JPS5940905B2 - Vapor phase growth equipment - Google Patents

Vapor phase growth equipment

Info

Publication number
JPS5940905B2
JPS5940905B2 JP16058276A JP16058276A JPS5940905B2 JP S5940905 B2 JPS5940905 B2 JP S5940905B2 JP 16058276 A JP16058276 A JP 16058276A JP 16058276 A JP16058276 A JP 16058276A JP S5940905 B2 JPS5940905 B2 JP S5940905B2
Authority
JP
Japan
Prior art keywords
gas
reaction
gas injection
shielding plate
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16058276A
Other languages
Japanese (ja)
Other versions
JPS5381488A (en
Inventor
敦夫 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16058276A priority Critical patent/JPS5940905B2/en
Publication of JPS5381488A publication Critical patent/JPS5381488A/en
Publication of JPS5940905B2 publication Critical patent/JPS5940905B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45508Radial flow
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45587Mechanical means for changing the gas flow
    • C23C16/45591Fixed means, e.g. wings, baffles

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は気相成長反応において、膜厚や膜質が均一でか
つ清浄な反応生成物を得るための気相成長装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase growth apparatus for obtaining a clean reaction product with uniform film thickness and film quality in a vapor phase growth reaction.

気相化学反応を用いて反応生成物を目的物の上に被着さ
せる場合には、反応成分ガスをベースとなるキャリアガ
スと混合した混合ガスを、目的物を載置しかつ反応温度
に保つた反応装置中にガス噴射装置によつて導入するこ
とにより行なつてい、る。
When depositing a reaction product onto a target object using a gas phase chemical reaction, a mixed gas consisting of a reaction component gas mixed with a base carrier gas is placed on the target object and maintained at the reaction temperature. This is done by introducing the gas into a reactor using a gas injection device.

この従来の気相成長装置の一例を、第3図および第4図
とともに説明する。第3図は従来の気相成長装置に用い
られていたガス噴射装置1である。
An example of this conventional vapor phase growth apparatus will be explained with reference to FIGS. 3 and 4. FIG. 3 shows a gas injection device 1 used in a conventional vapor phase growth apparatus.

このガス噴射装置1は管状で、下方にガス導入口2を有
し、先端部に管径が徐々に細くなつたガス噴出部3を有
している。このガス噴出部3の先端にはガス噴出口4が
設けてある。第4図に前記ガス噴射装置1を用いた気相
成長装置の概略断面を示し、ガスの流れに基づいて説明
する。5は反応室6を形成するペルシャーで、この反応
室6の中心に前記ガス噴出装置1が配設してある。
This gas injection device 1 has a tubular shape, has a gas inlet 2 at the lower part, and has a gas ejection part 3 having a pipe diameter that gradually becomes thinner at the tip. A gas spout 4 is provided at the tip of the gas spout 3 . FIG. 4 shows a schematic cross section of a vapor phase growth apparatus using the gas injection apparatus 1, and will be explained based on the flow of gas. Reference numeral 5 denotes a persian forming a reaction chamber 6, in which the gas ejection device 1 is disposed at the center of the reaction chamber 6.

Tは反応の目的物で、サセプター8上に載置され、かつ
気相化学反応が起こる温度にまで昇温されている。9は
前記サセプターの中央部に設けられた透孔で、前記ガス
噴出装置1のガス噴出口4が対応している。
T is the target of the reaction, and is placed on the susceptor 8, and the temperature is raised to a temperature at which a gas phase chemical reaction occurs. Reference numeral 9 denotes a through hole provided in the center of the susceptor, to which the gas ejection port 4 of the gas ejection device 1 corresponds.

10はこの気相成長装置下方に配設されたガス排出口で
ある。
Reference numeral 10 denotes a gas exhaust port provided below this vapor phase growth apparatus.

反応成分ガスとキャリアガスとの混合ガスは第4図に実
線矢印で示すように、前記ガス噴射装置1のガス導入口
2から導入され、ガス噴出口4から上方に向かつて前記
反応室6内に噴射される。噴射された混合ガスはペルシ
ャー5の上部に到達した後反応室6の下方に導かれ、そ
の混合ガスの」部は前記サセプター8上の目的物Tに達
する。また混合ガスの残りの一部は、サセプター8とペ
ルシャー5との間隙を通つて気相成長装置下方にあるガ
ス排出口10から排出される。前記サセプター8上へ到
達した混合ガスは、目的物Tおよびサセプター8上で反
応を行ない、目的物Tの上に反応生成物が堆積被着する
。そして反応後の混合ガスはサセプター8の中央部に向
かつて流れ、このサセプター8の中央部に位置している
前記ガス噴出装置1により、新たな混合ガスと−緒に再
びペルシャー5の上部に導かれる。即ちこの従来の気相
成長装置では、混合ガスの流れが反応室6の中心から上
方、さらに外側にまわる対流状態となつている。このこ
とから以下のような欠点を有していた。まず、目的物7
上に到達する対流ガスの成分は、ガス噴射装置1に導入
された新たな混合ガスと、サセプター8上を通つて既に
気相反応をし、そのために生成した副生成ガスおよび反
応室6内で発生する不純物ガスとからなつている。この
不純物ガスとは、例えばシリコン・オン・サファイア結
晶成長におけるサファイア(Al2O3)基板の水素キ
ャリアによつて生成された酸化アルミニウム(Al2O
.AlO)等が含まれたもの、また高温に保たれている
目的物7やサセプター8から発散した吸着ガス等である
。この従来の装置では、目的物7上に堆積被着する反応
生成物の中に上記のような不純物を取り込むため、清浄
な反応生成物堆積層を得ることが困難であつた。さらに
、反応室6内に導入された混合ガスは、前記のように一
部が対流となり、残り一部が気相化学反応を寄与するこ
となく装置下方のガス排出口10から排出されるため、
導入される混合ガスの利用効率が悪く、従つて反応によ
る堆積被着速度t遅いものであつた。
A mixed gas of a reaction component gas and a carrier gas is introduced from the gas inlet 2 of the gas injection device 1, as shown by the solid arrow in FIG. is injected into. After the injected mixed gas reaches the upper part of the Persian 5, it is guided to the lower part of the reaction chamber 6, and a portion of the mixed gas reaches the object T on the susceptor 8. Further, the remaining part of the mixed gas passes through the gap between the susceptor 8 and the Persian 5 and is discharged from the gas exhaust port 10 located below the vapor growth apparatus. The mixed gas that has reached the susceptor 8 reacts on the target object T and the susceptor 8, and a reaction product is deposited on the target object T. The mixed gas after the reaction flows toward the center of the susceptor 8, and is guided again to the upper part of the Persian 5 together with a new mixed gas by the gas injection device 1 located in the center of the susceptor 8. It will be destroyed. That is, in this conventional vapor phase growth apparatus, the flow of the mixed gas is in a convection state in which the flow moves from the center of the reaction chamber 6 upward and further outward. As a result, it had the following drawbacks. First, objective 7
The components of the convective gas that reach the top have already undergone a gas phase reaction with the new mixed gas introduced into the gas injection device 1 through the susceptor 8, and the by-product gas and reaction chamber 6 generated thereby. It consists of impurity gases generated. This impurity gas is, for example, aluminum oxide (Al2O3) generated by hydrogen carriers on a sapphire (Al2O3) substrate during silicon-on-sapphire crystal growth.
.. These include gases containing AlO) and the like, and adsorbed gases emitted from the object 7 and susceptor 8 that are kept at high temperatures. In this conventional apparatus, since the above-mentioned impurities are incorporated into the reaction product deposited on the object 7, it is difficult to obtain a clean reaction product deposited layer. Furthermore, part of the mixed gas introduced into the reaction chamber 6 becomes convection as described above, and the remaining part is discharged from the gas outlet 10 at the bottom of the apparatus without contributing to a gas phase chemical reaction.
The utilization efficiency of the introduced mixed gas was poor, and therefore the rate of deposition due to reaction was slow.

本発明は上記従来の欠点を解決するために、反応室内へ
導入されるガスの流れを制御して均一かつ清浄な反応生
成物を得る気相成長装置を提供するもので、以下第1図
、第2図とともにその一実施例を説明する。
In order to solve the above-mentioned conventional drawbacks, the present invention provides a vapor phase growth apparatus that controls the flow of gas introduced into a reaction chamber to obtain a uniform and clean reaction product. One embodiment will be explained with reference to FIG.

第1図はガス噴射装置11である。FIG. 1 shows a gas injection device 11. FIG.

このガス噴射装置11は、ともに直管からなる外側ガス
噴射管11aと内側ガス噴射管11bの二重管構造によ
り構成されている。またこの外側ガス噴射管11aと内
側ガス噴射管11bのそれぞれの中心軸は一致させてあ
り、またそれぞれの下方はガス導入口12aおよび12
bとなつている。前記外側ガス噴射管11aの先端には
この管径より大きな円板状のガス遮蔽板13aが管を閉
塞して設けてあり、このガス遮蔽板13aに近い外側ガ
ス噴射管11aの管壁には複数個の透孔を設け、これを
ガス噴出口14aとしている。前記内側ガス噴射管12
bは、外側ガス噴射管11aより長く、その上部先端部
は前記ガス遮蔽板13aを貫いて上部に突出し、この貫
通部で気密性を持たせるため熔着により固定され内外の
ガス噴射管は一体となつている。内側ガス噴射管12b
の先端には円板状のガス遮蔽板13bが管を閉塞して設
けてあり、このガス遮蔽板13bは前記外側ガス噴射管
11aのガス遮蔽板13aと平行で、かつ大きな径にし
てある。上記2つのガス遮蔽板13a,13b間の内側
ガス噴射管11bの管壁に、複数個の透孔を設け、これ
をガス噴出口14bとする。前記ガス噴出口14aとこ
のガス噴出口14bの孔径および個数は、それぞれガス
導入口12a,12bから導入されるガス流量と、これ
らガス噴出口14a,14bからのガスの噴出する流速
を考慮して自由に定めればよい。また2つのガス遮蔽板
の間隔は前記内側ガス噴射管11bのガス噴出口14b
の孔径の2〜10倍が適当である。次に第2図に前記ガ
ス噴射装置11を用いた気相成長装置の断面を示す。1
5は反応室16を形成する石英製または水冷式金属製の
ペルシャーで、この反応室16の中心に前記ガス噴射装
置11が配設されている。
This gas injection device 11 has a double pipe structure including an outer gas injection pipe 11a and an inner gas injection pipe 11b, both of which are straight pipes. Further, the central axes of the outer gas injection pipe 11a and the inner gas injection pipe 11b are aligned, and the lower portions of each of the outer gas injection pipes 11a and 11b are gas inlet ports 12a and 12b.
It becomes b. At the tip of the outer gas injection pipe 11a, a disk-shaped gas shielding plate 13a larger than this pipe diameter is provided to close the pipe, and on the wall of the outer gas injection pipe 11a near the gas shielding plate 13a, A plurality of through holes are provided, and these are used as gas jet ports 14a. The inner gas injection pipe 12
b is longer than the outer gas injection pipe 11a, and its upper tip protrudes upward through the gas shielding plate 13a, and is fixed by welding at this penetrating portion to provide airtightness, so that the inner and outer gas injection pipes are integrated. It is becoming. Inner gas injection pipe 12b
A disk-shaped gas shielding plate 13b is provided at the tip of the tube to close the pipe, and this gas shielding plate 13b is parallel to the gas shielding plate 13a of the outer gas injection pipe 11a and has a large diameter. A plurality of through holes are provided in the tube wall of the inner gas injection tube 11b between the two gas shielding plates 13a and 13b, and these are used as gas injection ports 14b. The hole diameter and number of the gas outlet 14a and the gas outlet 14b are determined in consideration of the gas flow rate introduced from the gas introduction ports 12a and 12b, and the flow velocity of gas ejected from these gas outlet ports 14a and 14b, respectively. It can be determined freely. Further, the interval between the two gas shielding plates is determined by the gas jetting port 14b of the inner gas jetting pipe 11b.
A suitable size is 2 to 10 times the pore diameter. Next, FIG. 2 shows a cross section of a vapor phase growth apparatus using the gas injection apparatus 11. 1
Reference numeral 5 denotes a quartz or water-cooled metal Persian that forms a reaction chamber 16, in which the gas injection device 11 is disposed at the center of the reaction chamber 16.

18はサセプターで、このガス噴射装置11を中心とし
て、また前記ガス噴出口14a,14bの位置より下に
設けられ、反応の目的物17を載置しかつ反応温度例え
ば950〜1050′Cを保つ働きをする。
A susceptor 18 is provided around the gas injection device 11 and below the positions of the gas injection ports 14a and 14b to place the reaction object 17 and maintain the reaction temperature, for example, 950 to 1050'C. do the work.

このサセプター18は、回転機構を有するサセプターホ
ルダー19により前記の高さに保持され、水平方向に回
転している。20はこの気相成長装置下方に配設された
ガス排出口である。
This susceptor 18 is held at the above height by a susceptor holder 19 having a rotation mechanism, and is rotated in the horizontal direction. Reference numeral 20 denotes a gas exhaust port disposed below this vapor phase growth apparatus.

ここでシリコン・オン・サファイア(SOS)結晶成長
反応を例にとり、用いられるガスについて説明する。
Here, the gases used will be explained using a silicon on sapphire (SOS) crystal growth reaction as an example.

このSOS結晶成長は、反応成分ガスであるシラン(S
iH4)ガスの熱分解反応を利用してサファイア(AI
2O3)基板上へシリコン単結晶を成長させるものであ
。このとき反応成分ガスを適当な濃度に希釈するととも
に適当な流速で噴射させるキャリアガスを用い、混合ガ
スとして使用される。キヤリアガスとしては気相成長反
応に悪影響を及ぼさない成分のもの、例えばパラジウム
透過膜を通して高純度に精製純化された水素ガス、ある
いは高純度ヘリウム(He)や高純度アルゴン(Ar)
等の稀ガスが適当である。第2図では反応成分ガスとキ
ヤリアガスの混合ガスの流れを実線矢印で、前記キャリ
アガスと同成分のガス(以下キヤリア成分ガスと称す)
の流れを破線矢印で示している。外側ガス噴射管11a
のガス導入口12aから混合ガスが、一方内側ガス噴射
管11bのガス導入口12bからキャリア成分ガスがそ
れぞれの管内に導入され、管内を上昇し、それぞれのガ
ス噴出口14a,14bからほぼ水平に近いやや上向き
のガス流となつて勢いよく反応室16内に噴出される。
ここで噴出ガスの流れの方向がやや上向きになるのは、
内外のガス噴射管11a,11b内のガス流が下から上
への流れであり、かつ各ガス噴出口14a,14bの開
孔方向が水平方向であるため、ガスの流れはこのガス噴
出口14a,14bで900近く変えられ、このとき流
体の慣性作用が生じ結果的にやや上向きのガス流になる
と考えられる。このようにそれぞれのガス噴出口14a
,14bから噴射されたガスはサセプター18上をその
中心から外側に向かつて流れる。外側ガス噴射管11a
のガス噴出口14aから噴射された混合ガス中の反応成
分ガスが、加熱されている反応目的物17上で反応し、
生成物を反応目的物17に堆積被着させてゆくことによ
り気相成長反応が進んでゆく。上記混合ガスは、反応成
分ガスを反応させ、かつ高温のサセプター18のごく近
傍を流れるため、加熱されて体積が膨張し密度が小さく
なること、また前述のガス噴射方向が少し上向きであつ
たこと等の要因によりサセプター18の外周付近で上昇
し、反応室16内に対流を起こさせる方向に力を受ける
。一方内側ガス噴射管11bのガス噴出口14bからは
キャリア成分ガスが噴射され、サセプター18上では前
記混合ガスと二層のガス流、即ち、下層のサセブタ一1
8近傍の混合ガス流、上層のキヤリア成分ガス流が存在
している。後者のキャリア成分ガス流は、加熱されて反
応中の混合ガス流よりは温度が低く従つて混合ガスより
重いガス流であるので、前述の混合ガスの上昇力を抑制
し反応による副生成ガスや不純物を含んだ混合ガスの対
流を防ぐ。このとき上方にある内側ガス噴射管11bの
ガス遮蔽板13bの径が外側ガス噴射管11aのガス遮
蔽板13aより大であるので、キヤリア成分ガスの慣性
によるわずか上向きの初期噴射方向は、このガス遮蔽板
13bにより水平方向になり、上記の混合ガスの上昇を
抑制する力となる。さらに反応室16内の上部はガス噴
出口14bから噴出された清浄なキヤリア成分ガスが絶
えず充満することになり、上記混合ガスの対流を防止す
るとともに混合ガス即ち反応成分ガスに対する反応室1
6の実効内容積を小さくすることができる。そして、そ
れぞれのガスは、反応室16の下方に設けたガス排出口
20から装置外へ杉卜出される。ここで、反応室16内
の混合ガスのガス流は、導入される混合ガスおよびキヤ
リア成分ガスのそれぞれ流量および流速により変化する
This SOS crystal growth is caused by silane (S), which is a reactive component gas.
sapphire (AI) using the thermal decomposition reaction of iH4) gas
2O3) A method for growing silicon single crystals on a substrate. At this time, a carrier gas is used to dilute the reaction component gas to an appropriate concentration and to inject it at an appropriate flow rate, and is used as a mixed gas. As a carrier gas, use a component that does not have a negative effect on the vapor growth reaction, such as hydrogen gas that has been purified to a high purity through a palladium permeable membrane, or high-purity helium (He) or high-purity argon (Ar).
Rare gases such as In Figure 2, the flow of a mixed gas of a reaction component gas and a carrier gas is indicated by a solid arrow, and a gas having the same composition as the carrier gas (hereinafter referred to as carrier component gas) is shown.
The flow is shown by dashed arrows. Outer gas injection pipe 11a
The mixed gas is introduced into the respective tubes from the gas inlet 12a of the inner gas injection tube 11b, and the carrier component gas is introduced into the respective tubes from the gas inlet 12b of the inner gas injection tube 11b. The gas is vigorously ejected into the reaction chamber 16 as a slightly upward gas flow.
Here, the direction of the flow of ejected gas is slightly upward because
The gas flow in the inner and outer gas injection pipes 11a, 11b is from bottom to top, and the opening direction of each gas injection port 14a, 14b is horizontal, so the gas flow is in this gas injection port 14a. , 14b by nearly 900, and it is thought that at this time, an inertial action of the fluid occurs, resulting in a slightly upward gas flow. In this way, each gas outlet 14a
, 14b flows on the susceptor 18 from its center outward. Outer gas injection pipe 11a
The reaction component gas in the mixed gas injected from the gas outlet 14a reacts on the heated reaction object 17,
The vapor phase growth reaction progresses by depositing the product on the reaction object 17. The above-mentioned mixed gas reacts with the reactive component gases and flows in close proximity to the high-temperature susceptor 18, so it is heated and expands in volume, reducing its density, and the gas injection direction mentioned above is slightly upward. Due to these factors, the susceptor 18 rises near the outer periphery and receives a force in a direction that causes convection within the reaction chamber 16. On the other hand, the carrier component gas is injected from the gas outlet 14b of the inner gas injection pipe 11b, and on the susceptor 18 there is a two-layer gas flow with the mixed gas, i.e., the lower susceptor 11.
There is a mixed gas flow in the vicinity of 8, and an upper carrier component gas flow. The latter carrier component gas stream has a lower temperature than the heated mixed gas stream and is therefore heavier than the mixed gas stream, so it suppresses the upward force of the mixed gas mentioned above and suppresses the by-product gas and other gases caused by the reaction. Prevents convection of mixed gas containing impurities. At this time, since the diameter of the gas shielding plate 13b of the inner gas injection pipe 11b located above is larger than the gas shielding plate 13a of the outer gas injection pipe 11a, the initial slightly upward injection direction due to the inertia of the carrier component gas is The shielding plate 13b provides a horizontal direction, which acts as a force to suppress the rise of the above-mentioned mixed gas. Furthermore, the upper part of the reaction chamber 16 is constantly filled with the clean carrier component gas ejected from the gas outlet 14b, which prevents convection of the mixed gas and prevents the reaction chamber 16 from absorbing the mixed gas, that is, the reaction component gas.
6 can be made smaller. Each of the gases is then discharged out of the apparatus from a gas outlet 20 provided below the reaction chamber 16. Here, the gas flow of the mixed gas in the reaction chamber 16 changes depending on the respective flow rates and flow rates of the introduced mixed gas and carrier component gas.

即ち反応室16内の混合ガスのガス流を、ガス噴出口1
4bから噴射されるキャリア成分ガスの流量および流速
を変化させることにより最適な状態に制御することがで
きる。実験によれば外側ガス噴射管11aに導入される
混合ガスと内側ガス噴射管11bに導入されるキヤリア
成分ガスの流量の比は、混合ガスの流量/キヤリアガス
の流量−0.5〜2の間が反応の進行を匍脚する上でも
適当であつた。また混合ガスとキヤリア成分ガスの一分
間あたりの総流量は、反応室16の内容積に対して2〜
6倍で反応生成物の均一性の点から良好であつた。上記
実施例によれば、サセプター18および反応目的物17
の上の、反応成分ガスを含んだ混合ガス流を自由に制御
できるので、最適な反応条件を実現することができ、膜
厚や膜質の均一な反応生成物を、再現性よく堆積被着す
ることが可能である。
That is, the gas flow of the mixed gas in the reaction chamber 16 is
By changing the flow rate and flow velocity of the carrier component gas injected from 4b, it is possible to control the carrier component gas to an optimum state. According to experiments, the ratio of the flow rates of the mixed gas introduced into the outer gas injection pipe 11a and the carrier component gas introduced into the inner gas injection pipe 11b is between mixed gas flow rate/carrier gas flow rate -0.5 to 2. was also suitable for controlling the progress of the reaction. In addition, the total flow rate of the mixed gas and carrier component gas per minute is 2 to
The uniformity of the reaction product was good at 6 times. According to the above embodiment, the susceptor 18 and the reaction target 17
Since the flow of the mixed gas containing the reactant gases above the reactor can be freely controlled, optimal reaction conditions can be achieved, and reaction products with uniform film thickness and quality can be deposited with good reproducibility. Is possible.

またキャリア成分ガスが混合ガスの上層を水平方向に流
れていることおよび反応室16の上部にキャリア成分ガ
スが充満していることにより、混合ガスが対流となるこ
とを防ぎ、混合ガスに対する実効内容積も小さいので、
反応によつて生ずる副生成ガス中や反応目的物17、サ
セプター18から発散する吸着ガス中の不純物成分を速
やかに反応目的物17上から排除することが可能となり
、これら不純物を反応目的物17上に堆積被着する反応
生成物に取り込むことが少なくなる。即ち外方拡散の少
ない清浄な反応生成物堆積層を得ることができる。さら
に反応室16の実効内容積が小さいこと、反応成分ガス
を含む混合ガスがサセプター18に近接して流れること
により、導入された反応成分ガスのほとんどが反応に寄
与し、かつ反応効率が向上するため、反応生成物の堆積
被着速度を上昇させることが可能となつた。なお上記で
はシリコン・オン・サファイア結晶成長の場合を述べた
が、他の結晶成長、高抵抗エピタキシヤル成長等におい
ても同様の効果を上げることができる。以上のように本
発明は、反応室内に反応目的物を載置する台を設け、か
つその台の中心部に二重管状に配された2本の管からな
るガス噴射装置の、内側ガス噴射管が、外側ガス噴射管
の先端を閉塞するように設けられた第1のガス遮蔽板を
貫通して一体に固着され、この内側ガス噴射管の先端を
閉塞するように設けられた第2のガス遮蔽板と前記第1
のガス遮蔽板との間の内側ガス噴射管側面にガス噴出口
を設け、前記外側ガス噴射管側面にもガス噴出口を設け
たことにより、反応室内へ導入されるガスの流れを容易
に制御可能−C、均一で清浄な反応生成物を再現性よく
気相成長させることができ、さらに反応効率の向上のた
めに堆積速度も速くすることのできる工業的に優れた気
相成長装置を提供するものである。
In addition, since the carrier component gas flows horizontally in the upper layer of the mixed gas and the upper part of the reaction chamber 16 is filled with the carrier component gas, the mixed gas is prevented from becoming a convection, and the effective content for the mixed gas is Since the product is small,
Impurity components in the by-product gas generated by the reaction, the reaction object 17, and the adsorbed gas emitted from the susceptor 18 can be quickly removed from the reaction object 17, and these impurities can be removed from the reaction object 17. less of it is incorporated into the reaction products deposited on the surface. That is, a clean reaction product deposited layer with little outward diffusion can be obtained. Furthermore, since the effective internal volume of the reaction chamber 16 is small and the mixed gas containing the reaction component gas flows close to the susceptor 18, most of the introduced reaction component gas contributes to the reaction and the reaction efficiency is improved. Therefore, it has become possible to increase the deposition rate of reaction products. Although the case of silicon-on-sapphire crystal growth has been described above, similar effects can be achieved with other crystal growth, high-resistance epitaxial growth, etc. As described above, the present invention provides an internal gas injection system for a gas injection device which includes a table on which a reaction target is placed in a reaction chamber, and which consists of two tubes arranged in a double-tube shape at the center of the table. The tube passes through a first gas shielding plate provided to block the tip of the outer gas injection tube and is fixed together with the second gas shielding plate provided to block the tip of the inner gas injection tube. a gas shielding plate and the first
By providing a gas outlet on the side of the inner gas injection tube between the gas shield plate and the side of the outer gas injection tube, the flow of gas introduced into the reaction chamber can be easily controlled. Possible-C: Providing an industrially superior vapor phase growth device that can vapor phase grow homogeneous and clean reaction products with good reproducibility, and can also increase the deposition rate to improve reaction efficiency. It is something to do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の気相成長装置の一実施例におけるガス
噴射装置で、アはその平面図、イは正面図、第2図は同
気相成長装置の要部断面図、第3図アは従来のガス噴射
装置の平面図、第3図イは同正面図、第4図は従来の気
相成長装置の要部断面図である。 11・・・・・・ガス噴射装置、11a・・・・・・外
側ガス噴射管、11b・・・・・・内側ガス噴射管、1
3a,13b・・・・・・ガス遮蔽板、14a,14b
・・・・・・ガス噴出口、16・・・・・・反応室、1
8・・・・・・サセプター。
Fig. 1 shows a gas injection device in one embodiment of the vapor phase growth apparatus of the present invention, A is a plan view thereof, B is a front view, Fig. 2 is a sectional view of the main part of the same vapor phase growth apparatus, and Fig. 3 FIG. 3A is a plan view of a conventional gas injection apparatus, FIG. 3A is a front view thereof, and FIG. 11...Gas injection device, 11a...Outer gas injection pipe, 11b...Inner gas injection pipe, 1
3a, 13b... Gas shielding plate, 14a, 14b
...Gas outlet, 16...Reaction chamber, 1
8... Susceptor.

Claims (1)

【特許請求の範囲】 1 反応室内に反応目的物を載置する台を設け、かつそ
の台の中心部に二重管状に配された2本の管からなるガ
ス噴射装置の、キャリア成分ガスを流す内側ガス噴射管
が反応成分ガスを流す外側ガス噴射管の先端を閉塞する
ように設けられた第1のガス遮蔽板を貫通して一体に固
着され、この内側ガス噴射管の先端を閉塞するように設
けられた第2のガス遮蔽板と前記第1のガス遮蔽板との
間の内側ガス噴射管側面及び前記外側ガス噴射管側面に
ガス噴出口を設け、前記外側ガス噴射管から噴出された
反応成分ガス流を前記内側ガス噴射管から噴出されたキ
ャリア成分ガス流にて制御することを特徴とする気相成
長装置。 2 前記第2のガス遮蔽板の径を前記第1のガス遮蔽板
の径より大となしたことを特徴とする特許請求の範囲第
1項記載の気相成長装置。
[Scope of Claims] 1. A stage for placing a reaction object is provided in a reaction chamber, and a carrier component gas is injected from a gas injection device consisting of two pipes arranged in a double-tube shape at the center of the stage. The inner gas injection tube through which the reaction component gas flows passes through a first gas shielding plate provided to block the tip of the outer gas injection tube through which the reaction component gas flows, and is fixed to the inner gas injection tube to block the tip of the inner gas injection tube. A gas ejection port is provided on a side surface of the inner gas injection pipe and a side surface of the outer gas injection pipe between the second gas shielding plate and the first gas shielding plate, which are provided so that the gas is ejected from the outer gas injection pipe. A vapor phase growth apparatus characterized in that a flow of a reaction component gas is controlled by a flow of a carrier component gas ejected from the inner gas injection pipe. 2. The vapor phase growth apparatus according to claim 1, wherein the diameter of the second gas shielding plate is larger than the diameter of the first gas shielding plate.
JP16058276A 1976-12-27 1976-12-27 Vapor phase growth equipment Expired JPS5940905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16058276A JPS5940905B2 (en) 1976-12-27 1976-12-27 Vapor phase growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16058276A JPS5940905B2 (en) 1976-12-27 1976-12-27 Vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPS5381488A JPS5381488A (en) 1978-07-18
JPS5940905B2 true JPS5940905B2 (en) 1984-10-03

Family

ID=15718069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16058276A Expired JPS5940905B2 (en) 1976-12-27 1976-12-27 Vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JPS5940905B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840834U (en) * 1981-09-14 1983-03-17 日本電気株式会社 Vapor phase growth equipment
JPS59109776U (en) * 1983-01-10 1984-07-24 日本電気株式会社 Vapor phase growth equipment
JPS59158328U (en) * 1983-04-11 1984-10-24 東芝機械株式会社 Vapor phase growth equipment

Also Published As

Publication number Publication date
JPS5381488A (en) 1978-07-18

Similar Documents

Publication Publication Date Title
TW544775B (en) Chemical vapor deposition apparatus and chemical vapor deposition method
US7377977B2 (en) High-purity crystal growth
JP2008516877A (en) Method for producing GaN crystal or AlGaN crystal
JP4111828B2 (en) Especially the method of depositing crystal layer
JPS5940905B2 (en) Vapor phase growth equipment
JPH0230119A (en) Vapor growth device
JP2783041B2 (en) Vapor phase silicon epitaxial growth equipment
JPS5855119B2 (en) Vapor phase growth method and equipment for magnesia spinel
JPH05226263A (en) Vapor phase silicon epitaxial growth device
JPS592536B2 (en) gas injection device
JP2008506617A (en) Method for depositing a film containing Si and Ge
JPH04163912A (en) Vapor growth equipment
JPS5648237A (en) Evacuated gaseous phase reactor
JPS61242012A (en) Vapor-phase growth device
JPH01157519A (en) Vapor growth apparatus
JP2534081Y2 (en) Artificial diamond deposition equipment
JP2534080Y2 (en) Artificial diamond deposition equipment
JPH0235814Y2 (en)
JP2534079Y2 (en) Artificial diamond deposition equipment
JPH07193003A (en) Vapor growth device and vapor growth method
JPS5920381B2 (en) Gas phase reactor
JPS63292620A (en) Apparatus for depositing single atom layer thin film
JPH05226255A (en) Vapor-phase silicon epitaxial growth apparatus
JPS61248519A (en) Chemical vapor deposition apparatus
JPS6342137Y2 (en)