JPH02291111A - Vapor growth apparatus for compound semiconductor - Google Patents

Vapor growth apparatus for compound semiconductor

Info

Publication number
JPH02291111A
JPH02291111A JP1110962A JP11096289A JPH02291111A JP H02291111 A JPH02291111 A JP H02291111A JP 1110962 A JP1110962 A JP 1110962A JP 11096289 A JP11096289 A JP 11096289A JP H02291111 A JPH02291111 A JP H02291111A
Authority
JP
Japan
Prior art keywords
gas
substrate
gas tube
introduction
gas pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1110962A
Other languages
Japanese (ja)
Inventor
Katsuhide Manabe
勝英 真部
Michishige Sasa
道成 佐々
Hisayoshi Kato
久喜 加藤
Shiro Yamazaki
史郎 山崎
Isamu Akasaki
勇 赤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Japan Science and Technology Agency
Toyoda Gosei Co Ltd
Original Assignee
Nagoya University NUC
Research Development Corp of Japan
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Research Development Corp of Japan, Toyoda Gosei Co Ltd filed Critical Nagoya University NUC
Priority to JP1110962A priority Critical patent/JPH02291111A/en
Publication of JPH02291111A publication Critical patent/JPH02291111A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute a crystal growth operation by which a growth speed and a quality of a crystal are little dependent on a place by a method wherein an introduction gas tube used to guide a reaction gas up to a substrate on which a compound semiconductor thin film is grown is installed and a blowoff port, facing the substrate, of the introduction gas tube is made long along a width direction of the substrate and is made short and flat in a height direction of the substrate. CONSTITUTION:An introduction gas tube 70 is installed so as to be extended up to a position A on the immediately left side of a sapphire substrate 50; reaction gases which have been blown off from a first gas tube 28 and a second gas tube 29 are guided to the sapphire substrate 50. A plane shape of the introduction gas tube 70 is made wide as it goes to the downstream side. A mixed gas of TMG (trimethylgallium), TMA(trimethylaluminum), DEZ(diethyl zincate) and H2, which bas been intruded by the first gas tube 28, and a mixed gas of NH3 and H2, which has been introduced by the second gas tube 29, are mixed near exits of these tubes; this mixed reaction gas is guided to a susceptor 20 by using the introduction gas tube 70; a gas stream on the sapphire substrate 50 becomes uniform; it is possible to obtain a crystal which is little dependent on a place.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は化合物半導体の気相成長装置に関ずる。 The present invention relates to a compound semiconductor vapor phase growth apparatus.

【従来技術】[Prior art]

従来、有機金属化合物気相成長法(以下[M○VPEJ
と記す)を用いて、窒化ガリウム系化合物半導体(AA
XGa,−XN ;X=0を含む)薄膜をサファイア基
板上に気相成長させることや、その窒化ガリウム系化合
物半導体薄膜を発光層とする発光素子が研究されている
。 窒化ガリウム系化合物半導体の単結晶ウエハが容易に得
られないことから、窒化ガリウム系化合物半導体をそれ
と格子定数の近いサファイア基板上にエビタキシャル成
長させることが行われている。 そして、従来のGaAs等で用いられているMOVPE
法による気相成長装置では、反応室に一様に反応ガスを
流して基板上に場所依存性のない均一な結晶を成長させ
ることが行われている。
Conventionally, organometallic compound vapor phase epitaxy (hereinafter [M○VPEJ
gallium nitride-based compound semiconductor (AA
Research is being carried out on vapor phase growth of a thin film (XGa, -XN; including X=0) on a sapphire substrate, and on light-emitting devices using the gallium nitride compound semiconductor thin film as a light-emitting layer. Since single-crystal wafers of gallium nitride-based compound semiconductors are not easily obtained, gallium nitride-based compound semiconductors are epitaxially grown on sapphire substrates that have a similar lattice constant to that of gallium nitride-based compound semiconductors. And MOVPE, which is used in conventional GaAs etc.
In a vapor phase growth apparatus using this method, a reaction gas is uniformly flowed into a reaction chamber to grow uniform crystals on a substrate without location dependence.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところが、窒化ガリウム系化合物半導体を異物質で格子
定数の異なるザファイア基板に結晶成長させる場合には
、結晶成長が困難であるため、反応ガスの微妙な乱れが
直ちに格子欠陥につながる。 又、窒化ガリウム系化合物半導体の気相成長の場合には
、成長温度が高いため■族元素の蒸気圧が高くなり、化
学量論数のバランスがくずれやすく、均質な大面積の結
晶膜を得ることが困難である。 従って、反応ガスの層流をくずさずに、流速を向上させ
ることが必要となる。 そこで、本発明者等は、第12図に示すように、反応ガ
スの流速を向上させるために、反応ガスを基板1の側方
まで、吹出口が円形の細い導入管2で導き、基板表面で
反応ガスの高速なガス流を作り、サファイア基板上にも
、窒化ガリウム系化合物半導体を結晶成長させることが
出来た。しかし、場所依存性のない均一な大面積の窒化
ガリウム系化合物半導体ウエハの製造を目的とする時、
この方法では、戊長ずる結晶の厚さ、及び、結晶の質に
場所依存性があることが分かった。即ち、第13図に示
すように、ガス流の上流、中流、下流において、ガス流
に垂直な基板の幅方向(Y方向)に対して成長した結晶
の厚さに変化が見られ、均一の厚さにはならなかった。 本発明は、上記の課題を解決するために成されたもので
あり、その目的とするところは、化合物半導体、特に、
ザファイア基板上に窒化ガリウム系化合物半導体を結晶
成長させる場合において、成長速度及び結晶の質に場所
依存性の少ない結晶成長を行うための装置を提供するこ
とである。
However, when crystals of a gallium nitride-based compound semiconductor are grown on a zaphire substrate that is a foreign material and has a different lattice constant, crystal growth is difficult, and subtle disturbances in the reaction gas immediately lead to lattice defects. In addition, in the case of vapor phase growth of gallium nitride-based compound semiconductors, the high growth temperature increases the vapor pressure of group III elements, which tends to upset the stoichiometric balance, making it difficult to obtain a homogeneous crystal film with a large area. It is difficult to do so. Therefore, it is necessary to increase the flow rate without disrupting the laminar flow of the reaction gas. Therefore, as shown in FIG. 12, in order to improve the flow rate of the reactive gas, the present inventors guided the reactive gas to the side of the substrate 1 through a thin introduction tube 2 with a circular outlet, and By creating a high-speed flow of reactive gases, we were able to grow crystals of gallium nitride-based compound semiconductors even on sapphire substrates. However, when the purpose is to manufacture large-area, uniform gallium nitride compound semiconductor wafers with no location dependence,
With this method, it was found that the thickness of the elongate crystal and the quality of the crystal depend on the location. That is, as shown in Fig. 13, there are changes in the thickness of the crystal grown in the width direction (Y direction) of the substrate perpendicular to the gas flow in the upstream, middle, and downstream of the gas flow, and the thickness of the crystal grown is uniform. It wasn't thick. The present invention has been made to solve the above-mentioned problems, and its purpose is to solve the problems described above.
An object of the present invention is to provide an apparatus for growing a gallium nitride-based compound semiconductor on a zaphire substrate, with the growth rate and quality of the crystal less dependent on location.

【課頴を解決するだめの手段】[Failure to solve the problem]

上記課題を解決するための発明の構成は、有機金属化合
物ガスを用いた化合物半導体薄膜を気相成長させる装置
において、化合物半導体薄膜の成長する基板まで、反応
ガスを導く導入ガス管を有し、前記導入ガス管の前記基
板に面する吹出口は、前記基板の幅方向に沿って長く前
記基板の高さ方向には短く偏平していることを特徴とす
る。 本装置は、特に、サファイア基板上に窒化ガリウム系化
合物半導体(A It x G a 1−XN ; X
−0を含む)を気相成長させる装置に最適である。
The structure of the invention for solving the above problem is that an apparatus for vapor phase growth of a compound semiconductor thin film using an organometallic compound gas includes an introduction gas pipe for guiding a reaction gas to a substrate on which a compound semiconductor thin film is grown; The outlet of the introduction gas pipe facing the substrate is long in the width direction of the substrate and short in the height direction of the substrate, and is flat. In particular, this device uses a gallium nitride-based compound semiconductor (A It x Ga 1-XN;
-0)) is ideal for vapor phase growth.

【作用及び効果】[Action and effect]

化合物半導体薄膜の成長する基板まで、反応ガスを導く
導入ガス管を設け、その導入ガス管の基板に面する吹出
口を基板の幅方向に沿って長く前記基板の高さ方向には
短く偏平させたので、その吹出口から吹出される反応ガ
スのガス流が基板表面の幅方向及びガスの流れる方向に
沿って均一化される。即ち、基板上のガス流が全範囲で
均一化されると考えられる。この結果、場所依存性の少
ない良質な結晶が得られた。
An introduction gas pipe is provided to guide the reaction gas to the substrate on which the compound semiconductor thin film is grown, and the outlet facing the substrate of the introduction gas pipe is made long along the width direction of the substrate and short and flat in the height direction of the substrate. Therefore, the gas flow of the reaction gas blown out from the outlet is made uniform along the width direction of the substrate surface and the gas flow direction. That is, it is considered that the gas flow on the substrate is made uniform over the entire range. As a result, high-quality crystals with little location dependence were obtained.

【実施例】【Example】

以下、本発明を具体的な実施例に基づいて説明する。 第1図は本発明の具体的の一実施例に係る気相成長装置
の構成図である。 石英管10はその左端でO IJング15でシールされ
てフランジ14に当接し、緩衝材38と固定具39を用
い、ボル}46.47とナット4849等により数箇所
にてフランジ14に固定されている。又、石英管10の
右端は○リング40でシールされてフランジ27に螺子
締固定具4142により固定されている。 石英管10で囲われた内室11には、反応管12が配設
されている。その反応管12の一端13はフランジ14
に固設された保持プレート17で保持され、その他端1
6の底部18は保持脚19で石英管10に保持されてい
る。 反応管12の下流側には、サセプタ20を載置するX軸
に垂直な断面形状が長方形の試料載置室21が一体的に
連設されている。その試料載置室21の底部22にサセ
プタ20が載置される。そのサセプタ20はX軸に垂直
な断面は長方形であるが、その上面23はX軸に対して
緩やかにZ軸正方向に傾斜している。そのサセプタ20
の上面23に試料、即ち、長方形のサファイア基板50
が載置される。 サセブタ20には操作棒26が接続されており、フラン
ジ27を取り外してその操作棒26により、ザファイア
基板50を載置したザセプタ20を試料載置室21へ設
置したり、結晶成長の終わった時に、試料載置室21か
らザセプタ20を取り出せるようになっている。 又、反応管12の上流側には、第1ガス管28と第2ガ
ス管29とが開口している。第1ガス管28は第2ガス
管29の内部にあり、それらの両管28,29は同軸状
に2重管構造をしている。 第2ガス管29の周辺部には多数の穴30が開けられて
おり、第2ガス管29により導入されたガスはその穴3
0より吹出す。第1ガス管28の第2ガス管29で覆わ
れていない部分の周辺部にも多数の穴30が開けられて
おり、第1ガス管28により導入された反応ガスはその
場所で、第2ガス管29により導入されたガスと初めて
混合される。 その第1ガス管28は第17二ホールド31に接続され
、第2ガス管29は第2マユホールド32に接続されて
いる。そして、第17二ホールド31にはキャリアガス
の供給系統Iと1〜リメチルガリウム(以下rTMG」
と記す)の供給系統Jとトリメチルアルミニウム(以下
I’TMAJと記ず)の供給系統Kとジエチル亜鉛の供
給系統Lとが接続され、第2マニホールド32にはキャ
リアガスの供給系統IとNH3の供給系統Hとが接続さ
れている。 又、導入ガス管70はその一端が保持プレート17で保
持されて、試料載置室21の上流側部、即ち、ザファイ
ア基板50の直ぐ左側A位置まで29から吹出された反
応ガスをサファイア基板50まで導いている。 石英管10の長軸(X軸)に垂直な導入ガス管70の断
面は、第2図〜第4図に示すように、X軸方向での位置
によって異なり、導入ガス管70の平面形状は第5図に
示すように下流側に移行するにつれ、幅が大きくなって
いる。即ち、反応ガスはX軸方向に流れるが、ガス流の
上流側では第2図に示すように、円形であり、下流側(
X軸正方向)に進むに従って、Y軸方向を長軸とし、長
軸方向に拡大され、短軸方向に縮小された楕円形状とな
り、サセプタ20を載置するやや上流側のA位置では、
即ち、吹出口71は、第4図に示すように、上下方向(
Z軸)方向に薄くY軸方向に長い偏平楕円形状となって
いる。吹出口71 (第4図のIV−IV矢視方向断面
図)のY軸方向の長さは7 cmであり、Z軸方向の長
さは1.2cmである。 又、石英管10の外周部には冷却水を循環させる冷却管
33が形成され、その外回部には高周波電界を印加する
ための高周波コイル34が配設されている。 又、反応管12はフランジ14を介して外部管35と接
続されており、その外部管35からはキャリアガスが導
入されるようになっている。 又、試料載置室21には、側方から導入管36がフラン
ジ14を通過して外部から伸びており、その導入管36
内に試料の温度を測定する熱電対43とその導線44.
45が配設されており、試料温度を外部から測定できる
ように構成されている。 このような装置構成により、第1ガス管28で導かれた
TMGとTMAとDEZとH2との混合ガスと、第2ガ
ス管29で導かれたNH3とH2との混合ガスがそれら
の管の出口付近で混合され、その混合反応ガスは導入ガ
ス管70によりザセプタ20まで導かれ、サファイア基
板50上のガス流が均一となって、場所依存性の少ない
結晶が得られる。 N型のAAxGa+−xN薄膜を形成する場合には、D
EZの供給を停止させて第1ガス管28と第2ガス管2
9から混合ガスを流出させれば良く、I型のAAxGa
l−xN薄膜を形成する場合には、DEZを供給して第
1ガス管28と第2ガス管29とから混合ガスを流出さ
せれば良い。■型のAβxGa+−xN薄膜を形成する
場合には、DEZはサファイア基板50に吹き付けられ
熱分解し、ドーパント元素は戊長ずるAjl!xGa+
−xNにドーピングされて、■型のAAx Ga+ X
 Nが得られる。 次・に本装置を用いて、サファイア基板50上に次のよ
うにして結晶成長をおこなった。 まず、有機洗浄及び熱処理により洗浄した(0001)
面を主面とする単結晶のサファイア基板50をザセプタ
20に装着する。次に、H2を3l/分で、第1ガス管
28及び第2ガス管29及び外部管35を介して導入ガ
ス管70に流しながら、温度1100℃でザファイア基
板50を気相エッチングした。次に温度を400℃まで
低下させて、第1ガス管28からH2を10.l2/分
、15℃のTMA中をパブリングしたH2を50cc/
分、第2ガス管29からH2を10l/分、NH3を1
.0!ll分で2分間供給した。 この成長工程で、第6図に示すように、/W2Nのバッ
ファ層51が約250八の厚さに形成された。 次に、TMAの供給を停止して、試料温度を1150℃
に保持し、第1ガス管28からH2を]0β/分、15
℃のTMG中をパブリングしたH2を100 cc/分
、第2ガス管29からH2を10l/分、NH3を10
l/分で60分間供給し、膜厚約7即のN型のGaNか
ら成るN層52を成長させた。 このN層52のSEM層及び旧IEIED像を測定した
。 その結果を第7図、第8図に示す。 又、N型のGaNのN層の厚さと位置との関係を測定し
た。その結果を第9図、第10図、第11図に示す。第
9図から分るように、ザファイア基板50の上流側端部
から20mmまでは膜厚は徐々に減少するが、20mm
より下流側では膜厚は均一となった。 幅方向に対しては、上流側では第10図に示すように、
やや、膜厚が不均一となっているが、下流では、第11
図に示すように、膜厚が均一となった。 以上説明したように、導入ガス管70をザファイア基板
50の直ぐ横側まで導き、その吹出口71を偏平にする
ことで、サファイア基板50上で場所依存性の少ないG
aNの結晶膜が得られることが分かった。
The present invention will be described below based on specific examples. FIG. 1 is a block diagram of a vapor phase growth apparatus according to a specific embodiment of the present invention. The quartz tube 10 is sealed with an O-IJ ring 15 at its left end and comes into contact with the flange 14, and is fixed to the flange 14 at several locations using a buffer material 38 and a fixture 39 with bolts 46, 47 and nuts 4849, etc. ing. Further, the right end of the quartz tube 10 is sealed with a circle ring 40 and fixed to the flange 27 with a screw fastener 4142. A reaction tube 12 is disposed in an inner chamber 11 surrounded by a quartz tube 10 . One end 13 of the reaction tube 12 has a flange 14
The other end 1 is held by a holding plate 17 fixed to the
The bottom part 18 of 6 is held on the quartz tube 10 by holding legs 19. On the downstream side of the reaction tube 12, a sample mounting chamber 21 having a rectangular cross section perpendicular to the X-axis in which the susceptor 20 is mounted is integrally connected. A susceptor 20 is placed on the bottom 22 of the sample placement chamber 21 . The susceptor 20 has a rectangular cross section perpendicular to the X-axis, but its upper surface 23 is gently inclined in the positive direction of the Z-axis with respect to the X-axis. The susceptor 20
A sample, that is, a rectangular sapphire substrate 50 is placed on the upper surface 23 of the
is placed. An operation rod 26 is connected to the susceptor 20, and by removing the flange 27 and using the operation rod 26, the susceptor 20 on which the zaphire substrate 50 is mounted can be installed in the sample mounting chamber 21, or when the crystal growth is finished. , TheSepta 20 can be taken out from the sample placement chamber 21. Furthermore, a first gas pipe 28 and a second gas pipe 29 are open on the upstream side of the reaction tube 12. The first gas pipe 28 is located inside the second gas pipe 29, and both the pipes 28 and 29 are coaxial and have a double pipe structure. A large number of holes 30 are opened around the second gas pipe 29, and the gas introduced through the second gas pipe 29 is passed through the holes 30.
Blows out from 0. A large number of holes 30 are also made in the peripheral part of the first gas pipe 28 that is not covered by the second gas pipe 29, and the reaction gas introduced through the first gas pipe 28 is passed through the second gas pipe 29. It is first mixed with the gas introduced through the gas pipe 29. The first gas pipe 28 is connected to the seventeenth second hold 31, and the second gas pipe 29 is connected to the second eyebrow hold 32. The 17th second hold 31 has a carrier gas supply system I and 1 to remethyl gallium (hereinafter referred to as rTMG).
A supply system J for trimethylaluminum (hereinafter referred to as I'TMAJ) is connected to a supply system K for trimethylaluminum (hereinafter referred to as I'TMAJ) and a supply system L for diethylzinc. A supply system H is connected. In addition, one end of the introduction gas pipe 70 is held by the holding plate 17, and the reaction gas blown out from the upstream side of the sample mounting chamber 21, that is, the position A immediately to the left of the sapphire substrate 50, is transferred to the sapphire substrate 50. leading up to. The cross section of the introduction gas pipe 70 perpendicular to the long axis (X-axis) of the quartz tube 10 varies depending on the position in the X-axis direction, as shown in FIGS. 2 to 4, and the planar shape of the introduction gas pipe 70 is As shown in FIG. 5, the width increases toward the downstream side. That is, the reaction gas flows in the X-axis direction, but the upstream side of the gas flow is circular as shown in Figure 2, and the downstream side (
As it advances in the positive X-axis direction, it becomes an ellipse with the Y-axis as its major axis, expanded in the major axis direction, and contracted in the minor axis direction, and at position A, which is slightly upstream where the susceptor 20 is placed,
That is, as shown in FIG.
It has an oblate elliptical shape that is thinner in the Z-axis direction and longer in the Y-axis direction. The length of the air outlet 71 (cross-sectional view in the IV-IV direction of FIG. 4) in the Y-axis direction is 7 cm, and the length in the Z-axis direction is 1.2 cm. A cooling pipe 33 for circulating cooling water is formed on the outer circumference of the quartz tube 10, and a high-frequency coil 34 for applying a high-frequency electric field is disposed on the outer circumference of the cooling pipe 33. Further, the reaction tube 12 is connected to an external tube 35 via a flange 14, and a carrier gas is introduced from the external tube 35. Further, an introduction pipe 36 extends from the outside into the sample holding chamber 21 by passing through the flange 14 from the side.
A thermocouple 43 and its conductive wire 44 are installed to measure the temperature of the sample.
45, and is configured so that the sample temperature can be measured from the outside. With this device configuration, the mixed gas of TMG, TMA, DEZ, and H2 led through the first gas pipe 28 and the mixed gas of NH3 and H2 led through the second gas pipe 29 are The mixed reaction gases are mixed near the exit and guided to the septa 20 by the introduction gas pipe 70, so that the gas flow on the sapphire substrate 50 becomes uniform and a crystal with little location dependence is obtained. When forming an N-type AAxGa+-xN thin film, D
After stopping the supply of EZ, the first gas pipe 28 and the second gas pipe 2
It is sufficient to let the mixed gas flow out from 9, and the I type AAxGa
When forming an l-xN thin film, it is sufficient to supply DEZ and cause the mixed gas to flow out from the first gas pipe 28 and the second gas pipe 29. When forming a type AβxGa+-xN thin film, DEZ is sprayed onto the sapphire substrate 50 and thermally decomposed, and the dopant element becomes an elongated Ajl! xGa+
-xN doped, ■-type AAx Ga+
N is obtained. Next, using this apparatus, crystal growth was performed on the sapphire substrate 50 in the following manner. First, it was cleaned by organic cleaning and heat treatment (0001)
A single-crystal sapphire substrate 50 having a main surface is attached to the septa 20. Next, the zaphire substrate 50 was vapor-phase etched at a temperature of 1100° C. while flowing H2 at 3 l/min into the introduction gas pipe 70 through the first gas pipe 28, the second gas pipe 29, and the external pipe 35. Next, the temperature is lowered to 400°C, and H2 is supplied from the first gas pipe 28 to 10. 12/min, 50cc/min of H2 bubbled in TMA at 15°C.
10 l/min of H2 from the second gas pipe 29 and 1/min of NH3 from the second gas pipe 29.
.. 0! It was supplied for 2 minutes at 11 minutes. In this growth process, a buffer layer 51 of /W2N was formed to a thickness of about 250 mm, as shown in FIG. Next, stop the supply of TMA and raise the sample temperature to 1150°C.
H2 from the first gas pipe 28]0β/min, 15
H2 bubbled through TMG at 100 cc/min, H2 from the second gas pipe 29 at 10 l/min, and NH3 at 10 cc/min.
The supply was carried out at a rate of 1/min for 60 minutes to grow an N layer 52 made of N-type GaN with a film thickness of approximately 7 cm. The SEM layer and old IEIED image of this N layer 52 were measured. The results are shown in FIGS. 7 and 8. Furthermore, the relationship between the thickness and position of the N layer of N-type GaN was measured. The results are shown in FIGS. 9, 10, and 11. As can be seen from FIG. 9, the film thickness gradually decreases up to 20 mm from the upstream end of the Zaphire substrate 50, but after 20 mm
Further downstream, the film thickness became uniform. In the width direction, on the upstream side, as shown in Figure 10,
The film thickness is somewhat uneven, but downstream, the 11th
As shown in the figure, the film thickness became uniform. As explained above, by guiding the introduction gas pipe 70 to the immediate side of the sapphire substrate 50 and making its outlet 71 flat, the gas can be placed on the sapphire substrate 50 with less location dependence.
It was found that a crystalline film of aN could be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の具体的な一実施例に係る気相成長装置
の構成図、第2図、第3図、第4図はその装置の導入ガ
ス管の断面図、第5図はその導入ガス管の平面図、第6
図はサファイア基板に成長する薄膜の構造を示した断面
図、第7図、第8図は成長したN型GaN薄膜の顕微鏡
(SEM)による結晶構造を示した写真、及び旧+1E
EDによる結晶構造を示した写真、第9図はN型GaN
薄膜のガス流方向に対する膜厚の分布を測定した特性図
、第10図、第11図はN型GaN薄膜の、それぞれ、
上流、下流におけるガス流方向に垂直な幅方向の膜厚の
分布を測定した特性図、第12図は改良前の気相成長装
置の概略図、第13図はその気相成長装置で成長させた
N型GaN薄膜の幅方向の膜厚の分布を測定した特性図
である。 10 石英管 12 反応管 20 ザセプタ 21 試料載置室 28 第1ガス管 29 第2ガス管 50 ゜ザファイア基板 5 1 −A A Nバッファ層 5 2 −N層 70 導入ガス管 71 吹出口 H −N H 3の供給系統 ■ キャリアガスの供給系統 J −T M Gの供給系統 K TMAの供給系統L
 −D E Zの供給系統 特許出願人  豊田合成株式会社 同    新技術開発事業団 同   名古屋大学長 第5図 第8図 第9図 イイΣ 置 (mm)
FIG. 1 is a block diagram of a vapor phase growth apparatus according to a specific embodiment of the present invention, FIGS. 2, 3, and 4 are cross-sectional views of an inlet gas pipe of the apparatus, and FIG. Plan view of introduction gas pipe, No. 6
The figure is a cross-sectional view showing the structure of a thin film grown on a sapphire substrate, and Figures 7 and 8 are photographs showing the crystal structure of the grown N-type GaN thin film using a microscope (SEM), and old +1E
A photograph showing the crystal structure by ED, Figure 9 is N-type GaN
Figures 10 and 11 are characteristic diagrams showing the distribution of film thickness in the gas flow direction of the thin film, respectively, for an N-type GaN thin film.
Characteristic diagrams showing the distribution of film thickness in the width direction perpendicular to the gas flow direction in the upstream and downstream regions, Figure 12 is a schematic diagram of the vapor phase growth apparatus before improvement, and Figure 13 shows the film grown in the vapor phase growth apparatus. FIG. 2 is a characteristic diagram obtained by measuring the film thickness distribution in the width direction of an N-type GaN thin film. 10 Quartz tube 12 Reaction tube 20 Theceptor 21 Sample placement chamber 28 First gas tube 29 Second gas tube 50 Thefire substrate 5 1 -A A N buffer layer 5 2 -N layer 70 Introducing gas pipe 71 Air outlet H -N H 3 supply system ■ Carrier gas supply system J - T MG supply system K TMA supply system L
-D EZ supply system patent applicant Toyoda Gosei Co., Ltd. New Technology Development Corporation President of Nagoya University Figure 5 Figure 8 Figure 9 II Σ Position (mm)

Claims (1)

【特許請求の範囲】 有機金属化合物ガスを用いた化合物半導体薄膜を気相成
長させる装置において、 化合物半導体薄膜の成長する基板まで、反応ガスを導く
導入ガス管を有し、 前記導入ガス管の前記基板に面する吹出口は、前記基板
の幅方向に沿って長く前記基板の高さ方向には短く偏平
していることを特徴とする気相成長装置。
[Scope of Claims] An apparatus for vapor-phase growth of a compound semiconductor thin film using an organometallic compound gas, comprising an introduction gas pipe for guiding a reaction gas to a substrate on which the compound semiconductor thin film is grown; A vapor phase growth apparatus characterized in that an air outlet facing the substrate is long in the width direction of the substrate and short and flat in the height direction of the substrate.
JP1110962A 1989-04-29 1989-04-29 Vapor growth apparatus for compound semiconductor Pending JPH02291111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1110962A JPH02291111A (en) 1989-04-29 1989-04-29 Vapor growth apparatus for compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1110962A JPH02291111A (en) 1989-04-29 1989-04-29 Vapor growth apparatus for compound semiconductor

Publications (1)

Publication Number Publication Date
JPH02291111A true JPH02291111A (en) 1990-11-30

Family

ID=14548928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1110962A Pending JPH02291111A (en) 1989-04-29 1989-04-29 Vapor growth apparatus for compound semiconductor

Country Status (1)

Country Link
JP (1) JPH02291111A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196757A (en) 1992-06-10 1994-07-15 Nichia Chem Ind Ltd Method of growing indium gallium nitride semiconductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112694A (en) * 1983-11-21 1985-06-19 Matsushita Electric Ind Co Ltd Gas-phase growth method of compound semiconductor
JPS61242012A (en) * 1985-04-19 1986-10-28 Matsushita Electric Ind Co Ltd Vapor-phase growth device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60112694A (en) * 1983-11-21 1985-06-19 Matsushita Electric Ind Co Ltd Gas-phase growth method of compound semiconductor
JPS61242012A (en) * 1985-04-19 1986-10-28 Matsushita Electric Ind Co Ltd Vapor-phase growth device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196757A (en) 1992-06-10 1994-07-15 Nichia Chem Ind Ltd Method of growing indium gallium nitride semiconductor

Similar Documents

Publication Publication Date Title
US5122845A (en) Substrate for growing gallium nitride compound-semiconductor device and light emitting diode
JPS63188938A (en) Method for vapor growth of gallium nitride compound semiconductor
JP2002316892A (en) Vapor phase epitaxial growth system
JPH04164895A (en) Method for growing semiconductor crystal film
JPS6065798A (en) Growing of gallium nitride single crystal
JP2733518B2 (en) Compound semiconductor film vapor phase growth system
JPH02291111A (en) Vapor growth apparatus for compound semiconductor
JP2849642B2 (en) Compound semiconductor vapor deposition equipment
JPH02291113A (en) Vapor growth apparatus for compound semiconductor
JPH02291112A (en) Vapor growth apparatus for compound semiconductor
JPS60112694A (en) Gas-phase growth method of compound semiconductor
JP3090145B2 (en) Compound semiconductor vapor deposition equipment
JPH02180796A (en) Production of silicon carbide single crystal
JP3534252B2 (en) Vapor phase growth method
JP3112445B2 (en) Gallium nitride based compound semiconductor vapor phase growth equipment
JP3472976B2 (en) Method and apparatus for forming group III nitride semiconductor
JPH11121801A (en) Compound semiconductor light emitting device based on gallium nitride
JPH0391922A (en) Method of forming vertical type superlattice of compound semiconductor
JP3104677B2 (en) Group III nitride crystal growth equipment
KR950032727A (en) Method for manufacturing gallium nitride single crystal thin film and apparatus therefor
JPS6217098A (en) Vapor growth device for semiconductor thin film
JP2704224B2 (en) Semiconductor device and manufacturing method thereof
JPH11340153A (en) Vapor-phase growth system for compound semiconductor
JPS63287015A (en) Vapor growth apparatus for compound semiconductor thin film
JPH0573251B2 (en)