JPH06196757A - Method of growing indium gallium nitride semiconductor - Google Patents

Method of growing indium gallium nitride semiconductor

Info

Publication number
JPH06196757A
JPH06196757A JP10655593A JP10655593A JPH06196757A JP H06196757 A JPH06196757 A JP H06196757A JP 10655593 A JP10655593 A JP 10655593A JP 10655593 A JP10655593 A JP 10655593A JP H06196757 A JPH06196757 A JP H06196757A
Authority
JP
Japan
Prior art keywords
ingan
growing
gallium nitride
gas
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10655593A
Other languages
Japanese (ja)
Other versions
JP2751963B2 (en
Inventor
Shuji Nakamura
修二 中村
Takashi Mukai
孝志 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46786012&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06196757(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP10655593A priority Critical patent/JP2751963B2/en
Publication of JPH06196757A publication Critical patent/JPH06196757A/en
Priority to JP9332546A priority patent/JPH10135516A/en
Application granted granted Critical
Publication of JP2751963B2 publication Critical patent/JP2751963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain an InGaN having good quality and crystallizability by growing an indium gallium nitride layer on a gallium nitride layer at a specific growth temperature using a nitrogen as a carrier gas of a material gas. CONSTITUTION:By using a nitrogen as a carrier gas of a material gas, a decomposition of an InGaN can be controlled at a growth temperature of higher than 600 deg.C and even if some InN is decomposed, the InGaN with good quality can be obtained by supplying a large number of indium in the material gas. Also, by growing a buffer layer on a sapphire substrate at a low temperature before growing a GaN layer, a crystallizability of the GaN layer grown on the buffer layer is further improved and thus a crystallizability of the InGaN can be also improved. Therefore, since a semiconductor material stacked in a blue luminescent device can be formed in a double hetero structure, a blue laser diode can be implemented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は青色発光ダイオード、青
色レーザーダイオード等に使用される窒化インジウムガ
リウム半導体の成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing an indium gallium nitride semiconductor used for blue light emitting diodes, blue laser diodes and the like.

【0002】[0002]

【従来の技術】青色ダイオード、青色レーザーダイオー
ド等に使用される実用的な半導体材料として窒化ガリウ
ム(GaN)、窒化インジウムガリウム(InGa
N)、窒化ガリウムアルミニウム(GaAlN)等の窒
化ガリウム系化合物半導体が注目されており、その中で
もInGaNはバンドギャップが2eV〜3.4eVま
であるため非常に有望視されている。
2. Description of the Related Art Gallium nitride (GaN) and indium gallium nitride (InGa) are practical semiconductor materials used for blue diodes, blue laser diodes and the like.
N) and gallium nitride-based compound semiconductors such as gallium aluminum nitride (GaAlN) have attracted attention. Among them, InGaN has a bandgap of 2 eV to 3.4 eV and thus is regarded as very promising.

【0003】従来、有機金属気相成長法(以下MOCV
D法という。)によりInGaNを成長させる場合、成
長温度500℃〜600℃の低温で、サファイア基板上
に成長されていた。なぜなら、InNの融点はおよそ5
00℃、GaNの融点はおよそ1000℃であるため、
600℃以上の高温でInGaNを成長させると、In
GaN中のInNの分解圧がおよそ10気圧以上とな
り、InGaNがほとんど分解してしまい、形成される
ものはGaのメタルとInのメタルの堆積物のみとなっ
てしまうからである。従って、従来InGaNを成長さ
せようとする場合は成長温度を低温に保持しなければな
らなかった。
Conventionally, metal organic chemical vapor deposition (hereinafter MOCV)
It is called D method. In the case of growing InGaN according to (4), it was grown on a sapphire substrate at a low growth temperature of 500 ° C to 600 ° C. Because the melting point of InN is about 5
Since 00 ° C and the melting point of GaN are about 1000 ° C,
When InGaN is grown at a high temperature of 600 ° C. or higher, In
This is because the decomposition pressure of InN in GaN becomes about 10 atm or more, and InGaN is almost decomposed, and only the deposits of Ga metal and In metal are formed. Therefore, in order to grow InGaN conventionally, the growth temperature had to be kept low.

【0004】[0004]

【発明が解決しようとする課題】このような条件の下で
成長されたInGaNの結晶性は非常に悪く、例えば室
温でフォトルミネッセンス測定を行っても、バンド間発
光はほとんど見られず、深い準位からの発光がわずかに
観測されるのみであり、青色発光が観測されたことはな
かった。しかも、X線回折でInGaNのピークを検出
しようとしてもほとんどピークは検出されず、その結晶
性は、単結晶というよりも、アモルファス状結晶に近い
のが実状であった。
The crystallinity of InGaN grown under such conditions is very poor. For example, even when photoluminescence measurement is performed at room temperature, almost no band-to-band emission is observed and a deep quasi-state is obtained. Only a slight emission from the position was observed, and no blue emission was observed. Moreover, when trying to detect a peak of InGaN by X-ray diffraction, almost no peak was detected, and the crystallinity was closer to that of an amorphous crystal rather than a single crystal.

【0005】青色発光ダイオード、青色レーザーダイオ
ード等の青色発光デバイスを実現するためには、高品質
で、かつ優れた結晶性を有するInGaNの実現が強く
望まれている。よって、本発明はこの問題を解決するべ
くなされたものであり、その目的とするところは、高品
質で結晶性に優れたInGaNの成長方法を提供するも
のである。
In order to realize blue light emitting devices such as blue light emitting diodes and blue laser diodes, it has been strongly desired to realize InGaN having high quality and excellent crystallinity. Therefore, the present invention has been made to solve this problem, and an object thereof is to provide a method for growing InGaN having high quality and excellent crystallinity.

【0006】[0006]

【課題を解決するための手段】我々は、InGaNをM
OCVD法で成長するにあたり、原料ガスのキャリアガ
スとして窒素を用い、600℃以上の高温で、しかも、
従来のようにサファイア基板上ではなく、GaN層の上
に成長させることにより、その結晶性が格段に向上する
ことを新たに見いだし本発明をなすに至った。
[Means for Solving the Problems]
When growing by the OCVD method, nitrogen is used as a carrier gas of a raw material gas at a high temperature of 600 ° C. or higher, and
The present invention has been newly found that the crystallinity of the GaN layer is remarkably improved by growing it on the GaN layer instead of on the sapphire substrate as in the past.

【0007】即ち、本発明の成長方法は、原料ガスとし
て、ガリウム源のガスと、インジウム源のガスと、窒素
源のガスとを用いて、有機金属気相成長法により窒化イ
ンジウムガリウム半導体を成長させる方法であって、前
記原料ガスのキャリアガスとして窒素を用い、600℃
より高い成長温度で、窒化ガリウム層上に、窒化インジ
ウムガリウム層を成長させることを特徴とする。
That is, in the growth method of the present invention, an indium gallium nitride semiconductor is grown by metalorganic vapor phase epitaxy using a gallium source gas, an indium source gas, and a nitrogen source gas as source gases. The method is to use nitrogen as a carrier gas for the raw material gas, and
An indium gallium nitride layer is grown on the gallium nitride layer at a higher growth temperature.

【0008】原料ガスには、Ga源としてトリメチルガ
リウム(TMG)、トリエチルガリウム(TEG)、窒
素源としてアンモニア(NH3)、ヒドラジン(N
24)、インジウム源としてトリメチルインジウム(T
MI)、トリエチルインジウム(TEI)等を好ましく
用いることができる。
In the source gas, trimethylgallium (TMG) as a Ga source, triethylgallium (TEG), ammonia (NH 3 ) as a nitrogen source, and hydrazine (N
2 H 4 ) and trimethylindium (T
MI), triethylindium (TEI) and the like can be preferably used.

【0009】さらに成長中に供給する原料ガス中のイン
ジウム源のガスのインジウムのモル比は、ガリウム1に
対し、好ましくは0.1以上、さらに好ましくは1.0
以上に調整する。インジウムのモル比が0.1より少な
いと、InGaNの混晶が得にくく、また結晶性が悪く
なる傾向にある。なぜなら、本発明の成長方法は600
℃より高い温度でInGaNを成長させるため、多少な
りともInNの分解が発生する。従ってInNがGaN
結晶中に入りにくくなるため、好ましくその分解分より
もインジウムを多く供給することによって、InNをG
aNの結晶中に入れることができる。従って、インジウ
ムのモル比は高温で成長するほど多くする方が好まし
く、例えば、900℃前後の成長温度では、インジウム
をガリウムの10〜50倍程度供給することにより、X
値を0.5未満とするInXGa1-XNを得ることができ
る。
Further, the molar ratio of indium of the indium source gas in the raw material gas supplied during the growth is preferably 0.1 or more, more preferably 1.0, relative to 1 gallium.
Adjust as above. If the molar ratio of indium is less than 0.1, it is difficult to obtain a mixed crystal of InGaN, and the crystallinity tends to deteriorate. Because the growth method of the present invention is 600
Since InGaN is grown at a temperature higher than 0 ° C., some decomposition of InN occurs. Therefore, InN is GaN
Since it is hard to enter the crystal, it is preferable to supply InN to the InN
It can be placed in the crystal of aN. Therefore, it is preferable to increase the molar ratio of indium as it grows at a higher temperature. For example, at a growth temperature of about 900 ° C., indium is supplied at about 10 to 50 times that of gallium, so that X
In X Ga 1-X N having a value of less than 0.5 can be obtained.

【0010】さらにまた、これらの原料ガスのキャリア
ガスとして窒素を使用することにより、InGaN中の
InNが分解して結晶格子中から出ていくのを抑制する
ことができる。
Furthermore, by using nitrogen as the carrier gas for these source gases, it is possible to prevent InN in InGaN from decomposing and going out of the crystal lattice.

【0011】成長温度は600℃より高い温度であれば
よく、好ましくは700℃以上、900℃以下の範囲に
調整する。600℃以下であると、GaNの結晶が成長
しにくいため、InGaNの結晶ができにくく、できた
としても従来のように結晶性の悪いInGaNとなる。
また、900℃より高い温度であるとInNが分解しや
すくなるため、InGaNがGaNになりやすい傾向に
ある。
The growth temperature may be higher than 600 ° C., and is preferably adjusted to a range of 700 ° C. or higher and 900 ° C. or lower. If the temperature is 600 ° C. or lower, it is difficult to grow a GaN crystal, and thus it is difficult to form an InGaN crystal, and even if it is formed, InGaN has poor crystallinity as in the conventional case.
Further, if the temperature is higher than 900 ° C., InN is likely to be decomposed, and InGaN tends to be GaN.

【0012】インジウムガスのモル比、成長温度は目的
とするInGaNのインジウムのモル比によって適宜変
更できる。例えばInを多くしようとすれば650℃前
後の低温で成長させるか、または原料ガスのInのモル
比を多くすればよい、一方Gaを多くしようとするなら
ば900℃前後の高温で成長させればよい。
The molar ratio of indium gas and the growth temperature can be appropriately changed depending on the target indium molar ratio of InGaN. For example, to increase In, it is necessary to grow at a low temperature of about 650 ° C., or to increase the molar ratio of In in the source gas, while to increase Ga, grow at a high temperature of around 900 ° C. Good.

【0013】[0013]

【作用】本発明の成長方法は、原料ガスのキャリアガス
を窒素とすることにより、600℃より高い成長温度に
おいて、InGaNの分解を抑制することができ、また
InNが多少分解しても、原料ガス中のインジウムを多
く供給することにより高品質なInGaNを得ることが
できる。
According to the growth method of the present invention, by using nitrogen as the carrier gas for the source gas, decomposition of InGaN can be suppressed at a growth temperature higher than 600 ° C., and even if InN is decomposed to some extent, the source material is decomposed. High quality InGaN can be obtained by supplying a large amount of indium in the gas.

【0014】さらに、従来ではサファイア基板の上にI
nGaN層を成長させていたが、サファイアとInGa
Nとでは格子定数不整がおよそ15%以上もあるため、
得られた結晶の結晶性が悪くなると考えられる。一方、
本発明ではGaN層の上に成長させることにより、その
格子定数不整を5%以下と小さくすることができるた
め、結晶性に優れたInGaNを形成することができ
る。図2は本発明の一実施例により得られたInGaN
のフォトルミネッセンスのスペクトルであるが、それを
顕著に表している。従来法では、InGaNのフォトル
ミネッセンスの青色のスペクトルは全く測定できなかっ
たが、本発明では明らかに結晶性が向上しているために
450nmの青色領域に発光ピークが現れている。ま
た、本発明の成長方法において、このGaNのGaの一
部をAlで置換してもよく、技術範囲内である。
Further, in the past, I was formed on a sapphire substrate.
I was growing an nGaN layer, but sapphire and InGa
Since the lattice constant irregularity is about 15% or more with N,
It is considered that the crystallinity of the obtained crystals deteriorates. on the other hand,
In the present invention, since the lattice constant irregularity can be reduced to 5% or less by growing it on the GaN layer, InGaN having excellent crystallinity can be formed. FIG. 2 shows InGaN obtained according to an embodiment of the present invention.
It is the photoluminescence spectrum of, but it is remarkable. In the conventional method, the blue spectrum of InGaN photoluminescence could not be measured at all, but in the present invention, since the crystallinity is obviously improved, an emission peak appears in the blue region of 450 nm. In the growth method of the present invention, a part of Ga of GaN may be replaced with Al, which is within the technical range.

【0015】[0015]

【実施例】以下、図面を元に実施例で本発明の成長方法
を詳説する。図1は本発明の成長方法に使用したMOC
VD装置の主要部の構成を示す概略断面図であり、反応
部の構造、およびその反応部と通じるガス系統図を示し
ている。1は真空ポンプおよび排気装置と接続された反
応容器、2は基板を載置するサセプター、3はサセプタ
ーを加熱するヒーター、4はサセプターを回転、上下移
動させる制御軸、5は基板に向かって斜め、または水平
に原料ガスを供給する石英ノズル、6は不活性ガスを基
板に向かって垂直に供給することにより、原料ガスを基
板面に押圧して、原料ガスを基板に接触させる作用のあ
るコニカル石英チューブ、7は基板である。TMG、T
MI等の有機金属化合物ソースは微量のバブリングガス
によって気化され、メインガスであるキャリアガスによ
って反応容器内に供給される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The growth method of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 shows the MOC used in the growth method of the present invention.
FIG. 3 is a schematic cross-sectional view showing the configuration of the main part of the VD device, showing the structure of a reaction part and a gas system diagram communicating with the reaction part. Reference numeral 1 is a reaction vessel connected to a vacuum pump and an exhaust device, 2 is a susceptor for mounting a substrate, 3 is a heater for heating the susceptor, 4 is a control shaft for rotating and vertically moving the susceptor, and 5 is a diagonal to the substrate. , Or a quartz nozzle that supplies the raw material gas horizontally, and 6 is a conical device that presses the raw material gas against the substrate surface by supplying the inert gas vertically toward the substrate to bring the raw material gas into contact with the substrate. A quartz tube, 7 is a substrate. TMG, T
The organometallic compound source such as MI is vaporized by a small amount of bubbling gas and supplied into the reaction vessel by the carrier gas which is the main gas.

【0016】[実施例1]まず、よく洗浄したサファイ
ア基板7をサセプター2にセットし、反応容器内を水素
で十分置換する。
Example 1 First, a well-cleaned sapphire substrate 7 is set on the susceptor 2, and the inside of the reaction vessel is sufficiently replaced with hydrogen.

【0017】次に、石英ノズル5から水素を流しながら
ヒーター3で温度を1050℃まで上昇させ、20分間
保持しサファイア基板7のクリーニングを行う。
Next, while flowing hydrogen from the quartz nozzle 5, the temperature is raised to 1050 ° C. by the heater 3 and kept for 20 minutes to clean the sapphire substrate 7.

【0018】続いて、温度を510℃まで下げ、石英ノ
ズル5からアンモニア(NH3)4リットル/分と、キ
ャリアガスとして水素を2リットル/分で流しながら、
TMGを27×10ー6モル/分流して1分間保持してG
aNバッファー層を約200オングストローム成長す
る。この間、コニカル石英チューブ7からは水素を5リ
ットル/分と、窒素を5リットル/分で流し続け、サセ
プター2をゆっくりと回転させる。
Subsequently, the temperature was lowered to 510 ° C., while flowing 4 liters / minute of ammonia (NH 3 ) from the quartz nozzle 5 and 2 liters / minute of hydrogen as a carrier gas,
Flow TMG at 27 × 10 −6 mol / min and hold for 1 min.
The aN buffer layer is grown to about 200 Å. During this time, hydrogen is continuously flowed from the conical quartz tube 7 at 5 l / min and nitrogen is continued at 5 l / min, and the susceptor 2 is slowly rotated.

【0019】バッファ層成長後、TMGのみ止めて、温
度を1030℃まで上昇させる。温度が1030℃にな
ったら、同じく水素をキャリアガスとしてTMGを54
×10ー6モル/分で流して30分間成長させ、GaN層
を2μm成長させる。
After the growth of the buffer layer, only TMG is stopped and the temperature is raised to 1030.degree. When the temperature reaches 1030 ° C, hydrogen is used as carrier gas and TMG is added to 54
Flowing at 10 −6 mol / min for 30 minutes to grow the GaN layer to 2 μm.

【0020】GaN層成長後、温度を800℃にして、
キャリアガスを窒素に切り替え、窒素を2リットル/
分、TMGを2×10-6モル/分、TMIを20×10
-6モル/分、アンモニアを4リットル/分で流しなが
ら、InGaNを60分間成長させる。なお、この間、
コニカル石英チューブ7から供給するガスも窒素のみと
し、10リットル/分で流し続ける。
After growing the GaN layer, the temperature is set to 800 ° C.,
Switch the carrier gas to nitrogen and add 2 liters of nitrogen
Min, TMG 2 × 10 -6 mol / min, TMI 20 × 10
-6 mol / min, InGaN is grown for 60 minutes while flowing ammonia at 4 l / min. During this time,
The gas supplied from the conical quartz tube 7 is also nitrogen, and the flow is continued at 10 liters / minute.

【0021】成長後、反応容器からウエハーを取り出
し、InGaN層に10mWのHe−Cdレーザーを照
射して室温でフォトルミネッセンス測定を行うと、図2
に示すように450nmにピークのある強い青色発光を
示した。
After the growth, the wafer was taken out from the reaction container, the InGaN layer was irradiated with a 10 mW He—Cd laser, and the photoluminescence measurement was carried out at room temperature.
As shown in FIG. 5, strong blue light emission having a peak at 450 nm was exhibited.

【0022】さらに、InGaN層のX線ロッキングカ
ーブを取ると、In0.25Ga0.75Nの組成を示すところ
にピークを有しており、その半値幅は8分であった。こ
の8分という値は従来報告されている中では最小値であ
り、本発明の方法によるInGaNの結晶性が非常に優
れていることを示している。
Further, when the X-ray rocking curve of the InGaN layer was taken, it had a peak at a composition of In0.25Ga0.75N, and the half-width was 8 minutes. This value of 8 minutes is the minimum value reported in the past, and shows that the crystallinity of InGaN by the method of the present invention is very excellent.

【0023】[実施例2]実施例1において、GaN層
成長後、InGaNを成長させる際に、TMIの流量を
2×10-7モル/分にする他は同様にして、InGaN
を成長させる。このInGaNのX線ロッキングカーブ
を測定すると、In0.08Ga0.92Nの組成のところにピ
ークが現れ、その半値幅は6分であった。
[Example 2] InGaN was grown in the same manner as in Example 1 except that the TMI flow rate was set to 2 x 10 -7 mol / min when InGaN was grown after the GaN layer was grown.
Grow. When the X-ray rocking curve of this InGaN was measured, a peak appeared at the composition of In0.08Ga0.92N, and the half value width was 6 minutes.

【0024】[実施例3]実施例1のバッファ層成長
後、TMGのみ止めて、温度を1030℃まで上昇させ
る。温度が1030℃になったら、同じく水素をキャリ
アガスとしてTMGを54×10ー6モル/分、TMAを
6×10-6モル/分で流して30分間成長させ、Ga0.
9Al0.1N層を2μm成長させる他は実施例1と同様に
してGa0.9Al0.1N層の上にInGaN層を成長させ
た。その結果、得られたInGaN層のX線ロッキング
カーブは、同じくIn0.25Ga0.75Nの組成を示すとこ
ろにピークを有しており、その半値幅は8分であった。
[Embodiment 3] After the growth of the buffer layer in Embodiment 1, only TMG is stopped and the temperature is raised to 1030.degree. When the temperature became 1030 ° C., likewise hydrogen 54 × 10 -6 mol / min and TMG as the carrier gas, by flowing TMA at 6 × 10 -6 mol / min was grown for 30 minutes, Ga0.
An InGaN layer was grown on the Ga0.9Al0.1N layer in the same manner as in Example 1 except that the 9Al0.1N layer was grown to a thickness of 2 μm. As a result, the X-ray rocking curve of the obtained InGaN layer had a peak at the same composition of In0.25Ga0.75N, and the half-width was 8 minutes.

【0025】[比較例]実施例と同様にして、サファイ
ア基板をクリーニングした後、800℃にして、キャリ
アガスとして水素を2リットル/分、TMGを2×10
-6モル/分、TMIを20×10-6モル/分、アンモニ
アを4リットル/分で流しながら、InGaNをサファ
イア基板の上に60分間成長させる。なお、この間、コ
ニカル石英チューブ7からは窒素5リットル/分、水素
5リットル/分で流し続ける。
[Comparative Example] After cleaning the sapphire substrate in the same manner as in Example, the temperature was set to 800 ° C., hydrogen as a carrier gas was 2 liter / min, and TMG was 2 × 10 5.
InGaN is grown on the sapphire substrate for 60 minutes while flowing -6 mol / min, TMI of 20 × 10 -6 mol / min and ammonia of 4 liter / min. During this period, the conical quartz tube 7 is continuously supplied with nitrogen at 5 l / min and hydrogen at 5 l / min.

【0026】以上のようにして成長したInGaNのフ
ォトルミネッセンス測定を同様にして行った結果を図3
に示す。この図を見ても分かるように、このInGaN
の結晶は550nmの深い準位の発光が支配的である。
しかも、この発光センターは一般に窒素の空孔と考えら
れており、InGaNは成長していないことが明らかで
ある。従って、この結果を見る限り、成長中にInNの
形でほとんどのInGaNが分解し、GaNの形で少し
だけ成長しているように見受けられる。
Photoluminescence measurement of InGaN grown in the above manner was carried out in the same manner as shown in FIG.
Shown in. As you can see from this figure, this InGaN
The light of the deep level of 550 nm is dominant in the crystal of.
Moreover, this emission center is generally considered to be a vacancy of nitrogen, and it is clear that InGaN has not grown. Therefore, as far as this result is seen, it seems that most of InGaN is decomposed in the form of InN during the growth and slightly grown in the form of GaN.

【0027】このことを確かめるために同様にしてX線
ロッキングカーブを測定したところ、その半値幅は約1
度近くあり、またピーク位置はGaNの所にあり、結晶
はInGaNではなく、GaNがアモルファス状になっ
ていることが判明した。
To confirm this, the X-ray rocking curve was measured in the same manner, and the full width at half maximum was about 1.
It was found that the peak position was near GaN and the crystal was not InGaN but GaN was amorphous.

【0028】[0028]

【発明の効果】本発明の成長方法によると従来では不可
能であったInGaN層の単結晶を成長させることがで
きる。また、GaN層を成長させる前にサファイア基板
上に低温でバッファ層を成長させることにより、その上
に成長させるGaN層の結晶性がさらに向上するため、
InGaNの結晶性もよくすることができる。
According to the growth method of the present invention, it is possible to grow a single crystal of an InGaN layer, which has been impossible in the past. Further, by growing the buffer layer on the sapphire substrate at a low temperature before growing the GaN layer, the crystallinity of the GaN layer grown thereon is further improved,
The crystallinity of InGaN can also be improved.

【0029】このように本発明の成長方法は、将来開発
される青色発光デバイスに積層される半導体材料をダブ
ルへテロ構造にできるため、青色レーザーダイオードが
実現可能となり、その産業上の利用価値は大きい。
As described above, according to the growth method of the present invention, since the semiconductor material laminated on the blue light emitting device to be developed in the future can have a double hetero structure, a blue laser diode can be realized and its industrial utility value is high. large.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の方法の一実施例に使用したMOCV
D装置の主要部の構成を示す概略断面図。
FIG. 1 MOCV used in one embodiment of the method of the present invention
FIG. 3 is a schematic cross-sectional view showing the configuration of the main part of the D device.

【図2】 本発明の一実施例により形成されたInGa
Nのフォトルミネッセンスを測定した図。
FIG. 2 is an InGa formed according to an embodiment of the present invention.
The figure which measured the photoluminescence of N.

【図3】 従来法により形成されたInGaNのフォト
ルミネッセンスを測定した図。
FIG. 3 is a diagram in which the photoluminescence of InGaN formed by a conventional method is measured.

【符号の説明】[Explanation of symbols]

1・・・・・・・・反応容器 2・・・・・・・・サセプター 3・・・・・・・・ヒーター 4・・・・・・・・制御軸 5・・・・・・・・石英ノズル 6・・・・・・・・コニカル石英
チューブ 7・・・・・・・・基板
1 ... Reaction container 2 ... Susceptor 3 ... Heater 4 ... Control shaft 5 ...・ Quartz nozzle 6 ・ ・ ・ ・ ・ ・ ・ ・ Conical quartz tube 7 ・ ・ ・ ・ ・ ・ Substrate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原料ガスとして、ガリウム源のガスと、
インジウム源のガスと、窒素源のガスとを用いて、有機
金属気相成長法により窒化インジウムガリウム半導体を
成長させる方法において、 前記原料ガスのキャリアガスとして窒素を用い、600
℃より高い成長温度で、窒化ガリウム層上に、窒化イン
ジウムガリウム層を成長させることを特徴とする窒化イ
ンジウムガリウム半導体の成長方法。
1. A gallium source gas as a source gas,
In a method of growing an indium gallium nitride semiconductor by a metalorganic vapor phase epitaxy using a gas of an indium source and a gas of a nitrogen source, nitrogen is used as a carrier gas of the raw material gas, and 600
A method for growing an indium gallium nitride semiconductor, which comprises growing an indium gallium nitride layer on a gallium nitride layer at a growth temperature higher than ° C.
【請求項2】 前記原料ガス中のガリウムに対するイン
ジウムのモル比を0.1以上に調整することを特徴とす
る請求項1に記載の窒化インジウムガリウム半導体の成
長方法。
2. The method for growing an indium gallium nitride semiconductor according to claim 1, wherein the molar ratio of indium to gallium in the source gas is adjusted to 0.1 or more.
【請求項3】 前記窒化ガリウム層はそのガリウムの一
部をアルミニウムで置換した窒化ガリウムアルミニウム
層であることを特徴とする請求項1に記載の窒化インジ
ウムガリウム半導体の成長方法。
3. The method for growing an indium gallium nitride semiconductor according to claim 1, wherein the gallium nitride layer is a gallium aluminum nitride layer in which a part of gallium is replaced with aluminum.
JP10655593A 1992-06-10 1993-05-07 Method for growing indium gallium nitride semiconductor Expired - Lifetime JP2751963B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10655593A JP2751963B2 (en) 1992-06-10 1993-05-07 Method for growing indium gallium nitride semiconductor
JP9332546A JPH10135516A (en) 1992-06-10 1997-12-03 Semiconductor lamination structure

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP17752092 1992-06-10
JP4-177520 1992-11-04
JP4-321184 1992-11-04
JP32118492 1992-11-04
JP10655593A JP2751963B2 (en) 1992-06-10 1993-05-07 Method for growing indium gallium nitride semiconductor
JP9332546A JPH10135516A (en) 1992-06-10 1997-12-03 Semiconductor lamination structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP9332546A Division JPH10135516A (en) 1992-06-10 1997-12-03 Semiconductor lamination structure

Publications (2)

Publication Number Publication Date
JPH06196757A true JPH06196757A (en) 1994-07-15
JP2751963B2 JP2751963B2 (en) 1998-05-18

Family

ID=46786012

Family Applications (2)

Application Number Title Priority Date Filing Date
JP10655593A Expired - Lifetime JP2751963B2 (en) 1992-06-10 1993-05-07 Method for growing indium gallium nitride semiconductor
JP9332546A Pending JPH10135516A (en) 1992-06-10 1997-12-03 Semiconductor lamination structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP9332546A Pending JPH10135516A (en) 1992-06-10 1997-12-03 Semiconductor lamination structure

Country Status (1)

Country Link
JP (2) JP2751963B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863811A (en) * 1995-06-28 1999-01-26 Sony Corporation Method for growing single crystal III-V compound semiconductor layers on non single crystal III-V Compound semiconductor buffer layers
JPH11135885A (en) * 1997-10-30 1999-05-21 Matsushita Electric Ind Co Ltd Production of semiconductor and semiconductor laser
WO2000017972A1 (en) * 1998-09-17 2000-03-30 Matsushita Electric Industrial Co., Ltd. Process for producing nitride semiconductor device
KR20010010965A (en) * 1999-07-24 2001-02-15 구자홍 The manufacturing method of Ⅲ-Ⅴgroup compound semiconductor device
KR100342013B1 (en) * 1999-11-26 2002-06-27 김효근 Fabrication method for high quality ingan/gan multi-quantum wells
US6580098B1 (en) 1999-07-27 2003-06-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6614059B1 (en) 1999-01-07 2003-09-02 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device with quantum well
US6617668B1 (en) 1999-05-21 2003-09-09 Toyoda Gosei Co., Ltd. Methods and devices using group III nitride compound semiconductor
US6645295B1 (en) 1999-05-10 2003-11-11 Toyoda Gosei Co., Ltd. Method for manufacturing group III nitride compound semiconductor and a light-emitting device using group III nitride compound semiconductor
US6667185B2 (en) 1999-10-21 2003-12-23 Matsushita Electric Industrial Co., Ltd. Method of fabricating nitride semiconductor device
US6830948B2 (en) 1999-12-24 2004-12-14 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US6844246B2 (en) 2001-03-22 2005-01-18 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor, and III nitride compound semiconductor element based on it
US6855620B2 (en) 2000-04-28 2005-02-15 Toyoda Gosei Co., Ltd. Method for fabricating Group III nitride compound semiconductor substrates and semiconductor devices
US6861305B2 (en) 2000-03-31 2005-03-01 Toyoda Gosei Co., Ltd. Methods for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6860943B2 (en) 2001-10-12 2005-03-01 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor
US6967122B2 (en) 2000-03-14 2005-11-22 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor and method for manufacturing the same
US6979584B2 (en) 1999-12-24 2005-12-27 Toyoda Gosei Co, Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US7005681B2 (en) 2001-08-30 2006-02-28 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component and method for making same
US7052979B2 (en) 2001-02-14 2006-05-30 Toyoda Gosei Co., Ltd. Production method for semiconductor crystal and semiconductor luminous element
US7141444B2 (en) 2000-03-14 2006-11-28 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor and III nitride compound semiconductor element
JP2009152610A (en) * 2007-12-18 2009-07-09 Samsung Corning Precision Glass Co Ltd Method of fabricating gallium nitride substrate
US7619261B2 (en) 2000-08-07 2009-11-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US7645622B2 (en) 2005-04-21 2010-01-12 Sharp Kabushiki Kaisha Method of producing nitride-based semiconductor device, and light-emitting device produced thereby
EP2175054A3 (en) * 2008-10-09 2013-02-20 Canon Kabushiki Kaisha Substrate for growing wurtzite type crystal and method for manufacturing the same and semiconductor device
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
JP2015053416A (en) * 2013-09-09 2015-03-19 豊田合成株式会社 Manufacturing method and manufacturing device of group iii nitride semiconductor light emitting element and substrate cleaning method
US9450150B2 (en) 2012-10-22 2016-09-20 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting element
JP2022087136A (en) * 2017-03-17 2022-06-09 ソイテック Growth substrate for forming optoelectronic device, manufacturing method of growth substrate, and usage of substrate especially in field of microdisplay screen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849296B2 (en) 2005-04-11 2012-01-11 日立電線株式会社 GaN substrate
JP6212124B2 (en) * 2013-08-30 2017-10-11 国立研究開発法人科学技術振興機構 InGaAlN semiconductor device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223600A (en) * 1975-08-19 1977-02-22 Matsushita Electric Ind Co Ltd Method for making growth single crystal of gallium nitride
JPS6229397B2 (en) 1981-03-27 1987-06-25 Makoto Ishida
JPH02229476A (en) 1989-03-01 1990-09-12 Toyoda Gosei Co Ltd Vapor growth of gallium nitride compound semiconductor and light-emitting element
JPH02291111A (en) 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor
JPH03203388A (en) * 1989-12-29 1991-09-05 Matsushita Electric Ind Co Ltd Semiconductor light emitting element and its manufacture
JPH03218625A (en) 1990-01-11 1991-09-26 Univ Nagoya Formation of p-type gallium nitride based compound semiconductor crystal
JPH04209577A (en) 1990-12-07 1992-07-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting element and manufacture thereof
JPH04297023A (en) * 1991-01-31 1992-10-21 Nichia Chem Ind Ltd Crystal growth method of gallium nitride compound semiconductor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223600A (en) * 1975-08-19 1977-02-22 Matsushita Electric Ind Co Ltd Method for making growth single crystal of gallium nitride
JPS6229397B2 (en) 1981-03-27 1987-06-25 Makoto Ishida
JPH02229476A (en) 1989-03-01 1990-09-12 Toyoda Gosei Co Ltd Vapor growth of gallium nitride compound semiconductor and light-emitting element
JPH02291111A (en) 1989-04-29 1990-11-30 Toyoda Gosei Co Ltd Vapor growth apparatus for compound semiconductor
JPH03203388A (en) * 1989-12-29 1991-09-05 Matsushita Electric Ind Co Ltd Semiconductor light emitting element and its manufacture
JPH03218625A (en) 1990-01-11 1991-09-26 Univ Nagoya Formation of p-type gallium nitride based compound semiconductor crystal
JPH04209577A (en) 1990-12-07 1992-07-30 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light emitting element and manufacture thereof
JPH04297023A (en) * 1991-01-31 1992-10-21 Nichia Chem Ind Ltd Crystal growth method of gallium nitride compound semiconductor

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934513B2 (en) 1994-09-14 2015-01-13 Rohm Co., Ltd. Semiconductor light emitting device and manufacturing method therefor
US5863811A (en) * 1995-06-28 1999-01-26 Sony Corporation Method for growing single crystal III-V compound semiconductor layers on non single crystal III-V Compound semiconductor buffer layers
JPH11135885A (en) * 1997-10-30 1999-05-21 Matsushita Electric Ind Co Ltd Production of semiconductor and semiconductor laser
US6265287B1 (en) 1997-10-30 2001-07-24 Matsushita Electric Industrial Co., Ltd. Method for producing semiconductor layer for a semiconductor laser device
WO2000017972A1 (en) * 1998-09-17 2000-03-30 Matsushita Electric Industrial Co., Ltd. Process for producing nitride semiconductor device
US6518082B1 (en) 1998-09-17 2003-02-11 Matsushita Electric Industrial Co., Ltd. Method for fabricating nitride semiconductor device
US6940100B2 (en) 1999-01-07 2005-09-06 Matsushita Electric Industrial Co., Ltd. Group III-V nitride semiconductor light-emitting device which allows for efficient injection of electrons into an active layer
US6614059B1 (en) 1999-01-07 2003-09-02 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device with quantum well
US6645295B1 (en) 1999-05-10 2003-11-11 Toyoda Gosei Co., Ltd. Method for manufacturing group III nitride compound semiconductor and a light-emitting device using group III nitride compound semiconductor
US6881651B2 (en) 1999-05-21 2005-04-19 Toyoda Gosei Co., Ltd. Methods and devices using group III nitride compound semiconductor
US6617668B1 (en) 1999-05-21 2003-09-09 Toyoda Gosei Co., Ltd. Methods and devices using group III nitride compound semiconductor
KR20010010965A (en) * 1999-07-24 2001-02-15 구자홍 The manufacturing method of Ⅲ-Ⅴgroup compound semiconductor device
US6893945B2 (en) 1999-07-27 2005-05-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride group compound semiconductor
US6818926B2 (en) 1999-07-27 2004-11-16 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US7176497B2 (en) 1999-07-27 2007-02-13 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor
US6835966B2 (en) 1999-07-27 2004-12-28 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6930329B2 (en) 1999-07-27 2005-08-16 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6580098B1 (en) 1999-07-27 2003-06-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US6667185B2 (en) 1999-10-21 2003-12-23 Matsushita Electric Industrial Co., Ltd. Method of fabricating nitride semiconductor device
US6867112B1 (en) 1999-10-21 2005-03-15 Matsushita Electric Industrial Co., Ltd. Method of fabricating nitride semiconductor device
KR100342013B1 (en) * 1999-11-26 2002-06-27 김효근 Fabrication method for high quality ingan/gan multi-quantum wells
US6979584B2 (en) 1999-12-24 2005-12-27 Toyoda Gosei Co, Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US7560725B2 (en) 1999-12-24 2009-07-14 Toyoda Gosei Co., Ltd. Method for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6830948B2 (en) 1999-12-24 2004-12-14 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor and group III nitride compound semiconductor device
US6967122B2 (en) 2000-03-14 2005-11-22 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor and method for manufacturing the same
US7141444B2 (en) 2000-03-14 2006-11-28 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor and III nitride compound semiconductor element
US7462867B2 (en) 2000-03-14 2008-12-09 Toyoda Gosei Co., Ltd. Group III nitride compound semiconductor devices and method for fabricating the same
US6861305B2 (en) 2000-03-31 2005-03-01 Toyoda Gosei Co., Ltd. Methods for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US7491984B2 (en) 2000-03-31 2009-02-17 Toyoda Gosei Co., Ltd. Method for fabricating group III nitride compound semiconductors and group III nitride compound semiconductor devices
US6855620B2 (en) 2000-04-28 2005-02-15 Toyoda Gosei Co., Ltd. Method for fabricating Group III nitride compound semiconductor substrates and semiconductor devices
US7619261B2 (en) 2000-08-07 2009-11-17 Toyoda Gosei Co., Ltd. Method for manufacturing gallium nitride compound semiconductor
US7052979B2 (en) 2001-02-14 2006-05-30 Toyoda Gosei Co., Ltd. Production method for semiconductor crystal and semiconductor luminous element
US6844246B2 (en) 2001-03-22 2005-01-18 Toyoda Gosei Co., Ltd. Production method of III nitride compound semiconductor, and III nitride compound semiconductor element based on it
US7005681B2 (en) 2001-08-30 2006-02-28 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor component and method for making same
US6860943B2 (en) 2001-10-12 2005-03-01 Toyoda Gosei Co., Ltd. Method for producing group III nitride compound semiconductor
US7645622B2 (en) 2005-04-21 2010-01-12 Sharp Kabushiki Kaisha Method of producing nitride-based semiconductor device, and light-emitting device produced thereby
JP2009152610A (en) * 2007-12-18 2009-07-09 Samsung Corning Precision Glass Co Ltd Method of fabricating gallium nitride substrate
EP2175054A3 (en) * 2008-10-09 2013-02-20 Canon Kabushiki Kaisha Substrate for growing wurtzite type crystal and method for manufacturing the same and semiconductor device
US8679650B2 (en) 2008-10-09 2014-03-25 Canon Kabushiki Kaisha Substrate for growing wurtzite type crystal and method for manufacturing the same and semiconductor device
US9450150B2 (en) 2012-10-22 2016-09-20 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting element
JP2015053416A (en) * 2013-09-09 2015-03-19 豊田合成株式会社 Manufacturing method and manufacturing device of group iii nitride semiconductor light emitting element and substrate cleaning method
JP2022087136A (en) * 2017-03-17 2022-06-09 ソイテック Growth substrate for forming optoelectronic device, manufacturing method of growth substrate, and usage of substrate especially in field of microdisplay screen

Also Published As

Publication number Publication date
JP2751963B2 (en) 1998-05-18
JPH10135516A (en) 1998-05-22

Similar Documents

Publication Publication Date Title
JP2751963B2 (en) Method for growing indium gallium nitride semiconductor
US8882910B2 (en) AlGaN substrate and production method thereof
US6852161B2 (en) Method of fabricating group-iii nitride semiconductor crystal, method of fabricating gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor, gallium nitride-based compound semiconductor light-emitting device, and light source using the semiconductor light-emitting device
US5923950A (en) Method of manufacturing a semiconductor light-emitting device
US7951617B2 (en) Group III nitride semiconductor stacked structure and production method thereof
JPH06232451A (en) Growing method of p-type gallium nitride
JPH04297023A (en) Crystal growth method of gallium nitride compound semiconductor
JPH09134878A (en) Manufacture of gallium nitride compound semiconductor
JP2751987B2 (en) Method for growing indium gallium nitride semiconductor
JPH08264899A (en) Manufacture of gallium nitride semiconductor
JP3091593B2 (en) Stack for nitride semiconductor light emitting device
JP3257344B2 (en) Crystal growth method of gallium nitride based compound semiconductor
JP3174257B2 (en) Method for producing nitride-based compound semiconductor
JPH088185A (en) Multilayer structure and growth method of gan-based compound semiconductor thin film
JP3274907B2 (en) Method for growing indium gallium nitride compound semiconductor
JP4222287B2 (en) Group III nitride semiconductor crystal manufacturing method
JP2005183524A (en) Epitaxial substrate and its manufacturing method, and method of reducing dislocation
JP3203282B2 (en) Indium gallium nitride semiconductor for light emitting devices
JP3473595B2 (en) Light emitting device
JP3478287B2 (en) Crystal growth method of gallium nitride based compound semiconductor and gallium nitride based compound semiconductor
JP3077781B2 (en) Method for growing indium gallium nitride
JP3984365B2 (en) Compound semiconductor manufacturing method and semiconductor light emitting device
JP3214349B2 (en) Semiconductor wafer having InGaN layer, method of manufacturing the same, and light emitting device having the same
JP4009043B2 (en) Method for producing p-type group III nitride semiconductor
JP3883303B2 (en) Method for producing p-type group III nitride semiconductor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090227

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100227

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110227

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 15

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 16

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

EXPY Cancellation because of completion of term
R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157