JPS62154617A - Vapor growth apparatus - Google Patents

Vapor growth apparatus

Info

Publication number
JPS62154617A
JPS62154617A JP29379485A JP29379485A JPS62154617A JP S62154617 A JPS62154617 A JP S62154617A JP 29379485 A JP29379485 A JP 29379485A JP 29379485 A JP29379485 A JP 29379485A JP S62154617 A JPS62154617 A JP S62154617A
Authority
JP
Japan
Prior art keywords
gas
reaction
reaction chamber
susceptor
supply port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29379485A
Other languages
Japanese (ja)
Inventor
Kazuhiro Karatsu
唐津 和裕
Mikio Takebayashi
幹男 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29379485A priority Critical patent/JPS62154617A/en
Publication of JPS62154617A publication Critical patent/JPS62154617A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a thin film having uniform thickness on a semiconductor wafer and to reduce the adherence of reactive substance to a wall by injecting second reaction gas which does not form a solid phase by a thermal decomposition together with inert gas through a partition plate above a susceptor. CONSTITUTION:A semiconductor wafer 22 is placed on a susceptor 23, monosilane gas and helium gas as carrier gas are mixed and supplied through a first gas supply port 20 while heating by an infrared ray lamp 30, and oxygen gas and inert gas are fed from a second gas supply port 28. A partition plate 25 disturbs the adherence of reactive substance on the inner wall of a monosilane reaction chamber to form a solid phase by inert gas injected from many flowing holes and thermal decomposition by oxygen gas which does not form a solid phase by thermal decomposition or the reaction with the oxygen gas. Since the oxygen gas is injected from the many holes of the plate 25 on the susceptor 23, the oxygen gas can be supplied uniformly on the wafer 22. Thus, a thin film having uniform thickness with less irregularity of the thickness of the vapor-phase grown film is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体工業で広く利用される気相成長装置、
特にシリコン酸化膜、シリコン窒化膜等のように2種以
上の反応ガスにより気相成長膜を形成する気相成長装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a vapor phase growth apparatus widely used in the semiconductor industry;
In particular, the present invention relates to a vapor phase growth apparatus for forming vapor phase growth films such as silicon oxide films, silicon nitride films, etc. using two or more types of reactive gases.

従来の技術 通常、半導体製造工程では、シリコン酸化膜。Conventional technology Typically, silicon oxide film is used in the semiconductor manufacturing process.

多結晶シリコン膜、シリコン窒化膜等の薄膜形成を気相
成長装置、特に減圧式の気相成長装置で行なっている。
Thin films such as polycrystalline silicon films and silicon nitride films are formed using a vapor phase growth apparatus, particularly a reduced pressure type vapor phase growth apparatus.

元来、減圧式気相成長装置は大量処理、膜厚の均一化を
図るため、チューブ型反応室内に半導体ウェハを直立さ
せて多数並べ、ガス流れが拡散流となる圧力領域で薄膜
形成を行なっていた。しかし、処理する半導体ウェハが
大口径化するにつれ、膜厚のばらつきが大きくなり、特
に成長温度の低いシリコン酸化膜では顕著であった。ま
た、反応室内壁にも同様に薄膜が堆積するが、装置が大
型であり、そのメンテナンスが大変であった。
Originally, in order to achieve high-volume processing and uniform film thickness, reduced-pressure vapor phase growth equipment was used to arrange a large number of semiconductor wafers upright in a tube-shaped reaction chamber and form thin films in a pressure region where the gas flow was a diffusion flow. was. However, as the diameter of semiconductor wafers to be processed becomes larger, the variation in film thickness becomes larger, and this is particularly noticeable in silicon oxide films whose growth temperature is low. Furthermore, a thin film is similarly deposited on the walls of the reaction chamber, but the apparatus is large and its maintenance is difficult.

そこで近年、上記の欠点を解消する目的で第5図に示す
ような枚葉処理方式の減圧式気相成長装置が考案された
乙のような装置では従来の装置と処理能力を対等にする
ため、反応圧力を粘性流の領域まで増大させ、薄膜を高
速成長させている。
Therefore, in recent years, in order to eliminate the above drawbacks, a single-wafer processing type reduced pressure vapor phase growth apparatus as shown in Figure 5 has been devised. , the reaction pressure is increased to the region of viscous flow, and thin films are grown at high speed.

第6図において、反応室Aは、石英ベルジャ1とベース
板2によって、完全に外気と遮断できるようになってお
り、ベース板2には一端側にガス供給ノズル3が接続さ
れ、他端側にガス排出口4が設けている。このガス供給
ノズル3には、例えばシリコン酸化膜を形成する場合、
モノシランガス供給ユニット5と酸素ガス供給ユニット
6と、キャリアガスとしてヘリウムガス供給ユニット7
がそれぞれ別個のパルプ8を介して結合されている。ま
たベース板2上には、半導体ウェハ9を載置するサセプ
タ10が設置されている。また石英ベルジヤ1の外側に
は、半導体ウェハ9を加熱するための赤外線ランプ11
と、赤外線ランプ11からの照射光が効率よく半導体ウ
ェハ9に照射するように赤外線ランプ11の背後に反射
鏡12が取り付けられている。
In FIG. 6, reaction chamber A can be completely isolated from the outside air by a quartz belljar 1 and a base plate 2. A gas supply nozzle 3 is connected to one end of the base plate 2, and a gas supply nozzle 3 is connected to the other end of the base plate 2. A gas exhaust port 4 is provided at the. For example, when forming a silicon oxide film on this gas supply nozzle 3,
A monosilane gas supply unit 5, an oxygen gas supply unit 6, and a helium gas supply unit 7 as a carrier gas.
are connected via separate pulps 8. Furthermore, a susceptor 10 on which a semiconductor wafer 9 is placed is installed on the base plate 2 . Further, on the outside of the quartz bell gear 1, an infrared lamp 11 for heating the semiconductor wafer 9 is provided.
A reflecting mirror 12 is attached behind the infrared lamp 11 so that the semiconductor wafer 9 is efficiently irradiated with light from the infrared lamp 11.

発明が解決しようとする問題点 しかしながら上記のように構成された従来の気相成長装
置で、モノシランガス70 SCCM 、 酸素400
 SCCM 、 ヘリウム6SLM反応温度450℃、
圧力eT’orrの通常条件下でシリコン酸化膜の成長
を行なった結果、第6図に示すようにガス流れ方向にそ
って非常に大きな膜厚のばらつきがみられ、下流はど膜
厚が薄くなる傾向があった。
Problems to be Solved by the Invention However, in the conventional vapor phase growth apparatus configured as described above, monosilane gas 70 SCCM and oxygen 400 SCCM
SCCM, helium 6SLM reaction temperature 450℃,
As a result of growing a silicon oxide film under normal conditions of pressure eT'orr, as shown in Figure 6, there was a very large variation in film thickness along the gas flow direction, and the film thickness was thinner downstream. There was a tendency to

この膜厚分布の傾向は成長条件を変えてもほとんど向上
させることはできなかった。さらに、石英ベルジャ1に
も反応物質が付着しておりこれは落下片となり、半導体
ウェハ9に付着するいわゆるフレークの原因となる。
This tendency of film thickness distribution could hardly be improved even if the growth conditions were changed. Furthermore, the quartz belljar 1 also has a reactive substance attached thereto, which becomes a falling piece and becomes a cause of so-called flakes attached to the semiconductor wafer 9.

本発明は上記欠点に鑑み、均一性良好な薄膜をフレーク
の発生の少ない状態で形成するための気相成長装置を提
供するものである。
In view of the above-mentioned drawbacks, the present invention provides a vapor phase growth apparatus for forming a thin film with good uniformity with less generation of flakes.

問題点を解決するための手段 本発明は上記問題点を解決するために、一端側にガス供
給口を、他端側にガス排出口を有した反応室と、該反応
室の上部に設けられた赤外線透過部と、前記反応室の内
部に設けられて半導体クエハを支持するサセプタと、前
記赤外線透過部上方に設けられた赤外線ランプとを備え
た気相成長装置において、反応室に前記ガス供給口およ
びガス排出口とサセプタとを有する下部室と、その上の
上部室とに仕切る赤外線透過性仕切部材を設けると共に
それKよる仕切部に適数の流通口を形成し、反応室の下
部室側ガス供給口を熱分解により固相と を形成する第1の反応ガスキャリアガスとの供給口とし
、反応室の上部室に第1の反応ガスとの反応により固相
を形成し、かつそれ自身は熱分解により固相を形成しな
いか、あるいは熱分解しにくい第2の反応ガスと不活性
ガスとの供給口を形成したことを特徴とする。
Means for Solving the Problems In order to solve the above problems, the present invention provides a reaction chamber having a gas supply port on one end side and a gas discharge port on the other end side, and a reaction chamber provided in the upper part of the reaction chamber. In a vapor phase growth apparatus comprising: an infrared transmitting section, a susceptor provided inside the reaction chamber to support a semiconductor wafer, and an infrared lamp provided above the infrared transmitting section, the gas is supplied to the reaction chamber. An infrared-transmissive partition member is provided to partition the lower chamber having an opening, a gas discharge port, and a susceptor into an upper chamber above the lower chamber, and an appropriate number of communication ports are formed in the partition section by the partition member K, and the lower chamber of the reaction chamber is separated from the upper chamber above the lower chamber. The side gas supply port is used as a supply port for a first reaction gas carrier gas which forms a solid phase by thermal decomposition, and a solid phase is formed by reaction with the first reaction gas in the upper chamber of the reaction chamber, and It is characterized by forming a supply port for a second reaction gas that does not form a solid phase by thermal decomposition or is difficult to thermally decompose, and an inert gas.

作  用 本発明は上記した構成であって、赤外線ランプからの照
射光は、反応室天板の赤外線透過部および赤外線透過性
仕切板を通じて下部室のサセプタおよびその上に置かれ
る半導体ウエノ・上に達し、それらを照射し加熱するか
ら、下部室に直接あるいは上部室を経て供給される第1
′、・第2各反応ガスによって、半導体ウェハ上に所定
の薄膜を形成させることができる。殊に不活性ガスおよ
び熱分解によりそれ自体で固相を形成しないか、熱分解
し難い第2の反応ガスが、上部室から前記薄膜が形成さ
れる下部室へ下向きに噴出することによって反応室壁面
、特に温度が高く反応物質が付着しやすい赤外線ランプ
側となる。底部を除いた部分の壁面への付着を防止でき
、また、第2の反応ガスがサセプタ上に載置した半導体
ウエノ・表面全域に上方から均一な状態で供給されるた
め、薄膜を均一な膜厚で形成させることができる。
Function The present invention has the above-described configuration, and the irradiated light from the infrared lamp is transmitted through the infrared transmitting part of the reaction chamber top plate and the infrared transmitting partition plate to the susceptor in the lower chamber and the semiconductor substrate placed thereon. irradiates and heats them, so that the first
', - A predetermined thin film can be formed on the semiconductor wafer by each of the second reaction gases. In particular, an inert gas and a second reaction gas which does not form a solid phase by itself by thermal decomposition or which is difficult to thermally decompose are jetted downward from the upper chamber into the lower chamber in which the thin film is formed, thereby forming a reaction chamber. The wall surface, especially the infrared lamp side, where the temperature is high and reactants tend to adhere. It is possible to prevent adhesion to the wall surface of the parts other than the bottom, and since the second reaction gas is uniformly supplied from above to the entire surface of the semiconductor wafer placed on the susceptor, it is possible to form a thin film into a uniform film. It can be formed thick.

実施例 以下に本発明の実施例を添付図面を参照して説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の一実施例の気相成長装置の断面図であ
り、反応室13は、内部に水冷溝14が施されたステン
レス鋼より成る壁面部材15と、上部に設けた透明石英
からなるトッププレート16から構成されている。この
トッププレート16は、Oリング等の既知のガスシール
手段を介して、上記壁面部材15に固定されている。反
応室13の一端には、モノシランガス等の第1の反応ガ
スのガス供給ユニ、ト1了と、ヘリウム等のキャリアガ
スのガス供給ユニット18がバルブ191.19□ を
介して接続した第1のガス併給口20が設けられ、他端
には図示しないロータ+J−ポンプなどの真空排気装置
と連結したガス排出口21が設けられている。また、前
記反応室13の内部下方には、半導体ウエノ・22を載
置するSiCでコーチ、インクされたグラファイトより
なるサセフリ23が設置されている。壁面部材15の上
部には段差部24が設けてあり、サセプタ23と、トッ
ププレート160間に位置するように透明石英からなる
複数個のガス流通口25aを有した仕切板25が前記の
段差部24に支持され、反応室13をガス供給口20.
ガス排出口21.ブナブタ23を有する下部室13aと
その土の上部室13bとに仕切っている。壁面部材15
の上部室13bを形成しているガス供給口20形成側に
は酸素等の第2の反応ガスのガスi4−給ユニット26
と♀素等の不活性ガスのガス供給ユニ、)27がバルブ
195,194を通して接続した第2のガス供給口28
が設けられている。反応室13の外部上方には、トップ
プレート16をはさんでサセプタ23に対面する位置に
加熱ブロック29が設置されている。この加熱ブロック
29は、棒状の赤外線ランプ3Qが等間隔で複数本(6
本)配置され、それらの背部には反射鏡31が配置され
た構成になっている。
FIG. 1 is a cross-sectional view of a vapor phase growth apparatus according to an embodiment of the present invention, in which a reaction chamber 13 has a wall member 15 made of stainless steel with water cooling grooves 14 provided inside, and a transparent quartz crystal wall member 15 provided in the upper part. It is composed of a top plate 16 consisting of. This top plate 16 is fixed to the wall member 15 via a known gas sealing means such as an O-ring. At one end of the reaction chamber 13, a gas supply unit for a first reaction gas such as monosilane gas and a gas supply unit 18 for a carrier gas such as helium are connected via a valve 191.19□. A gas co-supply port 20 is provided, and the other end is provided with a gas discharge port 21 connected to a vacuum evacuation device such as a rotor+J-pump (not shown). Further, in the lower part of the interior of the reaction chamber 13, a sass holder 23 made of graphite coated with SiC and inked is installed on which a semiconductor wafer 22 is placed. A step portion 24 is provided at the upper part of the wall member 15, and a partition plate 25 having a plurality of gas flow ports 25a made of transparent quartz is located between the susceptor 23 and the top plate 160. 24, the reaction chamber 13 is connected to a gas supply port 20.
Gas outlet 21. It is partitioned into a lower chamber 13a containing the bunabuta 23 and an upper chamber 13b made of soil. Wall member 15
A gas i4-supply unit 26 for a second reaction gas such as oxygen is provided on the side where the gas supply port 20 forming the upper chamber 13b is formed.
A second gas supply port 28 to which a gas supply unit (27) for inert gas such as
is provided. A heating block 29 is installed outside and above the reaction chamber 13 at a position facing the susceptor 23 with the top plate 16 in between. This heating block 29 includes a plurality of rod-shaped infrared lamps 3Q (6
books) are arranged, and a reflecting mirror 31 is arranged on the back of the books.

上記構成による気、相成長装置において、その動作をシ
リコン酸化膜の成長を例にとり説明すると、サセプタ2
3上に半導体ウエノX22を載置し、これを赤外線ラン
プ30により加熱し5ながら、第1のガス供給口2oを
通してモノシランガスとキャリアガスとしてヘリウムガ
スを混合して供給し、第2のガス供給口28より酸素ガ
スと不活性ガス(例えば窒素)を流す。このとき、壁面
部材15に伝導される熱は水冷溝14を循環する冷却水
によって吸収されるために反応室のトッププレート16
以外の壁面の蓄熱を防止されている。また仕切板2Sは
多数の流通孔より噴き出される不活性ガスおよび熱分解
により固相を形成しない酸素ガスにより熱分解あるいは
酸素ガスとの反応により固相を形成しつるモノシランガ
スが仕切板25に接触するのを妨げるために反応室内壁
−の反応物質の付着を妨げる吉ともに、酸素ガスをサセ
プタ23」二の仕切板2Sの多数の流通孔より噴出させ
るため、半導体ウェハ22表面に均一に酸素ガスを供給
でき、気相成長膜の厚さのばらつきの少ない膜厚の均一
性のよい薄膜が得られる。
The operation of the vapor phase growth apparatus having the above configuration will be explained by taking the growth of a silicon oxide film as an example.
A semiconductor Ueno X22 is placed on top of the semiconductor Ueno Oxygen gas and an inert gas (for example, nitrogen) are flowed through 28. At this time, the heat conducted to the wall member 15 is absorbed by the cooling water circulating in the water cooling groove 14, so the top plate 16 of the reaction chamber
Heat accumulation on other walls is prevented. In addition, the partition plate 2S contacts the partition plate 25 with monosilane gas which forms a solid phase through thermal decomposition or reaction with oxygen gas due to inert gas and oxygen gas which do not form a solid phase due to thermal decomposition and inert gas spouted from a large number of flow holes. In order to prevent the adhesion of reactants to the inner wall of the reaction chamber, the oxygen gas is uniformly distributed over the surface of the semiconductor wafer 22 in order to eject the oxygen gas from the numerous flow holes of the partition plate 2S of the susceptor 23'. can be supplied, and a thin film with good uniformity of film thickness with little variation in the thickness of the vapor phase grown film can be obtained.

上記の装置においてモノシランガス了osccM。In the above apparatus, monosilane gas was used.

ヘリウムガスsSLM を第1のガス供給口より流し、
第2のガス供給口より酸素ガス400 SCCM。
Flowing helium gas sSLM from the first gas supply port,
400 SCCM of oxygen gas from the second gas supply port.

窒素3SLMを供給し、反応稠度450℃、圧力6To
rrでシリコン酸化膜の成長を試みだところその膜厚は
第2図に示すごとく、ガスの流れ方向にもほとんど変化
がなく、従来の装置に比べ、飛躍的に薄膜の均一性が向
上し、壁面部材15および仕切板26への反応物質の付
着もほとんど起こらなかった。
Supply nitrogen 3SLM, reaction consistency 450°C, pressure 6To
When we attempted to grow a silicon oxide film using rr, the film thickness showed almost no change in the direction of gas flow, as shown in Figure 2, and the uniformity of the thin film was dramatically improved compared to conventional equipment. There was also almost no adhesion of the reactant to the wall member 15 and the partition plate 26.

第3図は本発明における仕切部材を変えた状態の他の実
施例で、サセプタ23とトップブl/−)16の間に透
明石英の丸い仕切棒32をガス流通口としての隙間32
aをあけて配置し、その隙間32aを通して不活性ガス
よ、−よび第2の反応ガスを噴出させる構成にしたもの
である。この場合、半導体ウニ/S22に気相成長した
薄膜の膜厚分布により各仕切棒32の隙間の間隔を調整
i〜、噴出する第2の反応ガスおよび不活性ガスの供給
骨を変化させ膜厚の均一性を更に向上させることが可能
である。
FIG. 3 shows another embodiment of the present invention in which the partition member is changed, and a round partition rod 32 made of transparent quartz is used as a gas flow port between the susceptor 23 and the top block 1/-) 16.
32a, and the inert gas and the second reaction gas are ejected through the gap 32a. In this case, the interval between the gaps between the partition rods 32 is adjusted according to the film thickness distribution of the thin film grown in the vapor phase on the semiconductor sea urchin/S22. It is possible to further improve the uniformity of

また、仕切部材としては、第4図に示しているような透
明石英の水平板33−1 、33−2.33−3゜33
−4を互:建に狭い隙間を有1〜でそれぞれ平行に配置
した多層プレート33であってもよい。
Further, as partition members, transparent quartz horizontal plates 33-1, 33-2, 33-3°33 as shown in FIG.
It may be a multilayer plate 33 in which 1 to 4 are arranged in parallel with each other with a narrow gap between them.

また、本発明では、キャリアガスとしてヘリウムガスを
用い、不活性ガスとして窒素ガスを使用したが、この組
み合せに限定されることなく、反応に関与しない安定な
ガスであれば使用可能である。
Further, in the present invention, helium gas was used as the carrier gas and nitrogen gas was used as the inert gas, but the combination is not limited to this, and any stable gas that does not participate in the reaction can be used.

発明の効果 本発明によれば熱分解によシ固相を形成しない第2の反
応ガスを不活性ガスとともに、サセプタ上方より仕切板
を通して噴出させることによって、半導体ウェハ表面に
膜厚が均一な薄膜を形成するとともに、壁面への反応物
質の付着を低減でき、その実用的効果は大きい。
Effects of the Invention According to the present invention, a thin film having a uniform thickness can be formed on the surface of a semiconductor wafer by jetting a second reaction gas that does not form a solid phase through thermal decomposition together with an inert gas from above a susceptor through a partition plate. In addition to forming a wall, it is possible to reduce the adhesion of reactants to the wall surface, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の気相成長装置の断面図、第
2図は本発明の気相成長装置でシリコン酸化膜を形成し
たときの半導体ウニ・・の膜厚分布グラフ、第3図は本
発明の他の実施例の気相成長装置の断面図、第4図は本
発明の一実施例の気相成長装置に用いた他の仕切板部材
による仕切状態の概略図、第5図は従来の気相成長装置
の断面図、第6図は従来の気相成長装置でシリコン酸化
膜を形成したときの半導体ウェハの膜厚分布グラフであ
る。 13・・・・・・反応室、20・・・・・・第1のガス
供給口、22・・・・・・半導体ウェハ、23・・・・
・・サセプタ、25・・・・・・仕切板、28・・・・
・・第2のガス供給口、3Q・・。 ・・・赤外線ランプ、32・・・・・・仕切棒、33・
・・・・・多層プレート。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図      73−双tc、’!20−−− $4s
り・ズラ夫壕古−ロ2’−−−4蝉1本ウェ八 23−4で7°グ 第2図 第3図
FIG. 1 is a cross-sectional view of a vapor phase growth apparatus according to an embodiment of the present invention, FIG. FIG. 3 is a sectional view of a vapor phase growth apparatus according to another embodiment of the present invention, FIG. FIG. 5 is a sectional view of a conventional vapor phase growth apparatus, and FIG. 6 is a film thickness distribution graph of a semiconductor wafer when a silicon oxide film is formed using the conventional vapor phase growth apparatus. 13... Reaction chamber, 20... First gas supply port, 22... Semiconductor wafer, 23...
...Susceptor, 25...Partition plate, 28...
...Second gas supply port, 3Q... ...Infrared lamp, 32...Partition rod, 33.
...Multilayer plate. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 73 - Double tc,'! 20--- $4s
ri・zurao trench old-ro 2'---4 cicada 1 piece we 8 23-4 7°g Fig. 2 Fig. 3

Claims (2)

【特許請求の範囲】[Claims] (1)一端側にガス供給口を、他端側にガス排出口を有
した反応室と、該反応室の上部に設けられた赤外線透過
部と、前記反応室の内部に設けられて半導体ウェハを支
持するサセプタと、前記赤外線透過部上方に設けられた
赤外線ランプとを備えた気相成長装置において、反応室
に、前記ガス供給口およびガス排出口とサセプタとを有
する下部室と、その上の上部室とに仕切る赤外線透過性
仕切部材を設けると共にそれによる仕切部に適数の流通
口を形成し、反応室の下部室側ガス供給口を熱分解によ
り固相を形成する第1の反応ガスとキャリアガスとの供
給口とし、反応室の上部室に第1の反応ガスとの反応に
より固相を形成し、かつそれ自身は熱分解により固相を
形成しないか、あるいは熱分解しにくい第2の反応ガス
と不活性ガスとの供給口を形成したことを特徴とする気
相成長装置。
(1) A reaction chamber having a gas supply port at one end and a gas discharge port at the other end, an infrared transmitting section provided in the upper part of the reaction chamber, and a semiconductor wafer provided inside the reaction chamber. In the vapor phase growth apparatus, the reaction chamber includes a susceptor that supports the susceptor, and an infrared lamp provided above the infrared transmitting section, in which the reaction chamber includes a lower chamber having the gas supply port, the gas discharge port, and the susceptor; A first reaction in which an infrared-transparent partition member is provided to partition the reaction chamber into an upper chamber, an appropriate number of communication ports are formed in the partition, and a gas supply port on the lower chamber side of the reaction chamber is thermally decomposed to form a solid phase. Serves as a gas and carrier gas supply port, forms a solid phase in the upper chamber of the reaction chamber by reaction with the first reaction gas, and does not itself form a solid phase by thermal decomposition or is difficult to thermally decompose. A vapor phase growth apparatus characterized in that a supply port for a second reaction gas and an inert gas is formed.
(2)第1の反応ガスがモノシランガスであり、キャリ
アガスがヘリウムであり、第2の反応ガスが酸素であり
、不活性ガスが窒素である特許請求の範囲第1項記載の
気相成長装置。
(2) The vapor phase growth apparatus according to claim 1, wherein the first reactive gas is monosilane gas, the carrier gas is helium, the second reactive gas is oxygen, and the inert gas is nitrogen. .
JP29379485A 1985-12-26 1985-12-26 Vapor growth apparatus Pending JPS62154617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29379485A JPS62154617A (en) 1985-12-26 1985-12-26 Vapor growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29379485A JPS62154617A (en) 1985-12-26 1985-12-26 Vapor growth apparatus

Publications (1)

Publication Number Publication Date
JPS62154617A true JPS62154617A (en) 1987-07-09

Family

ID=17799245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29379485A Pending JPS62154617A (en) 1985-12-26 1985-12-26 Vapor growth apparatus

Country Status (1)

Country Link
JP (1) JPS62154617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188058A (en) * 1991-06-20 1993-02-23 Fujitsu Limited Uniform gas flow CVD apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188058A (en) * 1991-06-20 1993-02-23 Fujitsu Limited Uniform gas flow CVD apparatus

Similar Documents

Publication Publication Date Title
JP3442536B2 (en) Improvements on chemical vapor deposition
EP0502209B1 (en) Method and apparatus for growing compound semiconductor crystals
US4800105A (en) Method of forming a thin film by chemical vapor deposition
TW544775B (en) Chemical vapor deposition apparatus and chemical vapor deposition method
EP0252667B1 (en) Chemical vapour deposition methods
US7479303B2 (en) Method for chemical vapor deposition (CVD) with showerhead and method thereof
JP3581388B2 (en) Deposited polysilicon film with improved uniformity and apparatus therefor
EP0167703A2 (en) A method of homogeneous chemical vapour deposition
US6262393B1 (en) Epitaxial growth furnace
KR950000511B1 (en) Semiconductor manufacturing apparatus
US5275686A (en) Radial epitaxial reactor for multiple wafer growth
US3304908A (en) Epitaxial reactor including mask-work support
JPS62154617A (en) Vapor growth apparatus
JPH0766139A (en) Chemical vapor deposition system
JP2943407B2 (en) Continuous transportation treatment device of high-temperature melt and its method
JP4910105B2 (en) Vapor thin film growth apparatus and vapor thin film growth method
JPS61289623A (en) Vapor-phase reaction device
JP2012084581A (en) Vapor phase epitaxial growth device
JP2006344615A (en) Compound semiconductor manufacturing apparatus and method thereof
JP3045854B2 (en) Semiconductor manufacturing apparatus and method of using the same
JPH07193003A (en) Vapor growth device and vapor growth method
JP2642829B2 (en) Semiconductor manufacturing equipment
JPH05251360A (en) Film-forming device
JP3010739B2 (en) Method and apparatus for growing compound semiconductor crystal
JPS61248519A (en) Chemical vapor deposition apparatus