JPH07193003A - Vapor growth device and vapor growth method - Google Patents

Vapor growth device and vapor growth method

Info

Publication number
JPH07193003A
JPH07193003A JP21988092A JP21988092A JPH07193003A JP H07193003 A JPH07193003 A JP H07193003A JP 21988092 A JP21988092 A JP 21988092A JP 21988092 A JP21988092 A JP 21988092A JP H07193003 A JPH07193003 A JP H07193003A
Authority
JP
Japan
Prior art keywords
gas
substrate
raw material
reaction vessel
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP21988092A
Other languages
Japanese (ja)
Inventor
哲男 ▲齊▼藤
Tetsuo Saito
Hiroshi Nishino
弘師 西野
Satoshi Murakami
聡 村上
Toru Okamoto
徹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21988092A priority Critical patent/JPH07193003A/en
Publication of JPH07193003A publication Critical patent/JPH07193003A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the consumption of a raw material gas, and to obtain a compound semiconductor crystal having a uniform composition. CONSTITUTION:A reaction vessel 1, a periphery of which has a heater 4 and in which a raw material liquid 11 for vapor growth is housed on a bottom, a vessel cover 18 installed on the reaction vessel 1 and mounted on the side face of the reaction vessel 1 at a space section as an exhaust pipe 17, a substrate heating base 3, which is supported by the vessel cover 18 and downwards holds the substrate 2 and can be rotated, gas supply nozzles 5 supplying a raw material gas for vapor growth toward an upper section from the bottom of the vessel 1, and a pipe 14 supplying the liquid 11 with a carrier gas apart from the gas supply nozzles 5 are provided. A large number of pores 22 are formed in a space section among the heating base 3 and the nozzles 5, and a vapor growth device is composed of a gas diffusion member 23 feeding a gas flowed out from the nozzles 5 and the raw material ga;containing the raw material liquid 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化合物半導体結晶、特に
水銀・カドミウム・テルル(Hg1-x Cdx Te)の化合物半
導体結晶の気相成長装置および気相成長方法に係り、特
に結晶成長用の原料ガスの消費量の低減を図り、組成の
均一な化合物半導体結晶が得られるようにした気相成長
装置、および気相成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth apparatus and a vapor phase growth method for a compound semiconductor crystal, particularly a compound semiconductor crystal of mercury cadmium tellurium (Hg 1-x Cd x Te). The present invention relates to a vapor phase growth apparatus and a vapor phase growth method capable of reducing the consumption amount of the raw material gas to obtain a compound semiconductor crystal having a uniform composition.

【0002】[0002]

【従来の技術】従来の気相成長装置は、図2(a)に示すよ
うに横型の反応容器1内に気相成長用の基板2を基板加
熱台3上に設置して、前記反応容器1内に挿入し、該反
応容器1内を排気した後、該反応容器1内にHg1-x Cdx
Te結晶成長用のジメチルカドミウム、ジイソプロピルテ
ルルおよび水銀ガスを担持した水素ガスよりなる気相成
長用原料ガスを導入し、前記基板加熱台3を加熱ヒータ
4等を用いて基板2を加熱し、該基板2上に導入された
原料ガスを加熱分解する水平型反応容器を用いた気相成
長方法がある。
2. Description of the Related Art In a conventional vapor phase growth apparatus, as shown in FIG. 2 (a), a substrate 2 for vapor phase growth is placed on a substrate heating table 3 in a horizontal reaction vessel 1 and the reaction vessel Hg 1-x Cd x in the reaction vessel 1 after the reaction vessel 1 is evacuated.
A raw material gas for vapor phase growth composed of hydrogen gas carrying dimethyl cadmium, diisopropyl tellurium and mercury gas for Te crystal growth is introduced, and the substrate 2 is heated by using the heater 4 and the like. There is a vapor phase growth method using a horizontal reaction vessel in which a source gas introduced onto a substrate 2 is decomposed by heating.

【0003】或いは、この方法とは別個に図2(b)に示す
ように、縦型の反応容器1内に基板2を載置した基板加
熱台3を設置し、該反応容器1内を排気した後、基板2
の上部より垂直方向に前記した原料ガスを供給し、基板
2上に供給された原料ガスを加熱分解する垂直型反応容
器を用いた気相成長方法がある。
Alternatively, separately from this method, as shown in FIG. 2B, a substrate heating table 3 on which a substrate 2 is placed is installed in a vertical reaction vessel 1 and the inside of the reaction vessel 1 is evacuated. After that, substrate 2
There is a vapor phase growth method using a vertical reaction vessel in which the above-mentioned raw material gas is supplied in the vertical direction from above and the raw material gas supplied on the substrate 2 is decomposed by heating.

【0004】上記した何れの従来の方法でも、基板2の
全領域でガスの速度が変化しないように、つまりガスの
流れを乱さないようにするため、反応容器1内に流入す
るガス流量を多くした状態で基板2に供給し、該基板2
上でガスの乱れがない状態で均一に原料ガスが供給され
るようにしている。
In any of the above-mentioned conventional methods, the flow rate of gas flowing into the reaction vessel 1 is increased so that the velocity of the gas does not change in the entire area of the substrate 2, that is, the flow of the gas is not disturbed. Is supplied to the substrate 2 in this state, and the substrate 2
Above, the raw material gas is supplied uniformly without any gas turbulence.

【0005】[0005]

【発明が解決しようとする課題】然し、原料ガスを大流
量の状態で基板2上に供給すると、基板2上を原料ガス
が高速で通過するために、原料ガスが基板2上で熱分解
して気相成長結晶として成長する割合、つまり、ガスの
供給量に対する結晶層の成長の割合が低下する問題があ
る。つまり供給した原料ガスのモル数と、気相成長した
結晶層のモル数の比で示される結晶収率は、1%の低い
値にしか成らない欠点がある。
However, when the source gas is supplied onto the substrate 2 at a high flow rate, the source gas passes through the substrate 2 at a high speed, so that the source gas is thermally decomposed on the substrate 2. There is a problem that the rate of growth as a vapor phase grown crystal, that is, the rate of growth of the crystal layer with respect to the gas supply amount decreases. That is, there is a drawback that the crystal yield, which is represented by the ratio of the number of moles of the supplied source gas to the number of moles of the vapor phase grown crystal layer, is as low as 1%.

【0006】またHg1-x Cdx Te結晶のような三元化合物
半導体結晶は、HgTe結晶とCdTe結晶の混晶であるとされ
ており、上記したHgTe結晶とCdTe結晶の生成エネルギー
は、HgTe結晶の方が大で、同一の温度ではHgTe結晶がCd
Te結晶より成長し難い問題がある。
Further, a ternary compound semiconductor crystal such as Hg 1-x Cd x Te crystal is said to be a mixed crystal of HgTe crystal and CdTe crystal, and the formation energy of the above HgTe crystal and CdTe crystal is HgTe. Crystals are larger, and HgTe crystals are Cd at the same temperature.
There is a problem that it is harder to grow than Te crystals.

【0007】そのため、図2(a)の場合は、基板2上のガ
ス流入側に、生成され易いCdTeの成分を多く含む、つま
りx値の高いHg1-x Cdx Te結晶が形成され、基板2のガ
ス流出側に、生成され難いHgTeの成分を多く含む、つま
りx値の小さいHg1-x Cdx Te結晶が形成される傾向があ
り、基板の全領域の範囲で均一な組成、つまりx値が均
一なHg1-x Cdx Te結晶が形成されない難点がある。
Therefore, in the case of FIG. 2 (a), a Hg 1-x Cd x Te crystal containing a large amount of easily generated CdTe components, that is, a high x value, is formed on the gas inflow side of the substrate 2, On the gas outflow side of the substrate 2, Hg 1-x Cd x Te crystals containing a large amount of HgTe components that are difficult to be generated, that is, having a small x value, tend to be formed, and have a uniform composition in the entire region of the substrate. That is, there is a problem in that Hg 1-x Cd x Te crystals having a uniform x value are not formed.

【0008】また図2(b)に示すように、縦型の反応容器
1を用いて成長する場合、ガス供給ノズル5が1本であ
ると、基板2の中央が周辺に比べて多少温度が高いの
で、生成されやすいCdTe成分の多いHg1-x Cdx Te結晶が
成長し、基板2の周辺部ではHgTe成分の多いHg1-x Cdx
Te結晶が成長するので、原料ガスのガス供給ノズル5を
多数本配設する必要がある。
Further, as shown in FIG. 2 (b), in the case where the vertical reaction vessel 1 is used for growth, if the number of the gas supply nozzles 5 is one, the temperature of the center of the substrate 2 is slightly higher than that of the periphery. Since it is high, Hg 1-x Cd x Te crystals with a large amount of CdTe components, which are easily generated, grow, and Hg 1-x Cd x with a large amount of HgTe components in the peripheral portion of the substrate 2.
Since the Te crystal grows, it is necessary to dispose many gas supply nozzles 5 for the source gas.

【0009】またHgTe結晶とCdTe結晶を交互に成長し
て、このHgTe結晶とCdTe結晶同士を両者の結晶の気相成
長温度で相互拡散する方法もあるが、このような方法を
用いても、前記した結晶収率は、1%の低い値にしか成
らない欠点がある。
There is also a method in which HgTe crystals and CdTe crystals are alternately grown and the HgTe crystals and CdTe crystals are mutually diffused at the vapor growth temperature of both crystals. The above-mentioned crystal yield has a drawback that it is only as low as 1%.

【0010】本発明は上記した従来技術の問題点を解決
するもので、原料ガスの供給量が少なくて済み、結晶収
率が高く、かつ基板上に組成が均一な、つまりx値が基
板の全領域の範囲で均一なHg1-x Cdx Te結晶が得られる
ようにした気相成長装置および気相成長方法の提供を目
的とする。
The present invention solves the above-mentioned problems of the prior art. It requires only a small amount of raw material gas supply, a high crystal yield, and a uniform composition on the substrate, that is, the x value of the substrate is small. An object of the present invention is to provide a vapor phase growth apparatus and a vapor phase growth method capable of obtaining Hg 1-x Cd x Te crystals that are uniform in the entire range.

【0011】[0011]

【課題を解決するための手段】本発明の気相成長装置は
請求項1に示すように、加熱手段を周囲に備え、底部に
気相成長用の原料液体を収容した反応容器と、該反応容
器の上部に設置され、前記反応容器の上部側面に対して
排気管となる空間部を隔てて設置され、加熱手段を備え
た反応容器の容器蓋と、前記反応容器の容器蓋に支持さ
れ、下方に向かって基板を保持し、回転可能な基板加熱
台と、前記反応容器の底部より上部の基板の方向に向か
って対向して気相成長用原料ガスを流出するガス供給ノ
ズルと、該ガス供給ノズルと別個に前記気相成長用の原
料液体にキャリアガスを供給するキャリアガス供給管と
を備え、前記基板加熱台とガス供給ノズルの空間に多数
の細孔を有し、前記ガス供給ノズルより流出するガス
と、前記原料液体のガスを担持したキャリアガスとより
成る原料ガスを、基板側に拡散移動させて供給するガス
拡散部材を、多層構造に配設したことを特徴とするもの
である。
According to a first aspect of the present invention, there is provided a vapor phase growth apparatus, a reaction vessel having a heating means in the periphery thereof, and a bottom portion containing a raw material liquid for vapor phase growth, and the reaction vessel. It is installed on the upper part of the container, and is installed with a space portion serving as an exhaust pipe with respect to the upper side surface of the reaction container, and is supported by the container lid of the reaction container provided with a heating means, and the container lid of the reaction container, A substrate heating table that holds a substrate downward, a rotatable substrate heating table, a gas supply nozzle that faces the direction of the substrate above the bottom of the reaction vessel, and that discharges the source gas for vapor phase growth, and the gas. A carrier gas supply pipe for supplying a carrier gas to the raw material liquid for vapor phase growth separately from a supply nozzle, and having a large number of pores in the space between the substrate heating base and the gas supply nozzle, More outflow gas and the raw material liquid More comprising feed gas and loaded with a carrier gas a scan, the gas diffusion member that supplies by diffusing moved toward the substrate, is characterized in that disposed on the multilayer structure.

【0012】また請求項2に示すように前記ガス拡散部
材に、該ガス拡散部材の温度制御を可能とする手段を設
けたことを特徴とする。また請求項3に示すように、前
記基板がカドミウムテルル、カドミウム・亜鉛・テル
ル、ガリウム砒素、サファイア、シリコンの何れかであ
り、原料液体が水銀であり、基板上に気相成長する結晶
が3元以上の混晶で水銀を含む2−6族化合物半導体で
あることを特徴とする。
Further, as described in claim 2, the gas diffusion member is provided with means for enabling temperature control of the gas diffusion member. Further, as described in claim 3, the substrate is any one of cadmium tellurium, cadmium-zinc-tellurium, gallium arsenide, sapphire, and silicon, the raw material liquid is mercury, and the vapor-grown crystal on the substrate is 3 It is characterized by being a 2-6 group compound semiconductor containing mercury in a mixed crystal of one or more elements.

【0013】また請求項4に示すように、前記原料液体
の水銀が、反応容器の底部に設けた水銀溜に収容され、
該水銀溜の上部に細孔を有する蓋を載置し、該水銀の表
面に、キャリアガス配管より流出するキャリアガスを吹
きつける構造と成っていることを特徴とする。
Further, as described in claim 4, the raw material liquid mercury is contained in a mercury reservoir provided at the bottom of the reaction vessel,
It is characterized in that a lid having pores is placed on the upper part of the mercury reservoir, and a carrier gas flowing out from a carrier gas pipe is blown onto the surface of the mercury.

【0014】また請求項5に示すように、前記基板加熱
台と反応容器の内壁の間の排気用空間部の断面積を、基
板加熱台の面積の1/5 以下に保ち、上記反応容器内に導
入するキャリアガスと原料ガスの流量を1リットル/分
以下に保つことを特徴とするものである。
According to a fifth aspect of the present invention, the cross-sectional area of the exhaust space between the substrate heating table and the inner wall of the reaction chamber is maintained at 1/5 or less of the area of the substrate heating table, and the inside of the reaction chamber is maintained. It is characterized in that the flow rates of the carrier gas and the raw material gas introduced into the tank are kept at 1 liter / min or less.

【0015】[0015]

【作用】本発明の気相成長装置、および気相成長方法で
は、基板加熱台と反応容器の内壁の間の排気用空間部の
断面積を、基板加熱台の面積の1/5 以下に小さく保ち、
上記反応容器内に導入するキャリアガスと原料ガスの流
量を1リットル/分以下の少ない流量に保つ。
In the vapor phase growth apparatus and vapor phase growth method of the present invention, the cross-sectional area of the exhaust space between the substrate heating table and the inner wall of the reaction vessel is reduced to 1/5 or less of the area of the substrate heating table. Keep
The flow rates of the carrier gas and the raw material gas introduced into the reaction vessel are kept at a low flow rate of 1 liter / minute or less.

【0016】また基板と原料ガスのガス供給ノズルの間
に細孔を多数備え、流体、或いは加熱ヒータによって温
度制御が可能なガス拡散部材を多数構造に積層して設け
る。このように原料ガスの供給流量を充分小さくして、
且つ基板とガス供給ノズルの間に細孔を設けたガス拡散
部材を多層構造に積層して配置することで、基板上に原
料ガスが、ガス分子の拡散移動程度の極めて緩やかな速
度で供給されるようにすることで、ガス流の乱れのない
状態で基板上に供給されるので、結晶成長の結晶収率が
向上する。
Further, a large number of pores are provided between the substrate and the gas supply nozzle for the source gas, and a plurality of fluid or gas diffusion members whose temperature can be controlled by a heater are laminated in a structure. In this way, the supply flow rate of the source gas is made sufficiently small,
In addition, by arranging the gas diffusion members having pores between the substrate and the gas supply nozzle in a multi-layered structure, the source gas is supplied onto the substrate at an extremely gradual speed of about the diffusion movement of gas molecules. By doing so, the gas flow is supplied onto the substrate without any turbulence, so that the crystal yield of crystal growth is improved.

【0017】また基板の全領域でHgTe結晶成長原料ガス
(水銀ガスとジイソプロピルTeガス)と、CdTe結晶成長
原料ガス(ジメチルCdガスとジイソプロピルTeガス)と
が、時間的なずれの無い状態で同時に供給されるので、
生成エネルギーの異なるHgTe結晶とCdTe結晶が同様に成
長し、組成変動の無い、x値が均一なHg1-x Cdx Te結晶
が成長できる。
In addition, the HgTe crystal growth raw material gas (mercury gas and diisopropyl Te gas) and the CdTe crystal growth raw material gas (dimethyl Cd gas and diisopropyl Te gas) are simultaneously applied over the entire area of the substrate without any time lag. Will be supplied,
HgTe crystals and CdTe crystals having different generation energies grow in the same manner, and Hg 1-x Cd x Te crystals having a uniform x value without composition fluctuation can be grown.

【0018】また上記多数の細孔を有する拡散部材を多
層構造に配置することで、少ないガス供給ノズル数で、
基板の全領域に均一に原料ガスを供給でき、かつガス拡
散板とガス供給ノズルとの間隔を30mm以下に保つこと
で、基板とガス供給ノズル間で原料ガスの供給が不安定
になる原料ガスの対流の発生を防止することもできる。
By arranging the diffusion member having a large number of pores in a multilayer structure, the number of gas supply nozzles can be reduced,
The source gas can be supplied uniformly to all areas of the substrate, and by keeping the distance between the gas diffusion plate and the gas supply nozzle 30 mm or less, the source gas becomes unstable between the substrate and the gas supply nozzle. It is also possible to prevent the occurrence of convection.

【0019】また従来の縦型の気相成長装置に於ける基
板とガス供給ノズルの配置関係が逆方向に成るように、
前記基板を上部に、ガス供給ノズルを下部に設けること
で、従来の装置では原料ガスが基板上に対流の状態で供
給されていたのが、原料ガスが拡散の状態で供給される
ようになり、原料ガスの基板への供給状態が安定するの
で、形成される結晶の組成が安定する。
Further, in the conventional vertical vapor phase growth apparatus, the arrangement relationship between the substrate and the gas supply nozzle is reversed.
By providing the substrate in the upper part and the gas supply nozzle in the lower part, the raw material gas was supplied in the convection state on the substrate in the conventional apparatus, but the raw material gas is supplied in the diffused state. Since the supply state of the source gas to the substrate is stable, the composition of the crystals formed is stable.

【0020】また基板加熱台と反応容器の内壁の間の排
気用空間部の断面積を、基板加熱台の面積の1/5 以下に
小さく保つことで、供給ガス量が少なくなるので、供給
ガス量の増大によって形成される結晶の組成が不安定に
なる現象が防止できる。
Further, since the cross-sectional area of the exhaust space between the substrate heating table and the inner wall of the reaction vessel is kept to be 1/5 or less of the area of the substrate heating table, the amount of the supplied gas is reduced. It is possible to prevent the phenomenon that the composition of the crystals formed becomes unstable due to the increase in the amount.

【0021】上記した拡散板を備えた気相成長装置の構
造は特開昭62-92311号に開示されているが、この拡散板
は気相成長用ウエハの表面に塵埃が降りかかるのを防止
するのを目的としており、細孔は設けていない。
The structure of the vapor phase growth apparatus equipped with the above diffusion plate is disclosed in Japanese Patent Laid-Open No. 62-92311. This diffusion plate prevents dust from falling on the surface of the vapor phase growth wafer. The purpose of this is to provide no pores.

【0022】また特開昭63-119229 号にも、拡散板を備
えた気相成長装置の構造が開示されているが、この構造
は対向した基板設置台の間に内部が中空で、前記基板設
置台に設置された基板に対向するように開口部を設けた
拡散板を配置し、この中空の拡散板の内部に高速で混合
ガスを流して、該拡散板の内部でガスの混合が充分でき
るようにしたもので、図2(a)の構造の装置の基板2の上
に、更に拡散板を挟んで、基板2を設置した構造に該当
し、本願のような拡散板の機能は無い。
Further, Japanese Patent Laid-Open No. 63-119229 also discloses a structure of a vapor phase growth apparatus equipped with a diffusion plate. This structure has a hollow interior between opposed substrate installation tables, A diffuser plate with an opening is placed so as to face the substrate installed on the installation table, and the mixed gas is flowed at a high speed inside the hollow diffuser plate so that the gas is sufficiently mixed inside the diffuser plate. It corresponds to the structure in which the substrate 2 is installed by further sandwiching the diffusion plate on the substrate 2 of the device having the structure of FIG. 2 (a), and there is no function of the diffusion plate as in the present application. .

【0023】[0023]

【実施例】以下、図面を用いて本発明の実施例につき詳
細に説明する。図1(a)に示すように加熱ヒータ4を周囲
に備え、底部を絞った内径が100mm の円筒形の石英より
なる反応容器1の底部に、気相成長用の原料液体の水銀
11を収容する水銀溜12を設け、該水銀溜12の上部に細孔
を有する石英蓋13を設ける。
Embodiments of the present invention will be described in detail below with reference to the drawings. As shown in FIG. 1 (a), a heater 4 is provided around the periphery, and the bottom of a reaction vessel 1 made of cylindrical quartz with a narrowed bottom and an inner diameter of 100 mm is placed at the bottom of a source liquid mercury for vapor phase growth.
A mercury reservoir 12 containing 11 is provided, and a quartz lid 13 having pores is provided on the mercury reservoir 12.

【0024】上記水銀溜12に収容された水銀11上にキャ
リアガスの水素ガスを吹きつけるためキリアガス供給管
14が反応容器1の底部を貫通して、該反応容器1と溶接
して気密構造を保って水銀11上に供給口を向けるように
配置されている。
Kyria gas supply pipe for spraying hydrogen gas as a carrier gas onto the mercury 11 contained in the mercury reservoir 12
14 is arranged so as to penetrate the bottom of the reaction vessel 1 and weld to the reaction vessel 1 to maintain an airtight structure and direct the supply port on the mercury 11.

【0025】またキャリアガス供給管14と別個に並列し
て水素ガスに担持されたジメチルカドミウムガスとジイ
ソプロピルテルルガスよりなる原料ガスを供給する原料
ガス供給管15が、前記反応容器1の底部を貫通して反応
容器1内へ導入され、その先端部は、複数本分岐して、
ガス供給ノズル5と成って反応容器1の上部側に向かっ
て配置されている。
A raw material gas supply pipe 15 for supplying a raw material gas composed of dimethylcadmium gas supported on hydrogen gas and diisopropyl tellurium gas in parallel with the carrier gas supply pipe 14 penetrates the bottom of the reaction vessel 1. Then, it is introduced into the reaction container 1, and its tip part is branched into a plurality of
The gas supply nozzle 5 is arranged toward the upper side of the reaction vessel 1.

【0026】また上記反応容器1の上部に、側面側に向
かって気相成長後のガスを排気する排気管17が形成可能
な空間を隔てて、加熱ヒータ4を備えた反応容器の容器
蓋18が配置され、該容器蓋18には回転するシャフト19が
設置され、該シャフト19には回転可能なカーボン製で直
径が90mmの基板加熱台3が設置されている。
A container lid 18 of the reaction container provided with a heater 4 is provided above the reaction container 1 with a space in which an exhaust pipe 17 for exhausting the gas after vapor phase growth can be formed toward the side surface. And a rotatable shaft 19 is installed on the container lid 18, and a rotatable substrate heating base 3 made of carbon and having a diameter of 90 mm is installed on the shaft 19.

【0027】この基板加熱台3上には下側の方向に向か
って気相成長用のガリウム砒素等の基板2が埋設するよ
うにして設置されている。そして上記基板加熱台3と反
応容器1の内壁の間の距離dは5mm 以下に保つことで、
基板加熱台3の上部表面の円形の面積に対し、反応容器
1の内壁と基板加熱台3の間の排気用空間部の断面積の
比が1/5 以下の範囲に収まるようにしている。このよう
にすることで、ガス供給ノズル5より供給される原料ガ
スや、キャリアガス供給管14内のガスで水銀を担持した
ガスが緩やかな速度で基板加熱台3の方向へ移動する。
A substrate 2 of gallium arsenide or the like for vapor phase growth is installed on the substrate heating table 3 so as to be embedded in a downward direction. And by keeping the distance d between the substrate heating table 3 and the inner wall of the reaction vessel 1 to 5 mm or less,
The ratio of the cross-sectional area of the exhaust space between the inner wall of the reaction vessel 1 and the substrate heating table 3 to the circular area of the upper surface of the substrate heating table 3 is set to be within 1/5 or less. By doing so, the source gas supplied from the gas supply nozzle 5 and the gas carrying mercury among the gases in the carrier gas supply pipe 14 move toward the substrate heating table 3 at a slow speed.

【0028】また基板加熱台3と、複数のガス供給ノズ
ル5の間の空間部に、多数の細孔22を有し、前記ガス供
給ノズル5より流出するジメチルCdとジイソプロピルTe
の原料ガス、前記原料液体の水銀ガスを担持したキャリ
アガスを基板2側に拡散供給するガス拡散部材23を多層
構造に設ける。
In the space between the substrate heating table 3 and the plurality of gas supply nozzles 5, a large number of pores 22 are provided, and dimethyl Cd and diisopropyl Te flowing out from the gas supply nozzle 5 are discharged.
The gas diffusion member 23 for diffusing and supplying the raw material gas and the carrier gas carrying the raw material liquid mercury gas to the substrate 2 side is provided in a multilayer structure.

【0029】上記ガス拡散部材23の構造は、図1(b)に示
すように、石英製で内部に温度制御が可能な加熱された
窒素ガス、或いは冷却用の液体窒素ガスが流入できるガ
ス配管24を多数本備え、このガス配管24の周囲を細孔22
を有する石英板25で囲った構造を採っている。この細孔
22は直径が5mm 以下とし、該細孔22の間隔は10mm以下の
寸法で設ける。
As shown in FIG. 1 (b), the structure of the gas diffusion member 23 is made of quartz and is a gas pipe through which heated nitrogen gas whose temperature can be controlled or liquid nitrogen gas for cooling can flow. A large number of 24 are provided, and the periphery of this gas pipe 24
A structure surrounded by a quartz plate 25 having is adopted. This pore
The diameter of 22 is 5 mm or less, and the intervals of the pores 22 are 10 mm or less.

【0030】また基板2と最上部のガス拡散部材23との
間の距離は10mmとし、石英板25同士の距離も10mmとす
る。このような本発明の気相成長装置によると、ガス供
給ノズル5とキャリアガス供給管14より総流量ガスが1
リットル/分以下の微小な流量で反応容器1内に導入
し、上記基板加熱台3と反応容器1の内壁の間の距離d
は5mm 以下に保つことで、基板加熱台3の上部表面の円
形の面積に対し、反応容器1の内壁と基板加熱台3の間
の排気用空間部の断面積の比が1/5 以下の範囲に収まる
ようにしているので緩やかな速度で反応容器内に導入さ
れた原料ガスが基板2に到達する。
The distance between the substrate 2 and the uppermost gas diffusion member 23 is 10 mm, and the distance between the quartz plates 25 is 10 mm. According to such a vapor phase growth apparatus of the present invention, the total flow rate of gas is 1 from the gas supply nozzle 5 and the carrier gas supply pipe 14.
Introduced into the reaction vessel 1 at a minute flow rate of less than 1 liter / minute, the distance d between the substrate heating table 3 and the inner wall of the reaction vessel 1
Is maintained at 5 mm or less so that the ratio of the cross-sectional area of the exhaust space between the inner wall of the reaction vessel 1 and the substrate heating table 3 to the circular area of the upper surface of the substrate heating table 3 is 1/5 or less. The raw material gas introduced into the reaction vessel reaches the substrate 2 at a slow speed because it is set within the range.

【0031】また基板2とガス供給ノズル5の間に、細
孔22を備えたガス拡散部材23が多層構造に配置され、か
つこのガス拡散部材23はガスの拡散速度を所定の速度に
保つように制御可能であるので、反応容器1内に導入さ
れた原料ガスが基板2上に緩やかな速度で流れ、ガス流
よりもガスの拡散が支配的な状態で基板2上に到達す
る。
A gas diffusion member 23 having pores 22 is arranged in a multi-layer structure between the substrate 2 and the gas supply nozzle 5, and the gas diffusion member 23 keeps the gas diffusion speed at a predetermined speed. Therefore, the source gas introduced into the reaction vessel 1 flows on the substrate 2 at a slow speed, and reaches the substrate 2 in a state where gas diffusion is more dominant than the gas flow.

【0032】このような本発明の気相成長装置を用いて
GaAs基板上にHg1-x Cdx Te結晶を気相成長する方法につ
いて述べる。基板加熱台3上に直径が3インチのGaAsの
基板2を設置し、反応容器1内を水素ガスで充分置換し
た後、水素ガスにジメチルCdガスとジイソプロピルTeガ
スの分圧が各々10-4気圧となるように担持した原料ガス
を、原料ガス供給管15より反応容器1内に0.5 リットル
/ 分のガス流量で流す。
Using such a vapor phase growth apparatus of the present invention,
The method for vapor phase growth of Hg 1-x Cd x Te crystal on GaAs substrate is described. The GaAs substrate 2 having a diameter of 3 inches is placed on the substrate heating table 3, the inside of the reaction vessel 1 is sufficiently replaced with hydrogen gas, and then the partial pressures of dimethyl Cd gas and diisopropyl Te gas in the hydrogen gas are each 10 −4. 0.5 liter of the raw material gas supported so as to reach atmospheric pressure is fed into the reaction vessel 1 through the raw material gas supply pipe 15.
Flow at a gas flow rate of / min.

【0033】そして、GaAsの基板2を410 ℃の温度に加
熱して、該基板2を6 回転/ 分の割合で回転させ、該基
板2上にCdTe層を3 μm の厚さにバッファ層として成膜
する。
Then, the GaAs substrate 2 is heated to a temperature of 410 ° C., the substrate 2 is rotated at a rate of 6 revolutions / minute, and a CdTe layer is formed on the substrate 2 as a buffer layer having a thickness of 3 μm. Form a film.

【0034】次いでGaAsの基板2を360 ℃の温度に降下
し、該基板2を6 回転/ 分の割合で回転させ、原料ガス
供給管15より水素ガスにジメチルCdガスとジイソプロピ
ルTeガスの分圧が各々10-4気圧となるように担持した原
料ガスと、水銀11上にキャリアガス供給管14より水銀分
圧が1 ×10-2気圧の分圧となるように吹きつけた水素ガ
スとの総流量が0.5 リットル/ 分のガス流量となるよう
に反応容器1内に導入する。
Next, the GaAs substrate 2 is lowered to a temperature of 360 ° C., the substrate 2 is rotated at a rate of 6 revolutions / minute, and a partial pressure of dimethyl Cd gas and diisopropyl Te gas is added to hydrogen gas from a source gas supply pipe 15. Of the source gas supported so that each becomes 10 -4 atm, and the hydrogen gas sprayed on the mercury 11 from the carrier gas supply pipe 14 so that the mercury partial pressure becomes 1 × 10 -2 atm. The gas is introduced into the reaction vessel 1 so that the total flow rate is 0.5 liter / min.

【0035】そして反応容器1と容器蓋18に設けた加熱
ヒータ4は220 ℃の温度に加熱し、ガス拡散部材23の温
度も220 ℃に保つ。このようにしてGaAsの基板2上に形
成したHg1-x Cdx Te結晶の結晶層をモル数に換算した値
と、使用したジメチルCdガス、ジイソプロピルTeガスお
よび水銀を混合した原料ガスの総モル数の平均値の比を
算出して、Hg1-x Cdx Te結晶の消費原料ガスに対する収
率を調べた処、約30%の値が得られ、従来の装置に比較
して大幅に収率が向上した。
The heater 4 provided on the reaction vessel 1 and the vessel lid 18 heats to a temperature of 220 ° C., and the temperature of the gas diffusion member 23 is also kept at 220 ° C. The total of the value obtained by converting the crystal layer of the Hg 1-x Cd x Te crystal formed on the GaAs substrate 2 into the number of moles and the raw material gas in which dimethyl Cd gas, diisopropyl Te gas and mercury used were mixed Calculating the ratio of the average number of moles and examining the yield of Hg 1-x Cd x Te crystals with respect to the consumed raw material gas, a value of about 30% was obtained, which is significantly higher than that of conventional equipment. Yield improved.

【0036】またGaAs基板に形成したHg1-x Cdx Te結晶
のx 値のばらつきは、Δx<0.005となり、従来の装置
に於けるx 値のばらつきのΔx =0.02の値に比較して大
幅にx 値が均一になることが判明した。
Further, the variation of the x value of the Hg 1-x Cd x Te crystal formed on the GaAs substrate is Δx <0.005, which is significantly larger than the variation of the x value in the conventional device of Δx = 0.02. It was found that the x values were uniform.

【0037】以上述べた実施例では、基板にGaAs基板を
用いたが、GaAs基板以外にSiのような半導体基板、CdT
e、CdZnTe基板のような化合物半導体基板、或いはサフ
ァイアのような絶縁性基板を用いても良い。
Although the GaAs substrate is used as the substrate in the above-described embodiments, a semiconductor substrate such as Si, CdT, etc. may be used in addition to the GaAs substrate.
A compound semiconductor substrate such as e or CdZnTe substrate or an insulating substrate such as sapphire may be used.

【0038】また気相成長する化合物半導体結晶は、Hg
1-x Cdx Te結晶の他にCdZnTe結晶のような三元以上の化
合物半導体結晶であっても良い。
Further, the compound semiconductor crystal that grows in the vapor phase is Hg.
Besides the 1-x Cd x Te crystal, a ternary or higher compound semiconductor crystal such as a CdZnTe crystal may be used.

【0039】[0039]

【発明の効果】以上述べたように、本発明の気相成長装
置および気相成長方法によると、互いに異なる値の生成
エネルギーを有する混晶の化合物半導体結晶でも、組成
が均一で大面積の半導体結晶を得ることができ、また原
料ガスの消費量も低減する効果がある。
As described above, according to the vapor phase growth apparatus and the vapor phase growth method of the present invention, even a compound semiconductor crystal of a mixed crystal having different generation energies has a uniform composition and a large area. Crystals can be obtained and the consumption of raw material gas can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の気相成長装置の一実施例の断面図と
該装置の要部断面図である。
FIG. 1 is a cross-sectional view of an embodiment of a vapor phase growth apparatus of the present invention and a cross-sectional view of a main part of the apparatus.

【図2】 従来の気相成長装置の説明図である。FIG. 2 is an explanatory diagram of a conventional vapor phase growth apparatus.

【符号の説明】 1 反応容器 2 基板 3 基板加熱台 4 加熱ヒータ 5 ガス供給ノズル 11 原料液体(水銀) 12 水銀溜 13 石英蓋 14 キァリアガス供給管 15 原料ガス供給管 17 排気管 18 容器蓋 19 シャフト 22 細孔 23 ガス拡散部材 24 ガス配管 25 石英板[Explanation of symbols] 1 Reaction container 2 Substrate 3 Substrate heating base 4 Heater 5 Gas supply nozzle 11 Raw material liquid (mercury) 12 Mercury reservoir 13 Quartz lid 14 Carrier gas supply pipe 15 Raw material gas supply pipe 17 Exhaust pipe 18 Vessel lid 19 Shaft 22 Pores 23 Gas diffusion member 24 Gas pipe 25 Quartz plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 徹 神奈川県川崎市中原区上小田中1015番地 富士通株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Okamoto 1015 Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa Fujitsu Limited

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 加熱手段(4) を周囲に備え、底部に気相
成長用の原料液体(11)を収容した反応容器(1) と、該反
応容器(1) の上部に設置され、前記反応容器(1) の上部
側面に対して排気管(17)となる空間部を隔てて設置さ
れ、加熱手段(4) を備えた反応容器(1) の容器蓋(18)
と、 前記容器蓋(18)に支持され、下方に向かって基板(2) を
保持し、回転可能な基板加熱台(3) と、 前記反応容器(1) の底部より上部の基板(2) の方向に向
かって対向して気相成長用原料ガスを供給するガス供給
ノズル(5) と、該ガス供給ノズル(5) と別個に前記気相
成長用の原料液体にキャリアガスを供給するキャリアガ
ス供給管(14)とを備え、 前記基板加熱台(3) とガス供給ノズル(5) の間の空間部
に多数の細孔(22)を有し、前記ガス供給ノズル(5) より
流出するガスと、原料液体(11)を担持したキャリアガス
よりなる原料ガスとを、基板(2) 側に拡散移動させて供
給するガス拡散部材(23)を多層構造に配設したことを特
徴とする気相成長装置。
1. A reaction vessel (1) having a heating means (4) on the periphery thereof and containing a raw material liquid (11) for vapor phase growth at the bottom, and the reaction vessel (1) installed at the top of the reaction vessel (1), A container lid (18) for the reaction container (1), which is installed on the upper side surface of the reaction container (1) with a space serving as an exhaust pipe (17), and is equipped with heating means (4).
A substrate heating table (3) that is supported by the container lid (18) and holds the substrate (2) downward, and is rotatable, and a substrate (2) above the bottom of the reaction container (1). A gas supply nozzle (5) for supplying a source gas for vapor phase growth facing each other in the direction of, and a carrier for supplying a carrier gas to the source liquid for vapor phase growth separately from the gas supply nozzle (5) A gas supply pipe (14), a large number of pores (22) in the space between the substrate heating table (3) and the gas supply nozzle (5), and flow out from the gas supply nozzle (5). The gas diffusion member (23) is arranged in a multi-layered structure in which the gas to be supplied and the source gas made of a carrier gas carrying the source liquid (11) are diffused and moved to the substrate (2) side. Vapor growth equipment.
【請求項2】 請求項1記載のガス拡散部材(23)に、該
ガス拡散部材(23)の温度制御を可能とする温度制御手段
(24)を設けたことを特徴とする気相成長装置。
2. A temperature control means for enabling the temperature control of the gas diffusion member (23) according to claim 1.
A vapor phase growth apparatus characterized in that (24) is provided.
【請求項3】 請求項1記載の基板(2) がカドミウムテ
ルル、カドミウム・亜鉛・テルル、ガリウム砒素、サフ
ァイア、シリコンの何れかであり、原料液体が水銀であ
り、基板(2) 上に気相成長する結晶が3元以上の混晶で
水銀を含む2−6族化合物半導体であることを特徴とす
る気相成長装置。
3. The substrate (2) according to claim 1, which is any one of cadmium tellurium, cadmium-zinc-tellurium, gallium arsenide, sapphire, and silicon, and the raw material liquid is mercury. A vapor phase growth apparatus, wherein the crystal to be phase-grown is a mixed crystal of three or more elements and is a 2-6 group compound semiconductor containing mercury.
【請求項4】 請求項1記載の原料液体(11)が水銀であ
り、反応容器(1) の底部、或いは底部に設けた水銀溜(1
2)に収容され、該水銀溜(12)の上部に細孔を有する蓋(1
3)を配置し、該原料液体(11)の表面に、キャリアガス供
給管(14)より流出するキャリアガスを吹きつける構造と
成っていることを特徴とする気相成長装置。
4. The raw material liquid (11) according to claim 1 is mercury, and the mercury reservoir (1) is provided at the bottom of the reaction vessel (1) or at the bottom.
2), and a lid (1
3. A vapor phase growth apparatus having a structure in which 3) is arranged and a carrier gas flowing out from a carrier gas supply pipe (14) is blown onto the surface of the raw material liquid (11).
【請求項5】 請求項1記載の基板加熱台(3) と反応容
器(1) の内壁の間の排気用空間部の断面積を、基板加熱
台(3) の面積の1/5 以下に保ち、上記反応容器(1) 内に
導入する原料ガスの流量を1リットル/分以下に保つこ
とを特徴とする気相成長方法。
5. The cross-sectional area of the exhaust space between the substrate heating table (3) according to claim 1 and the inner wall of the reaction vessel (1) is set to 1/5 or less of the area of the substrate heating table (3). A vapor phase growth method characterized in that the flow rate of the raw material gas introduced into the reaction vessel (1) is maintained at 1 liter / min or less.
JP21988092A 1992-08-19 1992-08-19 Vapor growth device and vapor growth method Withdrawn JPH07193003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21988092A JPH07193003A (en) 1992-08-19 1992-08-19 Vapor growth device and vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21988092A JPH07193003A (en) 1992-08-19 1992-08-19 Vapor growth device and vapor growth method

Publications (1)

Publication Number Publication Date
JPH07193003A true JPH07193003A (en) 1995-07-28

Family

ID=16742506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21988092A Withdrawn JPH07193003A (en) 1992-08-19 1992-08-19 Vapor growth device and vapor growth method

Country Status (1)

Country Link
JP (1) JPH07193003A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028056A (en) * 2008-07-24 2010-02-04 Nuflare Technology Inc Film deposition apparatus, and film deposition method
JP2010283345A (en) * 2009-05-27 2010-12-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Chamber, apparatus and process for annealing group ii-vi semiconductor material
WO2020004249A1 (en) * 2018-06-26 2020-01-02 株式会社Flosfia Film-forming method and crystalline layered structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028056A (en) * 2008-07-24 2010-02-04 Nuflare Technology Inc Film deposition apparatus, and film deposition method
US8632634B2 (en) 2008-07-24 2014-01-21 Nuflare Technology, Inc. Coating apparatus and coating method
JP2010283345A (en) * 2009-05-27 2010-12-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Chamber, apparatus and process for annealing group ii-vi semiconductor material
WO2020004249A1 (en) * 2018-06-26 2020-01-02 株式会社Flosfia Film-forming method and crystalline layered structure
US11488821B2 (en) 2018-06-26 2022-11-01 Flosfia Inc. Film forming method and crystalline multilayer structure

Similar Documents

Publication Publication Date Title
KR100780143B1 (en) Device and method for depositing one or more layers onto a substrate
JP2722833B2 (en) Vapor phase epitaxial growth apparatus and vapor phase epitaxial growth method
EP0835336B1 (en) A device and a method for epitaxially growing objects by cvd
US5447568A (en) Chemical vapor deposition method and apparatus making use of liquid starting material
CN100414004C (en) Device and method for producing single crystals by vapor deposition
TWI791100B (en) MOCVD reactor
US4033286A (en) Chemical vapor deposition reactor
EP0200766B1 (en) Method of growing crystalline layers by vapour phase epitaxy
US3701682A (en) Thin film deposition system
JP2011012331A (en) Vapor deposition apparatus and vapor deposition method
US6004885A (en) Thin film formation on semiconductor wafer
US6932866B2 (en) Method for depositing in particular crystalline layers
JPH07193003A (en) Vapor growth device and vapor growth method
JP2001181097A (en) Vapor growth apparatus of nitride
JP2007109685A (en) Apparatus and method for manufacturing compound semiconductor
JP2000100726A (en) Vapor growth equipment
JPS6251919B2 (en)
JP2733535B2 (en) Semiconductor thin film vapor deposition equipment
KR101443665B1 (en) Density-matching alkyl push flow for vertical flow rotating disk reactors
JPH0547669A (en) Vapor growth apparatus
JP3168277B2 (en) Semiconductor crystal growth equipment
JPS62154617A (en) Vapor growth apparatus
JPH04337627A (en) Vapor growth device
JPH09260291A (en) Vapor growth equipment and method therefor
JPH0967192A (en) Vapor growth device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102