有機金属化学気相成
長装置を示すもので、(イ)は反応炉上部の断面図、(
ロ)は該上部の冷却水の通路を平面図で示す説明図であ
る。第2図、第3図及び第4図の(イ)、(ロ)、(ハ
)は第1図の反応炉の冷却ジャケットの各流路における
、冷却水量、原料ガス温度及びAs組成をそれぞれ示す
、第5図(イ)はバレル型の反応炉に適用した本発明の
有機金属化学気相成長装置の一部断面図、(ロ)はその
側部の冷却液の導入口及び排出口の設置状態の説明図、
第6図は横型反応炉に適用した本発明の実施例を示す斜
視図である。第7図は従来の有機金属化学気相成長装置
を示し、(イ)は反応炉上部の断面図、(ロ)は該上部
の冷却水の通路を平面図で示す説明図、(ハ)は(イ)
の(a)部の拡大断面図である。第8図(イ)は従来の
加熱装置の温度分布調整手段の1例の断面図であり、第
8図(ロ)は該装置を用いたときの基板の温度分布を示
す説明図である。 符号の説明 1.21.31・・・反応炉 2.22.32・・・冷却ジャケット 3.23.33・・・基板保持台 4.24.34・・・基板 5.25.35・・・仕切板 6.26.36・・・冷却液導入ロ ア、27.37・・・冷却液排出口 8.28.38・・・原料ガス I〜■・・・同心円状冷却液流路 特許出願人 古河電気工業株式会社 代理人 弁理士 飯 1)敏 三に ゝ、イ 第  1 図 第 図 第 図 ■ 1■ 1\′ ■ 流路 第 図 (イ) (CI) 第 図 第 図
FIG. 1 shows an organometallic chemical vapor deposition apparatus as an embodiment of the present invention, in which (a) is a sectional view of the upper part of the reactor;
B) is an explanatory diagram showing the upper cooling water passage in a plan view. (a), (b), and (c) in Fig. 2, Fig. 3, and Fig. 4 indicate the amount of cooling water, the temperature of the raw material gas, and the As composition in each flow path of the cooling jacket of the reactor shown in Fig. 1, respectively. Figure 5 (a) is a partial cross-sectional view of the organometallic chemical vapor deposition apparatus of the present invention applied to a barrel-type reactor, and (b) is a side view of the cooling liquid inlet and outlet. An explanatory diagram of the installation state,
FIG. 6 is a perspective view showing an embodiment of the present invention applied to a horizontal reactor. FIG. 7 shows a conventional metal-organic chemical vapor deposition apparatus, in which (a) is a sectional view of the upper part of the reactor, (b) is an explanatory diagram showing the cooling water passage in the upper part as a plan view, and (c) is an explanatory diagram showing the cooling water passage in the upper part. (stomach)
FIG. 2 is an enlarged sectional view of part (a) of FIG. FIG. 8(a) is a sectional view of an example of a temperature distribution adjusting means of a conventional heating device, and FIG. 8(b) is an explanatory diagram showing the temperature distribution of a substrate when this device is used. Explanation of symbols 1.21.31...Reactor 2.22.32...Cooling jacket 3.23.33...Substrate holding stand 4.24.34...Substrate 5.25.35...・Partition plate 6.26.36...Cooling liquid introduction lower, 27.37...Cooling liquid outlet 8.28.38...Material gas I~■...Concentric coolant flow path Patent application Person Furukawa Electric Co., Ltd. agent Patent attorney Ii 1) Satoshi Sanni, A Figure 1 Figure ■ 1■ 1\' ■ Flow path diagram (A) (CI) Figure Figure

Claims (3)

【特許請求の範囲】[Claims] (1)反応炉の外周に冷却液用の流路を設け、前記冷却
液用の流路を2つ以上の独立した流路に分割して、この
独立した流路各々に対して、冷却液の供給を可能とし、
かつ冷却液の温度あるいは流量を各流路に対応して独立
に調整可能としたことを特徴とする半導体薄膜気相成長
装置。
(1) A coolant flow path is provided on the outer periphery of the reactor, the coolant flow path is divided into two or more independent flow paths, and the coolant is supplied to each of the independent flow paths. enables the supply of
A semiconductor thin film vapor phase growth apparatus characterized in that the temperature or flow rate of the cooling liquid can be adjusted independently for each flow path.
(2)反応容器がステンレス製あるいはアルミニウム製
である請求項(1)記載の半導体薄膜気相成長装置。
(2) The semiconductor thin film vapor phase growth apparatus according to claim (1), wherein the reaction vessel is made of stainless steel or aluminum.
(3)半導体薄膜気相成長装置が有機金属化学気相成長
装置である請求項(1)記載の半導体薄膜気相成長装置
(3) The semiconductor thin film vapor phase epitaxy apparatus according to claim (1), wherein the semiconductor thin film vapor phase epitaxy apparatus is an organometallic chemical vapor phase epitaxy apparatus.
JP25191390A 1990-09-25 1990-09-25 Vapor phase growth apparatus of semiconductor thin film Pending JPH04132213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25191390A JPH04132213A (en) 1990-09-25 1990-09-25 Vapor phase growth apparatus of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25191390A JPH04132213A (en) 1990-09-25 1990-09-25 Vapor phase growth apparatus of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH04132213A true JPH04132213A (en) 1992-05-06

Family

ID=17229826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25191390A Pending JPH04132213A (en) 1990-09-25 1990-09-25 Vapor phase growth apparatus of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH04132213A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507898A (en) * 2000-09-01 2004-03-11 アイクストロン、アーゲー Apparatus and method for depositing a particularly crystalline layer on a particularly crystalline substrate
JP2004281703A (en) * 2003-03-14 2004-10-07 Koyo Thermo System Kk Sheet feeding heat treatment apparatus
KR100462905B1 (en) * 2001-11-29 2004-12-23 주성엔지니어링(주) manufacturing apparatus for liquid crystal display
JP2008235438A (en) * 2007-03-19 2008-10-02 Hitachi Cable Ltd Depositing method and depositing device
US7740703B2 (en) 2003-03-18 2010-06-22 Hitachi Cable, Ltd. Semiconductor film formation device
JP2013516080A (en) * 2010-04-12 2013-05-09 セメス株式会社 Gas injection unit and thin film deposition apparatus and method using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004507898A (en) * 2000-09-01 2004-03-11 アイクストロン、アーゲー Apparatus and method for depositing a particularly crystalline layer on a particularly crystalline substrate
KR100462905B1 (en) * 2001-11-29 2004-12-23 주성엔지니어링(주) manufacturing apparatus for liquid crystal display
JP2004281703A (en) * 2003-03-14 2004-10-07 Koyo Thermo System Kk Sheet feeding heat treatment apparatus
US7740703B2 (en) 2003-03-18 2010-06-22 Hitachi Cable, Ltd. Semiconductor film formation device
JP2008235438A (en) * 2007-03-19 2008-10-02 Hitachi Cable Ltd Depositing method and depositing device
JP2013516080A (en) * 2010-04-12 2013-05-09 セメス株式会社 Gas injection unit and thin film deposition apparatus and method using the same

Similar Documents

Publication Publication Date Title
US5304247A (en) Apparatus for depositing compound semiconductor crystal
EP0368900B1 (en) Improved reaction chambers and methods for cvd
JP3442536B2 (en) Improvements on chemical vapor deposition
EP1043763B1 (en) Vapor growth apparatus for semiconductor wafers with dopant gas feed assembly
US5487358A (en) Apparatus for growing silicon epitaxial layer
US3617371A (en) Method and means for producing semiconductor material
US20030015137A1 (en) Chemical vapor deposition apparatus and chemical vapor deposition method
EP1779411A1 (en) Deposition technique for producing high quality compound semiconductor materials
JPH04132213A (en) Vapor phase growth apparatus of semiconductor thin film
US3304908A (en) Epitaxial reactor including mask-work support
JPS60112694A (en) Gas-phase growth method of compound semiconductor
JPH11180796A (en) Vapor growth method and vapor growth device for applying the same
JP5655199B2 (en) Semiconductor thin film manufacturing apparatus and nitride semiconductor manufacturing method
JP3473251B2 (en) Multi-charge lateral vapor deposition method and apparatus
JPS6122621A (en) Vapor-phase growing method
JP3010739B2 (en) Method and apparatus for growing compound semiconductor crystal
JPH03214724A (en) Thin-film manufacturing method
JPH026389A (en) Apparatus for vapor growth of semiconductor thin film
JP3084881B2 (en) Metal organic chemical vapor deposition equipment
JPH07142406A (en) Method and system for semiconductor vapor phase epitaxial growth
JPS61276329A (en) Semiconductor manufacturing equipment
JPS58213415A (en) Gaseous phase epitaxially growing method and device therefor
JPH04160094A (en) Vapor growth device for semiconductor thin film
JPS63244616A (en) Barrel-type cvd system
JPH04211116A (en) Semiconductor fabricating apparatus