JPH11340153A - Vapor-phase growth system for compound semiconductor - Google Patents
Vapor-phase growth system for compound semiconductorInfo
- Publication number
- JPH11340153A JPH11340153A JP16612298A JP16612298A JPH11340153A JP H11340153 A JPH11340153 A JP H11340153A JP 16612298 A JP16612298 A JP 16612298A JP 16612298 A JP16612298 A JP 16612298A JP H11340153 A JPH11340153 A JP H11340153A
- Authority
- JP
- Japan
- Prior art keywords
- compound semiconductor
- gas
- introduction pipe
- vapor
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は化合物半導体の気相
成長装置に関する。特に、結晶成長させる基板に対して
ガスを導く導入管を有した装置に関し、良質な結晶成長
を行うことができる導入管の交換までの期間を長くした
装置に関する。The present invention relates to an apparatus for vapor-phase growth of a compound semiconductor. In particular, the present invention relates to an apparatus having an introduction pipe for guiding a gas to a substrate on which a crystal is to be grown, and to an apparatus having a longer period until replacement of the introduction pipe which can perform high-quality crystal growth.
【0002】[0002]
【従来の技術】従来、有機金属化合物気相成長法(以下
「MOVPE」と記す)を用いて、窒化ガリウム系化合
物半導体(AlX Gay In1-x-y N;0≦x≦1,0
≦y≦1,0≦x+y≦1)薄膜をサファイア基板上に
気相成長させることや、その窒化ガリウム系化合物半導
体薄膜を用いた発光素子が研究されている。Conventionally, a metal organic chemical vapor deposition (hereinafter referred to as "MOVPE"), gallium nitride compound semiconductor (Al X Ga y In 1- xy N; 0 ≦ x ≦ 1,0
≤ y ≤ 1, 0 ≤ x + y ≤ 1) A vapor phase growth of a thin film on a sapphire substrate and a light emitting device using the gallium nitride based compound semiconductor thin film have been studied.
【0003】窒化ガリウム系化合物半導体の単結晶ウエ
ハーが容易に得られないことから、窒化ガリウム系化合
物半導体をそれと格子定数の近いサファイア基板上にエ
ピタキシャル成長させることが行われている。Since a single crystal wafer of a gallium nitride-based compound semiconductor cannot be easily obtained, a gallium nitride-based compound semiconductor has been epitaxially grown on a sapphire substrate having a lattice constant similar to that of the single crystal wafer.
【0004】ところが、窒化ガリウム系化合物半導体を
異物質で格子定数の異なるサファイア基板に結晶成長さ
せる場合には、結晶成長が困難であるため、反応ガスの
微妙な乱れが直ちに格子欠陥につながる。又、窒化ガリ
ウム系化合物半導体の気相成長の場合には、V族元素、
即ち、窒素(N) の供給源であるアンモニア(NH3) の分解
温度が高く、その結果、化学量論数のバランスがくずれ
やすく、均質な大面積の結晶膜を得ることが困難であ
る。均質な大面積の結晶膜を得るためには、反応ガスの
層流をくずさずに、流速を向上させることが必要とな
り、このために、特開平2−29113号公報に記載の
ような形状で基板を収納した導入管が用いられている。However, when a gallium nitride-based compound semiconductor is grown on a sapphire substrate with a different material and a different lattice constant, crystal growth is difficult, and subtle disturbance of the reaction gas immediately leads to lattice defects. In the case of vapor-phase growth of a gallium nitride-based compound semiconductor, a group V element,
That is, the decomposition temperature of ammonia (NH 3 ), which is a source of nitrogen (N), is high. As a result, the balance of the stoichiometry is easily lost, and it is difficult to obtain a uniform large-area crystal film. In order to obtain a uniform large-area crystal film, it is necessary to increase the flow rate without disrupting the laminar flow of the reaction gas. For this reason, it is necessary to use a shape as described in JP-A-2-29113. An introduction tube containing a substrate is used.
【0005】[0005]
【発明が解決しようする課題】しかし、上記の導入管は
基板の加熱のために高温になり、反応ガスが導入管内壁
付近で反応して反応生成物が導入管内壁に付着し、この
反応生成物が落下又は飛行して基板上に付着するという
問題があった。このために、均質な結晶を維持するため
には、何回かの結晶成長の後に、導入管を取り外して清
掃するという作業を必要とした。このため、結晶の製造
効率が悪いという問題があった。However, the temperature of the introduction tube becomes high due to the heating of the substrate, the reaction gas reacts near the inner wall of the introduction tube, and a reaction product adheres to the inner wall of the introduction tube. There is a problem that an object falls or flies and adheres to the substrate. For this reason, in order to maintain a uniform crystal, it was necessary to remove and clean the inlet tube after several crystal growths. For this reason, there was a problem that the production efficiency of the crystal was poor.
【0006】本発明は、上記の課題を解決するために成
されたものであり、その目的とするところは、均質な結
晶を高製造効率で得られる気相成長装置を提供すること
である。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a vapor phase growth apparatus capable of obtaining homogeneous crystals with high production efficiency.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するため
の発明の構成は、有機金属化合物ガスを用いた化合物半
導体薄膜を気相成長させる装置において、基板を載置す
るサセプタを覆い、反応ガスを化合物半導体薄膜の成長
する基板の上部まで導く導入管を有し、導入管におい
て、少なくとも反応ガスによる反応生成物が発生する領
域の内面を粗面としたことを特徴とする。According to an aspect of the present invention, there is provided an apparatus for vapor-phase growing a compound semiconductor thin film using an organometallic compound gas, comprising a step of covering a susceptor on which a substrate is mounted with a reactive gas. Is introduced to the upper portion of the substrate on which the compound semiconductor thin film is grown, and at least the inner surface of the introduction tube where a reaction product is generated by the reaction gas is roughened.
【0008】又、請求項2の発明は、粗面とする領域を
基板の上部の導入管の内面としたことであり、請求項3
の発明は、粗面とする領域を加熱により高温となる導入
管の内面としたことである。さらに、請求項4の発明
は、粗面の凹凸の山と谷の高低差は1μm〜100μm
の範囲としたことを特徴とする。The invention according to claim 2 is that the region to be roughened is the inner surface of the introduction pipe above the substrate.
The invention of the present invention is that the region to be roughened is the inner surface of the introduction pipe which is heated to a high temperature by heating. Further, according to the invention of claim 4, the height difference between the peaks and valleys of the rough surface is 1 μm to 100 μm.
The range is characterized by.
【0009】[0009]
【発明の作用及び効果】請求項1の発明によれば、導入
管の少なくとも反応生成物が生成される領域の内面が粗
面に形成されているため、その表面積が増大し反応生成
物が付着しても、付着強度が増大するため離脱し難くな
る。従って、反応生成物の基板上への落下や基板上への
飛行により、基板上に反応生成物が付着することが効率
良く防止される。この結果、導入管の清掃回数が減少
し、次の清掃や交換までに結晶成長に使用できる時間が
長るなる。よって、効率の高い、製造の容易な、均質な
結晶を得ることができる製造装置を提供することができ
る。According to the first aspect of the present invention, since at least the inner surface of the region of the introduction pipe where the reaction product is generated is formed as a rough surface, the surface area increases and the reaction product adheres. Even so, detachment becomes difficult because the adhesion strength increases. Therefore, it is possible to efficiently prevent the reaction product from adhering to the substrate due to the reaction product falling onto the substrate or flying on the substrate. As a result, the number of times of cleaning the introduction tube is reduced, and the time that can be used for crystal growth until the next cleaning or replacement is increased. Therefore, it is possible to provide a manufacturing apparatus capable of obtaining a highly efficient, easily manufactured, and homogeneous crystal.
【0010】請求項2の発明によれば、基板の上部の導
入管の内面を粗面とすることで、効果的に上記の効果を
達成することができる。According to the second aspect of the present invention, the above effect can be effectively achieved by making the inner surface of the introduction pipe above the substrate rough.
【0011】同様に、請求項3の発明によれば、加熱に
より高温となる導入管の内面が粗面となるため、その高
温下において発生する反応生成物の落下を効率良く防止
することができる。よって、効果的に上記の効果を達成
することができる。Similarly, according to the third aspect of the present invention, since the inner surface of the introduction pipe, which is heated to a high temperature by heating, is roughened, it is possible to efficiently prevent the reaction products generated at the high temperature from falling. . Therefore, the above effects can be effectively achieved.
【0012】請求項4の発明では、粗面の凹凸の山と谷
の高低差は1μm〜100μmの範囲としたことで、反
応生成物の離脱が容易に防止できる。1μmより小さい
と反応生成物の離脱防止の効果がなく、100μm以上
となると層流を乱すことになるため望ましくない。1〜
20μmの範囲で最も望ましい結果が得られている。According to the fourth aspect of the present invention, the height difference between the peaks and valleys of the unevenness of the rough surface is in the range of 1 μm to 100 μm, so that the separation of the reaction product can be easily prevented. If it is less than 1 μm, there is no effect of preventing separation of reaction products, and if it is more than 100 μm, laminar flow is disturbed, which is not desirable. 1 to
The most desirable result is obtained in the range of 20 μm.
【0013】[0013]
【発明の実施の形態】以下、本発明を具体的な実施例に
基づいて説明する。図1において、石英管10はその左
端でOリング15でシールされてフランジ14に当接
し、緩衝材38と固定具39を用い、ボルト46,47
とナット48,49等により数箇所にてフランジ14に
固定されている。又、石英管10の右端はOリング40
でシールされてフランジ27に螺子締固定具41,42
により固定されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on specific embodiments. In FIG. 1, the quartz tube 10 is sealed at its left end with an O-ring 15 and abuts against the flange 14.
And nuts 48, 49, etc., are fixed to the flange 14 at several places. The right end of the quartz tube 10 is an O-ring 40.
And screwed to the flange 27 with screw fasteners 41, 42
It is fixed by.
【0014】石英管10で囲われた内室11には、反応
ガスを導く導入管12が配設されている。その導入管1
2のガス流入口側の一端13はフランジ14に固設され
た保持プレート17で保持され、その他端16の底部1
8は保持脚19で石英管10に保持されている。そし
て、導入管12は−Z方向に傾斜している。In an inner chamber 11 surrounded by a quartz tube 10, an introduction tube 12 for introducing a reaction gas is provided. The introduction pipe 1
2 is held at one end 13 on the gas inlet side by a holding plate 17 fixed to a flange 14, and at the bottom 1 of the other end 16.
Reference numeral 8 denotes a holding leg 19 which is held by the quartz tube 10. And the introduction pipe 12 is inclined in the -Z direction.
【0015】石英管10の長軸(X軸)に垂直な導入管
12の断面は、図2〜図5に示すように、X軸方向での
位置によって異なり、その平面形状は図6に示すように
下流側に進行するにつれ拡大されている。即ち、反応ガ
スはX軸方向に流れるが、導入管12の断面は、ガス流
の上流側では図2に示すように円形であり、下流側(X
軸正方向)に進むに従って、Y軸方向を長軸とし、長軸
方向に拡大され、短軸方向に縮小された楕円形状とな
り、サセプタ20を載置するやや上流側のA位置では第
4図に示すように上下方向(Z軸)方向に薄くY軸方向
に長い偏平楕円形状となっている。A位置におけるIV−
IV矢視方向断面図における開口部のY軸方向の長さは 7
cmであり、Z軸方向の長さは1.2 cmである。このA位置
が導入管12の絞り部を構成している。The cross section of the introduction tube 12 perpendicular to the long axis (X axis) of the quartz tube 10 differs depending on the position in the X axis direction as shown in FIGS. 2 to 5, and its plan shape is shown in FIG. So that it is enlarged as it proceeds downstream. That is, the reaction gas flows in the X-axis direction, but the cross section of the introduction pipe 12 is circular as shown in FIG.
(Positive axis direction), the ellipsoidal shape is enlarged in the long axis direction and reduced in the short axis direction with the Y axis direction as the long axis, and the susceptor 20 is placed at the slightly upstream position A in FIG. As shown in the figure, the shape is a flat elliptical shape that is thin in the vertical direction (Z axis) and long in the Y axis direction. IV- at position A
The length of the opening in the Y-axis direction in the sectional view taken in the direction of the arrow IV is 7
cm, and the length in the Z-axis direction is 1.2 cm. The position A constitutes a throttle portion of the introduction pipe 12.
【0016】導入管12の下流側には、サセプタ20を
載置するX軸に垂直な断面形状が長方形の試料載置室2
1が一体的に連設されている。その試料載置室21の底
部22にサセプタ20が載置される。そのサセプタ20
はX軸に垂直な断面は長方形であるが、その上面23は
X軸に対して緩やかにZ軸正方向に傾斜している。その
サセプタ20の上面23に試料、即ち、長方形のサファ
イア基板50が載置されるが、そのサファイア基板50
とそれに面する導入管12の上部管壁24との間隙は、
サファイア基板50の上流部で12mm,下流部で4mmであ
る。この上部管壁24と間隙とで案内部が形成されてい
る。A sample mounting chamber 2 having a rectangular cross section perpendicular to the X axis, on which the susceptor 20 is mounted, is provided downstream of the inlet tube 12.
1 are integrally connected. The susceptor 20 is mounted on the bottom 22 of the sample mounting chamber 21. The susceptor 20
Has a rectangular cross section perpendicular to the X axis, but its upper surface 23 is gently inclined in the positive direction of the Z axis with respect to the X axis. A sample, that is, a rectangular sapphire substrate 50 is placed on the upper surface 23 of the susceptor 20.
And the gap between the upper pipe wall 24 of the introduction pipe 12 and the facing pipe wall,
It is 12 mm at the upstream part of the sapphire substrate 50 and 4 mm at the downstream part. A guide portion is formed by the upper tube wall 24 and the gap.
【0017】サセプタ20には操作棒26が接続されて
おり、フランジ27を取り外してその操作棒26によ
り、サファイア基板50を載置したサセプタ20を試料
載置室21へ設置したり、結晶成長の終わった時に、試
料載置室21からサセプタ20を取り出せるようになっ
ている。An operation rod 26 is connected to the susceptor 20. The flange 27 is removed, and the susceptor 20 on which the sapphire substrate 50 is mounted is placed in the sample mounting chamber 21 by the operation rod 26, and the susceptor 20 is used for crystal growth. When the process is completed, the susceptor 20 can be taken out of the sample mounting chamber 21.
【0018】又、導入管12の上流側には、第1ガス管
28と第2ガス管29とが開口している。第1ガス管2
8は第2ガス管29の内部にあり、それらの両管28,
29は同軸状に2重管構造をしている。第1ガス管28
の第2ガス管29で覆われていない部分の周辺部には多
数の穴30が開けられており、第2ガス管29にも多数
の穴30が開けられている。そして、第1ガス管28に
より導入された反応ガスは導入管12内へ吹出し、その
場所で、第2ガス管29により導入されたガスと初めて
混合される。Further, a first gas pipe 28 and a second gas pipe 29 are opened on the upstream side of the introduction pipe 12. First gas pipe 2
8 is inside the second gas pipe 29 and both pipes 28,
Reference numeral 29 denotes a coaxial double tube structure. First gas pipe 28
A large number of holes 30 are formed in the peripheral portion of the portion not covered by the second gas pipe 29, and a large number of holes 30 are also formed in the second gas pipe 29. Then, the reaction gas introduced by the first gas pipe 28 is blown into the introduction pipe 12, and is mixed therewith for the first time with the gas introduced by the second gas pipe 29.
【0019】その第1ガス管28は第1マニホールド3
1に接続され、第2ガス管29は第2マニホールド32
に接続されている。そして、第1マニホールド31には
キャリアガス(H2,N2 )の供給系統Iと、トリメチルガ
リウム(Ga(CH3)3)(以下「TMG 」と記す) の供給系統J
と、トリメチルアルミニウム(Al(CH3)3)(以下「TMA」
と記す) の供給系統Kと、シラン(SiH4)の供給系統L
と、シクロペンタジエニルマグネシウム(Mg(C5H5)2)(以
下「CP2Mg 」と記す)の供給系統Mと、トリメチルイン
ジウム(In(CH3)3(以下、「TMI 」と記す)供給系統Oと
が接続されている。そして、第2マニホールド32には
NH3 の供給系統Hとキャリアガスの供給系統Iとが接続
されている。The first gas pipe 28 is connected to the first manifold 3
1 and the second gas pipe 29 is connected to the second manifold 32.
It is connected to the. The first manifold 31 has a supply system I for carrier gas (H 2 , N 2 ) and a supply system J for trimethylgallium (Ga (CH 3 ) 3 ) (hereinafter referred to as “TMG”).
And trimethyl aluminum (Al (CH 3 ) 3 ) (hereinafter “TMA”
Supply system K) and silane (SiH 4 ) supply system L
And a supply system M of cyclopentadienyl magnesium (Mg (C 5 H 5 ) 2 ) (hereinafter referred to as “CP 2 Mg”), and trimethylindium (In (CH 3 ) 3 (hereinafter referred to as “TMI”). ) Is connected to the supply system O. The second manifold 32
An NH 3 supply system H and a carrier gas supply system I are connected.
【0020】又、石英管10の外周部には冷却水を循環
させる冷却管33が形成され、その外周部には高周波電
界を印加するための高周波コイル34が配設されてい
る。A cooling pipe 33 for circulating cooling water is formed on the outer periphery of the quartz tube 10, and a high-frequency coil 34 for applying a high-frequency electric field is provided on the outer periphery.
【0021】又、導入管12はフランジ14を介して外
部管35と接続されており、その外部管35からはキャ
リアガスが導入されるようになっている。又、試料載置
室21には、側方から導入管36がフランジ14を通過
して外部から伸びており、その導入管36内に試料の温
度を測定する熱電対43とその導線44,45が配設さ
れており、試料温度を外部から測定できるように構成さ
れている。The introduction pipe 12 is connected to an external pipe 35 via a flange 14, and a carrier gas is introduced from the external pipe 35. In the sample mounting chamber 21, an introduction pipe 36 extends from the outside through the flange 14 from the side, and a thermocouple 43 for measuring the temperature of the sample and its conductors 44 and 45 are provided in the introduction pipe 36. Is provided so that the sample temperature can be measured from the outside.
【0022】このような装置構成により、第1ガス管2
8で導かれたとTMG と、必要によりTMA ,TMI と、必要
によりシラン又はCP2Mg とH2との混合ガスと、第2ガス
管29で導かれたNH3 とH2との混合ガスがそれらの管の
出口付近で混合され、その混合反応ガスは導入管12に
より試料載置室21へ導かれ、サファイア基板50と導
入管12の上部管壁24との間で形成された間隙を通過
する。この時、サファイア基板50上の反応ガスの流れ
は、A位置における絞り部の作用によりY方向に均一化
され、サファイア基板50を覆う上部管壁24による案
内部の作用により、X方向にも均一化された層流とな
る。この結果、基板上での場所依存性の少ない良質な結
晶が成長する。With such an apparatus configuration, the first gas pipe 2
8, the mixed gas of TMG, TMA and TMI if necessary, the mixed gas of silane or CP 2 Mg and H 2 as needed, and the mixed gas of NH 3 and H 2 guided by the second gas pipe 29 The mixed reaction gases are mixed near the outlets of the tubes, and the mixed reaction gas is guided to the sample mounting chamber 21 by the inlet tube 12 and passes through a gap formed between the sapphire substrate 50 and the upper tube wall 24 of the inlet tube 12. I do. At this time, the flow of the reaction gas on the sapphire substrate 50 is made uniform in the Y direction by the action of the throttle portion at the position A, and is also made uniform in the X direction by the action of the guide portion by the upper tube wall 24 covering the sapphire substrate 50. A laminar flow is obtained. As a result, a high-quality crystal with little place dependence on the substrate grows.
【0023】上記の導入管12は、サファイア基板50
が載置された上部に当たる上部管壁24が強く加熱さ
れ、この部分が高温となる。本実施例では、この上部管
壁24の内面にサンドブラスト60で粗面加工を施し
た。これにより、この上部管壁24の内面に付着した反
応生成物がサファイア基板50上に落下することが防止
された。内面に粗面加工を施さない場合には、3〜6回
の結晶成長毎に、導入管12を交換して、内面に付着し
た生成物を除去、清掃する必要があった。しかし、上記
のように内面に粗面加工とすることで、15〜20回の
結晶成長毎に導入管12の交換と清掃をすれば良く、清
掃のためのタイムスパンを延長させることができた。The above-mentioned introduction tube 12 is provided with a sapphire substrate 50.
The upper tube wall 24 corresponding to the upper part on which is mounted is strongly heated, and this part becomes high temperature. In this embodiment, the inner surface of the upper tube wall 24 is roughened by sandblasting 60. As a result, the reaction product attached to the inner surface of the upper tube wall 24 was prevented from dropping onto the sapphire substrate 50. When the inner surface was not roughened, it was necessary to replace the introduction tube 12 every three to six times of crystal growth to remove and clean the products attached to the inner surface. However, by roughening the inner surface as described above, it is sufficient to replace and clean the introduction pipe 12 every 15 to 20 times of crystal growth, thereby extending the time span for cleaning. .
【0024】尚、上記実施例では、サファイア基板50
の上部に位置する上部管壁24の内面にのみ粗面加工を
施したが、導入管12の内面全体に渡って、粗面加工を
施しても良い。In the above embodiment, the sapphire substrate 50
Although the roughening is performed only on the inner surface of the upper tube wall 24 located above, the roughening may be performed on the entire inner surface of the introduction pipe 12.
【0025】変形例 1)導入管12は石英ガラスで構成したが、金属であっ
ても良い。 2)ガスの供給は横方向からサファイア基板50に供給
したが、縦方向からガスを供給する場合にも、その導入
管の内壁に粗面加工を施しても良い。 3)加熱方式は高周波加熱に限定されず、抵抗加熱方式
でも良い。 4)特に、高周波加熱を行う場合には、導入管12が高
温となる部分の内面に粗面加工を施すことが、加工手間
と効果との関係上効率が良い。 5)粗面加工の方法は、サンドブラスト、サンドペー
パ、プラズマエッチング、化学エッチング等でも良い。 6)導入管12の断面形状は任意である。 7)導入管12は、実施例のようにサセプタ21を内部
に収納する他、サセプタ12の上面の部分だけその上部
を覆う蓋形状としても良い。この場合には、サセプタ2
1の上面で反応ガスの漏れは防止される。 8)基板はサファイア基板に限定されず、シリコン、S
iC等、GaN等でも良い。 9)基板上に気相成長させる結晶の組成比や種類には限
定されない。しかし、AlGaInN系のような成長温
度の高い化合物半導体の気相成長に特に有効である。Modifications 1) Although the introduction tube 12 is made of quartz glass, it may be made of metal. 2) The gas was supplied to the sapphire substrate 50 from the horizontal direction. However, even when the gas was supplied from the vertical direction, the inner wall of the introduction pipe may be roughened. 3) The heating method is not limited to the high frequency heating, but may be a resistance heating method. 4) In particular, when high-frequency heating is performed, it is efficient to perform roughening on the inner surface of the portion where the temperature of the introduction pipe 12 is high, because of the processing time and the effect. 5) The method of rough surface processing may be sand blasting, sand paper, plasma etching, chemical etching, or the like. 6) The cross-sectional shape of the introduction pipe 12 is arbitrary. 7) The introduction tube 12 may be configured to house the susceptor 21 inside as in the embodiment, or may be formed in a lid shape that covers only the upper portion of the susceptor 12. In this case, susceptor 2
Leakage of the reactant gas is prevented on the upper surface of the first member. 8) The substrate is not limited to a sapphire substrate;
iC or GaN may be used. 9) The composition ratio and type of the crystal to be vapor-phase grown on the substrate are not limited. However, it is particularly effective for vapor phase growth of a compound semiconductor having a high growth temperature such as AlGaInN.
【図1】本発明の具体的な一実施例に係る気相成長装置
の構成図。FIG. 1 is a configuration diagram of a vapor phase growth apparatus according to a specific embodiment of the present invention.
【図2】その装置の導入管の軸方向における各位置での
断面図。FIG. 2 is a cross-sectional view at each position in an axial direction of an introduction pipe of the device.
【図3】同じく導入管の断面図。FIG. 3 is a cross-sectional view of the introduction tube.
【図4】同じく導入管の断面図。FIG. 4 is a cross-sectional view of the introduction tube.
【図5】サセプタが置かれる部分の導入管の断面図。FIG. 5 is a cross-sectional view of an introduction tube in a portion where a susceptor is placed.
10…石英管 12…導入管 20…サセプタ 21…試料載置室 28…第1ガス管 29…第2ガス管 50…サファイア基板 H…NH3 の供給系統 I…キャリアガスの供給系統 J…TMGの供給系統 K…TMAの供給系統 L…シランの供給系統 O…TMI の供給系統10 ... supply system J ... TMG of the quartz tube 12 ... inlet 20 ... susceptor 21 ... sample mounting incubation cabinet 28 ... first gas pipe 29 ... second gas pipe 50 ... supply system I ... carrier gas of the sapphire substrate H ... NH 3 K: TMA supply system L: Silane supply system O: TMI supply system
Claims (4)
体薄膜を気相成長させる装置において、 前記基板を載置するサセプタを覆い、反応ガスを化合物
半導体薄膜の成長する基板の上部まで導く導入管を有
し、 前記導入管の少なくとも前記反応ガスによる反応生成物
が発生する領域の内面を粗面としたことを特徴とする化
合物半導体の気相成長装置。1. An apparatus for vapor-phase growing a compound semiconductor thin film using an organometallic compound gas, comprising: an introduction pipe that covers a susceptor on which the substrate is mounted and guides a reaction gas to an upper portion of the substrate on which the compound semiconductor thin film is grown. An apparatus for vapor-phase growth of a compound semiconductor, wherein an inner surface of at least a region of the introduction pipe where a reaction product by the reaction gas is generated is roughened.
の内面であることを特徴とする請求項1に記載の化合物
半導体の気相成長装置。2. The compound semiconductor vapor deposition apparatus according to claim 1, wherein the region to be roughened is an inner surface of an introduction pipe above the substrate.
入管の内面であることを特徴とする請求項1に記載の化
合物半導体の気相成長装置。3. The compound semiconductor vapor phase growth apparatus according to claim 1, wherein the region to be roughened is an inner surface of the introduction pipe which is heated to a high temperature by heating.
00μmの範囲であることを特徴とする請求項1乃至請
求項3の何れか1項に記載の化合物半導体の気相成長装
置。4. A height difference between peaks and valleys of a rough surface is 1 μm to 1 μm.
The compound semiconductor vapor deposition apparatus according to claim 1, wherein the thickness is in a range of 00 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16612298A JPH11340153A (en) | 1998-05-28 | 1998-05-28 | Vapor-phase growth system for compound semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16612298A JPH11340153A (en) | 1998-05-28 | 1998-05-28 | Vapor-phase growth system for compound semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11340153A true JPH11340153A (en) | 1999-12-10 |
Family
ID=15825448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16612298A Pending JPH11340153A (en) | 1998-05-28 | 1998-05-28 | Vapor-phase growth system for compound semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11340153A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011243616A (en) * | 2010-05-14 | 2011-12-01 | Toyoda Gosei Co Ltd | Method of manufacturing group iii nitride semiconductor light-emitting element |
JP2013191768A (en) * | 2012-03-14 | 2013-09-26 | Sharp Corp | Deposition device, deposition method, and semiconductor element |
-
1998
- 1998-05-28 JP JP16612298A patent/JPH11340153A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011243616A (en) * | 2010-05-14 | 2011-12-01 | Toyoda Gosei Co Ltd | Method of manufacturing group iii nitride semiconductor light-emitting element |
JP2013191768A (en) * | 2012-03-14 | 2013-09-26 | Sharp Corp | Deposition device, deposition method, and semiconductor element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW521101B (en) | Compound gas injection system and methods | |
EP1271607A2 (en) | Chemical vapor deposition apparatus and method | |
US9773667B2 (en) | Apparatus and method for producing group III nitride semiconductor device and method for producing semiconductor wafer | |
CN111188027B (en) | Chemical vapor deposition equipment and film forming method | |
JP2001181097A (en) | Vapor growth apparatus of nitride | |
JP2733518B2 (en) | Compound semiconductor film vapor phase growth system | |
JPH11340153A (en) | Vapor-phase growth system for compound semiconductor | |
JPH1012555A (en) | Method of manufacturing nitride compd. semiconductor crystal | |
JP2849642B2 (en) | Compound semiconductor vapor deposition equipment | |
JP2818776B2 (en) | Gallium nitride based compound semiconductor vapor phase growth equipment | |
JP3090145B2 (en) | Compound semiconductor vapor deposition equipment | |
JP3472976B2 (en) | Method and apparatus for forming group III nitride semiconductor | |
JP2631286B2 (en) | Gas phase growth method of gallium nitride based compound semiconductor | |
JP3112445B2 (en) | Gallium nitride based compound semiconductor vapor phase growth equipment | |
JP3104677B2 (en) | Group III nitride crystal growth equipment | |
KR100447855B1 (en) | A method for fabricating a iii-v nitride film and an apparatus for fabricating the same | |
JP3221318B2 (en) | Vapor phase growth method of III-V compound semiconductor | |
JP3534252B2 (en) | Vapor phase growth method | |
WO2023063310A1 (en) | Method and apparatus for producing nitrogen compound | |
KR20030071098A (en) | Apparatus for manufacturing GaN substrate | |
JPH11121801A (en) | Compound semiconductor light emitting device based on gallium nitride | |
JP2004063631A (en) | Vapor growing apparatus | |
JPH02291112A (en) | Vapor growth apparatus for compound semiconductor | |
JPH1145858A (en) | Compound semiconductor vapor growth equipment and its method | |
JPH04160094A (en) | Vapor growth device for semiconductor thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040824 |