JPS592374B2 - Plasma vapor phase growth equipment - Google Patents

Plasma vapor phase growth equipment

Info

Publication number
JPS592374B2
JPS592374B2 JP1025379A JP1025379A JPS592374B2 JP S592374 B2 JPS592374 B2 JP S592374B2 JP 1025379 A JP1025379 A JP 1025379A JP 1025379 A JP1025379 A JP 1025379A JP S592374 B2 JPS592374 B2 JP S592374B2
Authority
JP
Japan
Prior art keywords
chamber
vapor phase
phase growth
plasma
frequency electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1025379A
Other languages
Japanese (ja)
Other versions
JPS55102239A (en
Inventor
森雄 井上
唯夫 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP1025379A priority Critical patent/JPS592374B2/en
Publication of JPS55102239A publication Critical patent/JPS55102239A/en
Publication of JPS592374B2 publication Critical patent/JPS592374B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 本発明はプラズマ気相成長装置に関し、平行平板構造を
有する2つの電極の間にプラズマを発生させ、このプラ
ズマの存在下で反応ガスの化学反応を引き起し、基板上
に所定の被膜を気相成長させるにあたり、電極の周端部
に生じるプラズマ分布の乱れによつて未反応のガスや反
応の副産物が、チャンバーの内壁等の不要部分に付着す
ることを防止したプラズマ気相成長装置を提供すること
を目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma vapor phase growth apparatus that generates plasma between two electrodes having a parallel plate structure, causes a chemical reaction of a reactive gas in the presence of this plasma, and During the vapor phase growth of a specified film on the electrode, the disturbance in the plasma distribution that occurs at the peripheral edge of the electrode prevents unreacted gas and reaction byproducts from adhering to unnecessary parts such as the inner wall of the chamber. The purpose of the present invention is to provide a plasma vapor phase growth apparatus.

平行平板構造のプラズマ気相成長装置は一般に、減圧状
態のチャンバー内で上下に対向して配置されてι゛る。
A plasma vapor phase growth apparatus having a parallel plate structure is generally arranged vertically facing each other in a reduced pressure chamber.

反応ガス供給管に繋り下面に多数の細孔を有する中空平
板状の上側高周波電極と、基板を加熱しかつこれを載置
する下側高周波電極とを減圧状態のチャンバー内に上下
に対向して配置した構造を具備しており、この装置では
、上下の電極間に高周波電圧を印加することにより、両
電極間にプラズマを発生させ、このプラズマの存在下で
反応ガスの化学反応を引き起すことによつて基板上に気
相成長膜が形成される。第1図は、例えばシランSiH
4、アンモニアNH3を用いて、窒化シリコン膜Si3
N4を形成する為の従来の気相プラズマ成長装置を示す
図であり、アルミニウム製のチャンバーベース1に、0
−リング2を介して設置されたチャンバー3の内部に、
反応ガス供給管4に接続しかつ中空で底部5aに多数の
細孔5bを有する平板状の上側高周波電極5が配置され
、この上側高周波電極5の下部にチャンバーベース1と
電気的に接続し、下側高周波電極を兼ねる基板加熱用の
加熱ヒータブロック6が対向配置されている。
An upper high-frequency electrode in the form of a hollow flat plate connected to a reaction gas supply pipe and having numerous pores on the lower surface, and a lower high-frequency electrode on which a substrate is heated and placed are placed vertically in a chamber under reduced pressure, facing each other. In this device, by applying a high frequency voltage between the upper and lower electrodes, plasma is generated between the two electrodes, and in the presence of this plasma, a chemical reaction of the reactant gas is caused. A vapor phase growth film is thereby formed on the substrate. FIG. 1 shows, for example, silane SiH
4. Silicon nitride film Si3 using ammonia NH3
It is a diagram showing a conventional vapor phase plasma growth apparatus for forming N4.
- inside the chamber 3 installed via the ring 2;
A planar upper high frequency electrode 5 connected to the reaction gas supply pipe 4 and hollow and having a large number of pores 5b in the bottom 5a is disposed, and the lower part of the upper high frequency electrode 5 is electrically connected to the chamber base 1, A heater block 6 for heating the substrate, which also serves as a lower high-frequency electrode, is arranged to face the substrate.

なお、Tは窒化シリコン膜の形成される半導体基板であ
り、前記加熱ヒータブロック6上に設置されたサセプタ
8上に載置される。また、加熱ヒータブロック6は導電
性の支柱11によつてチャンバーベースに固定され、電
気的にはチャンバーベースと同電位とされ、その温度調
節は熱電対9の検出信号にもとづいてチューブヒータ1
0の入力電圧を制御することによつてなされている。ま
た、12は排気口、13はチャンバー内の反応圧を測定
するための真空計であり、さらに14は試料(気相成長
ずみ基板)とり出し用のドアである。かかる装置では以
下のようにして窒化シリコン膜の気相成長がなされる。
すなわち、上側高周波電極と加熱ヒータブロック間に、
高周波電圧(13.56MH2)を印加しつつ反応ガス
であるSiH4、NH3とキャリヤとしての窒素N2も
しくはアルゴンArとの混合ガスを導入すると上側高周
波電極5内で均一に混合されたガスが細孔5bから噴出
する。ところで上記の高周波電圧の印加により上下の高
周波電極間には、プラズマが発生し、このプラズマの存
在下で反応ガス間に次の反応式で示されるような化学反
応が生じ、半導体基板上に窒化シリコンSi3N4膜が
形成される。3SiH4+4NH3→Si3N4+12
H2なお、プラズマの分布は上側高周波電極5と下側高
周波電極である加熱ヒータプロツタ6で囲まれた大半の
領域では比較的均一であり、このため大半の反応ガスは
上記の化学反応によりSi3N4となつて、半導体基板
上に析出し、副産物は排気孔12から排気されるが、電
極周縁の領域では、プラズマの分布の乱れによつて、前
述の反応が円滑に進まず未反応ガスが残留する上、反応
の副産物も排気口に到達しにくく、これら未反応ガスお
よび反応の副産物がチヤンバ一内の低温部例えば上側高
周波電極5の裏側、チヤンバ一の内壁チャンバーベース
1の内壁あるいは排気口の内壁等に残留物として付着す
る。
Note that T is a semiconductor substrate on which a silicon nitride film is formed, and is placed on a susceptor 8 placed on the heater block 6. Further, the heater block 6 is fixed to the chamber base by a conductive column 11 and is electrically at the same potential as the chamber base, and its temperature is controlled by the tube heater 1 based on the detection signal of the thermocouple 9.
This is done by controlling the input voltage of zero. Further, 12 is an exhaust port, 13 is a vacuum gauge for measuring the reaction pressure inside the chamber, and 14 is a door for taking out a sample (vapor-phase grown substrate). In such an apparatus, a silicon nitride film is grown in a vapor phase as follows.
In other words, between the upper high frequency electrode and the heater block,
When a mixed gas of SiH4, NH3 as a reaction gas and nitrogen N2 or argon Ar as a carrier is introduced while applying a high frequency voltage (13.56 MH2), the gas uniformly mixed in the upper high frequency electrode 5 flows through the pores 5b. erupts from. By the way, plasma is generated between the upper and lower high-frequency electrodes by applying the above-mentioned high-frequency voltage, and in the presence of this plasma, a chemical reaction occurs between the reactant gases as shown in the following reaction formula, and nitriding occurs on the semiconductor substrate. A silicon Si3N4 film is formed. 3SiH4+4NH3→Si3N4+12
Note that the plasma distribution is relatively uniform in most of the area surrounded by the upper high-frequency electrode 5 and the heater plotter 6, which is the lower high-frequency electrode, so that most of the reaction gas is converted to Si3N4 by the above chemical reaction. The by-products are deposited on the semiconductor substrate and are exhausted from the exhaust hole 12, but in the region around the electrode, the above-mentioned reaction does not proceed smoothly due to disturbances in the plasma distribution, and unreacted gas remains. , reaction by-products are also difficult to reach the exhaust port, and these unreacted gases and reaction by-products are transported to low-temperature areas within the chamber, such as the back side of the upper high-frequency electrode 5, the inner wall of the chamber, the inner wall of the chamber base 1, or the inner wall of the exhaust port. It adheres as a residue to the surface.

これらの付着物の一部は、サセプタ上の試料をとり出す
ためにドア14をあけた際にチヤンバ一内へ流入する空
気中の水分によつて加水分解され、白色の酸化物と化す
Some of these deposits are hydrolyzed by the moisture in the air that flows into the chamber when the door 14 is opened to take out the sample on the susceptor, and turn into white oxides.

この酸化物は吸湿性が強いため欠回の気相成長時にチヤ
ンバ一内の排気を困難にし、到達真空度を低下させるこ
と、NH3の異常分解を助長して反応圧の制御を困難に
すること、あるいは半導体基板表面に付着してピンホー
ルの原因となることなどの不都合を招くばかりでなく、
通常気相成長処理の前に行われるフレオンCF4のプラ
ズマエツチによる上側高周波電極ならびにサセプタのク
リーニングの際に、フレオン中のフツ素Fと酸化物の吸
着水分の作用で真空排気用ポンンプのオイルを著るしく
劣化させる原因ともなる。従つて、多数の気相成長にわ
たつてSi3N4膜の膜質を維持するには、上記付着物
の除去を頻繁に行わねばならず、またこの除去作業は簡
便であり、しかも完全でなければならない。しかしなが
ら上側高周波電極の裏側ならびにこれに対向するチヤン
バ一の天面の清掃は、チヤンバ一の取りはずしが容易で
ない上、上側高周波電極5の構造が複雑であるために極
めて困難であり、簡便な除去方法によつてはこれらの部
分に付着した付着物を完全に除去することはほとんど不
可能であつた。このため、従来のプラズマ気相成長装置
においては、付着物によつてもたらされる上記の不都合
が清掃作業の後も依然として残るところとなる。本発明
は、上記の問題点に鑑みてなされたもので、上側高周波
電極の裏面とチヤンバ一の天面とを密接させることによ
り、上側高周波電極の裏面ならびにこれに対向するチヤ
ンバ一の天面への反応副産物や未反応ガスの付着をなく
し、チヤンバ一内の清掃の簡略化ならびに付着物除去の
完全化をはかり、良質な気相成長膜を形成しようとする
ものである。次に、本発明のプラズマ気相成長装置につ
いて第2図を参照しつつ説明する。
This oxide has strong hygroscopicity, which makes it difficult to evacuate the chamber during intermittent vapor phase growth, lowering the ultimate vacuum, and promoting abnormal decomposition of NH3, making it difficult to control the reaction pressure. Otherwise, it not only causes inconveniences such as adhesion to the surface of the semiconductor substrate and causes pinholes, but also
During the cleaning of the upper high frequency electrode and susceptor by plasma etching of Freon CF4, which is normally performed before the vapor phase growth process, the oil in the vacuum pump is significantly removed due to the action of moisture adsorbed by the fluorine F and oxides in Freon. It can also cause severe deterioration. Therefore, in order to maintain the film quality of the Si3N4 film over a number of vapor phase growths, the above-mentioned deposits must be removed frequently, and this removal operation must be simple and complete. However, cleaning the back side of the upper high-frequency electrode and the top surface of the chamber 1 facing it is extremely difficult because it is not easy to remove the chamber 1 and the structure of the upper high-frequency electrode 5 is complicated, and there is no simple removal method. In some cases, it has been almost impossible to completely remove the deposits adhering to these parts. Therefore, in the conventional plasma vapor deposition apparatus, the above-mentioned disadvantages caused by deposits still remain even after cleaning operations. The present invention has been made in view of the above problems, and by bringing the back surface of the upper high frequency electrode and the top surface of the first chamber into close contact with each other, the back surface of the upper high frequency electrode and the top surface of the first chamber opposite thereto can be The aim is to eliminate the adhesion of reaction by-products and unreacted gases, simplify the cleaning inside the chamber, complete the removal of adhering substances, and form a high-quality vapor-phase grown film. Next, the plasma vapor phase growth apparatus of the present invention will be explained with reference to FIG.

本発明のプラズマ気相成長装置の基本的な構造は従来の
装置と同じであるが、図示するように、チヤンバ一を密
封状態にセツトした際にチヤンバ一の天面3aに上側高
周波電極5の裏面が密接するような構造をとり、これに
加えて、上記上側高周波電極5の周囲に、着脱自在の関
係を成立させて石英製の隔離壁15a〜15dを設置し
、この隔離壁15a〜15dによつて上下の両高周波電
極ならびにこれらにより挟まれたプラズマ発生領域の周
囲を一体的に包囲する構造上の配慮も払われている点で
従来の構造と相違している。このような構造を有する本
発明のプラズマ気相成長装置では、上側高周波電極5の
裏面とチ予ンバ一の天面3aが密着しているため、両部
分に反応副産物等が付着することはなく、気相成長処理
の後に行う装置の清浄が簡便でしかも完全なものとなる
The basic structure of the plasma vapor deposition apparatus of the present invention is the same as that of the conventional apparatus, but as shown in the figure, when the chamber is set in a sealed state, an upper high-frequency electrode 5 is placed on the top surface 3a of the chamber. In addition, quartz isolation walls 15a to 15d are installed around the upper high-frequency electrode 5 in a removable relationship, and these isolation walls 15a to 15d This structure differs from the conventional structure in that consideration has been taken in the structure of integrally surrounding both the upper and lower high-frequency electrodes and the plasma generation region sandwiched between them. In the plasma vapor deposition apparatus of the present invention having such a structure, the back surface of the upper high-frequency electrode 5 and the top surface 3a of the chamber 1 are in close contact with each other, so that reaction by-products etc. do not adhere to both parts. The cleaning of the apparatus after the vapor phase growth process is simple and complete.

なお、高周波電極の周囲を包囲する隔離壁15a〜15
dは反応副産物等の排気路を特定してチヤンバ一の側部
内壁への付着を防止しつつ、これを排気ロへ導くべく作
用するものであつて、この隔離壁の付加によりチヤンバ
一側部内壁への反応副産物等の残留物の付着も防止され
、残留物のほとんどは隔離壁に付着する。
Note that isolation walls 15a to 15 surrounding the high frequency electrodes
d functions to specify the exhaust path for reaction by-products, etc., to prevent them from adhering to the inner wall of the side of the chamber, and to guide them to the exhaust hole. Residues such as reaction by-products are also prevented from adhering to the inner wall, and most of the residues adhere to the isolation wall.

したがつて、隔離壁を設けた場合の装置の清掃は、隔離
壁をとりはずし化学処理を施すことによりこれに付着し
ている付着物を除去するのみでよく、これのない場合に
比べてより一層簡略化される〇以上説明したところから
明らかなように、本発明のプラズマ気相成長装置では、
清掃の困難である上側高周波電極の裏側およびチヤンバ
一の天面内壁への反応副産物等の付着がほぼ完全に排除
され、清掃後もこれらの部分へ残留する付着物によつて
もたらされる不都合が排除され、装置そのものの耐久性
の向上清浄等の保守作業の簡略化、さらに形成される気
相成長膜の品質の向上など幾多の効果が奏される。
Therefore, when cleaning the equipment when an isolation wall is installed, it is only necessary to remove the isolation wall and perform chemical treatment to remove the deposits attached to it, which is much easier than when there is no isolation wall. Simplified〇As is clear from the above explanation, in the plasma vapor phase growth apparatus of the present invention,
The adhesion of reaction by-products to the back side of the upper high-frequency electrode and the top inner wall of the chamber, which are difficult to clean, is almost completely eliminated, and the inconvenience caused by adhesion remaining on these parts even after cleaning is eliminated. This has many effects, such as improving the durability of the device itself, simplifying maintenance work such as cleaning, and improving the quality of the vapor-grown film formed.

なお、本発明は、半導体基板上への窒化シリコン膜のプ
ラズマ気相成長を例に説明したが、本発明のプラズマ気
相成長装置は、その適用が上記の被膜に限られるもので
はなく、酸化膜あるいは多結晶シリコン膜等の被膜を形
成する装置として用いて同様の効果が奏される。
Although the present invention has been described using plasma vapor phase growth of a silicon nitride film on a semiconductor substrate as an example, the application of the plasma vapor phase growth apparatus of the present invention is not limited to the above-mentioned films; Similar effects can be obtained when used as an apparatus for forming a film or a coating such as a polycrystalline silicon film.

また、実施例では、周囲に隔離壁を設けたものを示した
が、必ずしも隔離壁は必要でなく、必要ある時のみとり
つければなお効果的である。
Further, in the embodiment, an isolation wall is provided around the periphery, but the isolation wall is not necessarily necessary, and it is still more effective if it is attached only when necessary.

【図面の簡単な説明】 第1図は従来のプラズマ気相成長装置の概略図、第2図
は本発明の一実施例のプラズマ気相成長装置の概略構造
図である。 1・・・・・・チヤンバーベース、2・・・・・・0−
リング、3・・・・・・チヤンバ一、3a・・・・・・
天面、4・・・・・・反応ガス供給管、5・・・・・・
上側電極、6・・・・・・加熱ヒータプロツク、7・・
・・・・半導体基板、8・・・・・・サセプタ、9・・
・・・・熱電対、10・・・・・・チユーブヒータ、1
1・・・・・・支柱、12・・・・・・排気口、13・
・・・・・真空計、14・・・・・・ドア、15a〜1
5d・・・・・・隔壁。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a conventional plasma vapor phase growth apparatus, and FIG. 2 is a schematic structural diagram of a plasma vapor phase growth apparatus according to an embodiment of the present invention. 1...Chamber base, 2...0-
Ring, 3... Chamber one, 3a...
Top surface, 4... Reaction gas supply pipe, 5...
Upper electrode, 6... Heating heater block, 7...
...Semiconductor substrate, 8...Susceptor, 9...
...Thermocouple, 10 ...Tube heater, 1
1... Prop, 12... Exhaust port, 13.
...Vacuum gauge, 14...Door, 15a~1
5d... Bulkhead.

Claims (1)

【特許請求の範囲】[Claims] 1 チャンバー内に、反応ガス供給管に繋り下面に多数
の細孔を有する中空状の上側高周波電極と下側高周波電
極を兼ねる基板加熱台とが上下に対向配置されるととも
に、前記上側高周波電極の裏面全域が、前記チャンバー
の天面に密接していることを特徴とするプラズマ気相成
長装置
1. In a chamber, a hollow upper high-frequency electrode that is connected to a reaction gas supply pipe and has a number of pores on the lower surface and a substrate heating table that also serves as a lower high-frequency electrode are arranged vertically facing each other, and the upper high-frequency electrode A plasma vapor deposition apparatus characterized in that the entire back surface of the chamber is in close contact with the top surface of the chamber.
JP1025379A 1979-01-30 1979-01-30 Plasma vapor phase growth equipment Expired JPS592374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1025379A JPS592374B2 (en) 1979-01-30 1979-01-30 Plasma vapor phase growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1025379A JPS592374B2 (en) 1979-01-30 1979-01-30 Plasma vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPS55102239A JPS55102239A (en) 1980-08-05
JPS592374B2 true JPS592374B2 (en) 1984-01-18

Family

ID=11745145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1025379A Expired JPS592374B2 (en) 1979-01-30 1979-01-30 Plasma vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JPS592374B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133970U (en) * 1988-03-07 1989-09-12

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167630A (en) * 1981-03-13 1982-10-15 Fujitsu Ltd Plasma vapor-phase growing device
JPS59104118A (en) * 1982-12-06 1984-06-15 Agency Of Ind Science & Technol Plasma deposition device
JPS60224216A (en) * 1984-04-20 1985-11-08 Semiconductor Energy Lab Co Ltd Plasma vapor-phase reactor
JPH0732127B2 (en) * 1984-04-20 1995-04-10 株式会社半導体エネルギ−研究所 Plasma gas phase reactor
JPS60179033U (en) * 1984-05-08 1985-11-28 株式会社富士電機総合研究所 discharge electrode
JPH01309975A (en) * 1988-06-08 1989-12-14 Matsushita Electric Ind Co Ltd Plasma cvd device
JPH0245916A (en) * 1988-08-05 1990-02-15 Nec Kyushu Ltd Vapor phase growth device
JP2553256B2 (en) * 1991-02-12 1996-11-13 富士通株式会社 Plasma vapor deposition method
US5556474A (en) * 1993-12-14 1996-09-17 Nissin Electric Co., Ltd. Plasma processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133970U (en) * 1988-03-07 1989-09-12

Also Published As

Publication number Publication date
JPS55102239A (en) 1980-08-05

Similar Documents

Publication Publication Date Title
JP4382750B2 (en) CVD method for forming a silicon nitride film on a substrate to be processed
US5954887A (en) Cleaning processing method of a film forming apparatus
JPS6318079A (en) Method and apparatus for forming thin film
KR970067610A (en) Inductively Coupled Plasma CVD
JPS592374B2 (en) Plasma vapor phase growth equipment
JPH0377655B2 (en)
WO2000054893A1 (en) Method and apparatus for metal oxide chemical vapor deposition on a substrate surface
JPS5846056B2 (en) Plasma vapor phase growth equipment
JPH01188678A (en) Plasma vapor growth apparatus
JPH09306899A (en) Vapor phase reactor
KR100639517B1 (en) Chemical vapor deposition equipment having a diffuser
JP3259453B2 (en) Electrode used for plasma CVD apparatus and plasma CVD apparatus
JPH10223620A (en) Semiconductor manufacturing device
JPH01298169A (en) Film formation
TWI831046B (en) Substrate processing apparatus and operation method for substrate processing apparatus
JP3108466B2 (en) Vertical heat treatment equipment
JPS6140774Y2 (en)
JPH07240379A (en) Method and device for forming thin film
JPH07283154A (en) Plasma cvd method and device
JPH0644558B2 (en) Microwave plasma generator
JPH08100264A (en) Formation of thin film and device therefor
JP2000336482A (en) Film deposition and film deposition system
JPH11214377A (en) Vertical vacuum vapor phase growing device and method therefor
JP2831813B2 (en) Semiconductor vapor deposition equipment
JP2002289615A (en) Method and apparatus for forming thin film