JPS6333811A - Vopor growth method - Google Patents

Vopor growth method

Info

Publication number
JPS6333811A
JPS6333811A JP17691186A JP17691186A JPS6333811A JP S6333811 A JPS6333811 A JP S6333811A JP 17691186 A JP17691186 A JP 17691186A JP 17691186 A JP17691186 A JP 17691186A JP S6333811 A JPS6333811 A JP S6333811A
Authority
JP
Japan
Prior art keywords
gas
susceptor
gas flow
reflection plate
growth method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17691186A
Other languages
Japanese (ja)
Inventor
Yasuhito Takahashi
康仁 高橋
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17691186A priority Critical patent/JPS6333811A/en
Publication of JPS6333811A publication Critical patent/JPS6333811A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a reactive substance from adhering to a flange thereby to obtain a hetero boundary or a boundary of a P-N junction extremely abruptly with high reproducibility by providing a gas flow reflecting plate at the downstream position of a susceptor to reflect reactive gas passed over the susceptor on the reflecting plate to flow to an outlet. CONSTITUTION:When reactive gas is fed into a crystal growth chamber to form a thin crystal film on a substrate 9 on a susceptor 8 placed in the chamber, a gas-flow reflecting plate 11 is mounted at the downstream position of the susceptor 8, and the gas passed over the susceptor 8 is fed by the plate 11 to an outlet 10. With this construction, an apprehension of deposition an adhesive on an 0-ring 5 attached to a flange 5 is eliminated to always hold a hermetical sealability. Since the gas is further reflected in a direction different from a direction of feeding the gas by the plate 11, the gas is not returned toward the susceptor 8 to obtain a hetero boundary and a boundary of a P-N junction extremely abruptly with high reproducibility.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は化合物半導体等を基板上に結晶成長する場合に
用いられる気相成長方法に関するものである0 従来の技術 近年、m−v族および■−■族化合物半導体の気相エピ
タキシャル成長法、特に有機金属気相成長法(M OV
 P E :’Metal  Organic Vap
orPhase Epieaxy )が、大面積にわた
る均一性。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a vapor phase growth method used for crystal growth of compound semiconductors etc. on a substrate. Vapor phase epitaxial growth of group compound semiconductors, especially metal organic vapor phase epitaxy (MOV)
PE:'Metal Organic Vap
orPhaseEpieaxy ) is uniform over a large area.

量産性、膜厚や組成の制御性等の点から注目を集め、各
所で研究開発が活発に行なわれている。
It has attracted attention due to its ease of mass production, controllability of film thickness and composition, and active research and development is being carried out in various places.

従来、この種の気相成長方法に用いられる装置は第4図
のようになっていた。1は入口で反応ガス等例えばGλ
Asの成長の場合、トリメチルガリウムTMG((CH
3)5Ga)とアルシンASH3およびキャリアガスl
(zの入口となる。2は石英炉芯管(チャンバー)、3
はオーリング、4は石英炉芯管を固定する固定台、5は
フランジ6に取り付けられたオーリングで、例えばパイ
トン、7はサセプタ支持棒、8はサセプタ、9ばたとえ
ばGa−ムS基板、10は排気口である。結晶成長室は
、石英炉芯管2と固定台4からなる。基板9は結晶成長
室の外部に設けられた例えば高周波コイルでサセプタ8
を所定の温度に加熱することにより所望の温度まで加熱
される。反応ガスg1が入口1から、導入され所望の温
度に加熱された基板を通過する時、一部は結晶成長に寄
与し、基板9に達するが残シは2排気口10から排気さ
れるようになっている0 発明が解決しようとする問題点 しかしながら上記のような装置を用いた方法だと、基板
9上を通過した反応ガスの一部はフランジ6まで達し、
フランジe上に反応物質が付着する。結晶成長が完了し
た後、基板を取り出すためにサセプタ8をチャンバー内
に移動する時、フランジ6上に付着した反応物質が、チ
ャンバー内に落ちてチャンバーを汚染する。又、反応物
質がオーリング上に付着すると、気密性が悪くなシ結晶
性の低下を招くだけでなく、安全上問題が生じる○ さらに、基板9上を通過した反応ガスの一部はフランジ
6に衝突した後、その一部は排気口10を通り排気され
、残りは再びサセプタ8の方へ流れてきて基板表面に達
する場合もあり、ヘテロ構造を作製した時やpn接合を
作製した時急峻な界面が得られなかったシする問題があ
った。この反応ガスの流れを第4図に併せて模式的に示
す。
Conventionally, an apparatus used for this type of vapor phase growth method was as shown in FIG. 1 is the inlet and reactant gas, for example Gλ
For the growth of As, trimethylgallium TMG ((CH
3) 5Ga) and arsine ASH3 and carrier gas l
(This is the inlet of z. 2 is the quartz furnace core tube (chamber), 3
4 is an O-ring, 4 is a fixing base for fixing a quartz furnace core tube, 5 is an O-ring attached to a flange 6, such as a pyton, 7 is a susceptor support rod, 8 is a susceptor, 9 is, for example, a Ga-me S substrate, 10 is an exhaust port. The crystal growth chamber consists of a quartz furnace core tube 2 and a fixed table 4. The substrate 9 is connected to the susceptor 8 by, for example, a high frequency coil provided outside the crystal growth chamber.
is heated to a desired temperature by heating it to a predetermined temperature. When the reaction gas g1 is introduced from the inlet 1 and passes through the substrate heated to a desired temperature, a part of it contributes to crystal growth and reaches the substrate 9, but the remaining part is exhausted from the 2 exhaust ports 10. 0 Problems to be Solved by the Invention However, in the method using the above-mentioned device, a part of the reaction gas that has passed over the substrate 9 reaches the flange 6,
The reactant adheres to the flange e. When the susceptor 8 is moved into the chamber to take out the substrate after the crystal growth is completed, the reactant deposited on the flange 6 falls into the chamber and contaminates the chamber. In addition, if the reactant adheres to the O-ring, it not only causes poor airtightness and a decrease in crystallinity, but also poses a safety problem.Furthermore, some of the reactant gas that has passed over the substrate 9 is transferred to the flange 6. After colliding with the susceptor, a part of it is exhausted through the exhaust port 10, and the rest flows toward the susceptor 8 again and may reach the substrate surface. There was a problem that a suitable interface could not be obtained. The flow of this reaction gas is also schematically shown in FIG.

問題点を解決するための手段 本発明は上記問題点を解決するための手段として、サセ
プタより下流位置にガス流反射板を具備し、サセプタ上
を通過した反応ガスが、ガス流反射板で反射されて排気
口に流れるようにしたものである。
Means for Solving the Problems As a means for solving the above-mentioned problems, the present invention includes a gas flow reflection plate located downstream of the susceptor, so that the reaction gas that has passed over the susceptor is reflected by the gas flow reflection plate. It is designed so that it flows into the exhaust port.

作用 この技術的手段により作用は次のようになる0サセプタ
上を通過した反応ガスはフランジより上流側に設けられ
たガス流反射板によって排気口の方向に反射されるので
、フランジに反応物質が付着することがなくなる。それ
に伴ないフランジに取シ付けられたオーリング上に付着
物が堆積する懸念は皆無になり気密性は常に保たれるよ
うになる。さらに、反応ガスは、ガス流反射板によって
送られてきた方向とは異なる方向へ反射されるので、サ
セプタ方向へ再び反応ガスがもどることはなく、ヘテロ
界面やpn接合の界面が極めて急峻にしかも再現性よく
得られるようになる。
The effect of this technical means is as follows.The reaction gas that has passed over the susceptor is reflected in the direction of the exhaust port by the gas flow reflector provided upstream of the flange, so that the reactant is present at the flange. No more sticking. Accordingly, there is no concern that deposits will accumulate on the O-ring attached to the flange, and airtightness can be maintained at all times. Furthermore, since the reactant gas is reflected in a direction different from the direction in which it was sent by the gas flow reflector, the reactant gas will not return toward the susceptor again, and the hetero interface or pn junction interface will be extremely steep. Good reproducibility can be obtained.

実施例 本発明による気相成長方法を用いた具体的な一実施例を
第1図に示す。サセプタ支持枠子には脱着可能なガス流
反射板11が設けられており、反射方向の反射板11の
近傍には排気口10がある。
EXAMPLE A specific example using the vapor phase growth method according to the present invention is shown in FIG. A removable gas flow reflection plate 11 is provided on the susceptor support frame, and an exhaust port 10 is provided near the reflection plate 11 in the reflection direction.

又、ガス流反射板11の大きさは結晶成長室に接する程
度又はそれ以下であり、移動には差支えがないように設
計されている。反応ガスg2は反射板11で反射されて
排気口10より排出され、フランジ6付近に達すること
もない。反射板11は支持棒7に対し少くとも10゜傾
斜しているのが望ましく、棒7と一体化されていても脱
着可能でもよい。また反射板11はステンレス等で作成
される。
Further, the size of the gas flow reflection plate 11 is such that it touches the crystal growth chamber or is smaller than that, and is designed so that there is no problem in its movement. The reaction gas g2 is reflected by the reflection plate 11 and discharged from the exhaust port 10, and does not reach the vicinity of the flange 6. The reflector 11 is preferably inclined at an angle of at least 10° with respect to the support rod 7, and may be integrated with the rod 7 or may be detachable. Further, the reflecting plate 11 is made of stainless steel or the like.

本発明の効果をより明らかにするために第2図に示す人
1(−aAs/GaAsのジングルカンタムウェルC3
QW)構造を作成した。有機Ga化合物としてトリエチ
ルGa((C2H,、)3Ga)T EG 、有機入l
化合物としてトリメチルAl((CHs )s人l)T
M人、V原ガスとしてアルシン人sH,を用いた。
In order to clarify the effects of the present invention, person 1 (-aAs/GaAs jingle quantum well C3) shown in FIG.
QW) Created a structure. As an organic Ga compound, triethyl Ga ((C2H,,)3Ga)TEG, an organic compound
TrimethylAl((CHs)spersonl)T as a compound
M person, Arsin person sH, was used as V raw gas.

キャリアガスはPd拡散膜を通った高純度水素ガスで流
電は561/minである。基板9はGaAs(100
)で、基板温度は700℃である。成長速度は約1μm
1hrとなるように、TEGもしくはTEG−)−TM
人の濃度を調整する0そして、A 、gGaAs (7
) Ag (D混晶比は0.3となるようにTEGとT
M人の濃度比も調整する。
The carrier gas is a high purity hydrogen gas passed through a Pd diffusion film, and the current flow rate is 561/min. The substrate 9 is made of GaAs (100
), and the substrate temperature is 700°C. Growth rate is approximately 1μm
TEG or TEG-)-TM so that it is 1 hr.
Adjust the concentration of 0 and A, gGaAs (7
) Ag (TEG and T so that the D mixed crystal ratio is 0.3
The concentration ratio of M people is also adjusted.

まずA l o 、s G ’La、y A 3層22
を基板9上に約0.2111fi成長した後、GaAs
層23を約40人成長し、さらにAl、、Ga、、As
層24.0.2μm成長してAdCaAs/GaAs/
人、deaAsのSQWを作製する。SQWの評価とし
てはフォトルミネッセンス法を用いた。
First, A lo, s G 'La, y A 3 layers 22
After growing about 0.2111fi on the substrate 9, GaAs
Approximately 40 layers of layer 23 were grown, and further Al, Ga, As
Layer 24: AdCaAs/GaAs/
A human, deaAs SQW is created. A photoluminescence method was used to evaluate the SQW.

第3図は室温における成長結晶の7オトルミネツセンス
を示す。ビーク1は表面の人1GaAsのフォトルミネ
ッセンスであり、ビーク2とビーク3がGaAs井戸層
からのフォトルミネッセンスである。ヘテロ界面が急峻
であるため、ヘビーホールとライトホールとの再結合に
よる発光が分離されて観察されている。
Figure 3 shows the 7 otoluminescence of the grown crystal at room temperature. Beak 1 is photoluminescence from GaAs on the surface, and peaks 2 and 3 are photoluminescence from the GaAs well layer. Because the heterointerface is steep, the light emission due to recombination between the heavy hole and light hole is observed separately.

ガス流反射板を取り、同じ実験を試みたところ、表面モ
フォロジーは必ずしもよいとは限らずヘビーホールとラ
イトホールとの再結合による発光ははっきりとは分離さ
れず、ヘテロ界面が急峻でないことがわかった。
When we tried the same experiment using a gas flow reflector, we found that the surface morphology was not necessarily good, the light emission due to recombination of heavy holes and light holes was not clearly separated, and the heterointerface was not steep. Ta.

以上述べた実施例においては、ガス流反射板が1方向に
向いている場合について述べたが、サセプタ支持棒を中
心として対称的に多方向に反射させ、排気口もガス流反
射板と同数設けることにより、ガス流の対称性を損うこ
となく、極めてガスの切れをよくすることができるのは
言うまでもない。さらに、本実施例においては、AgG
aAs/(−aAsにツイテ説明しだが、InGaAs
P/InP系やAlGaInP/GaAs系は勿論のこ
と、他(7)Illr−V族およびTI −VI族化合
物半導体や混晶半導体の結晶成長に用いることができる
In the embodiment described above, the case where the gas flow reflector is oriented in one direction has been described, but the gas flow is reflected in multiple directions symmetrically around the susceptor support rod, and the same number of exhaust ports as the gas flow reflector are provided. Needless to say, by doing so, the gas can be drained extremely well without impairing the symmetry of the gas flow. Furthermore, in this example, AgG
aAs/(-aAs explained on Twitter, but InGaAs
It can be used for crystal growth of not only P/InP type and AlGaInP/GaAs type but also (7) Illr-V group and TI-VI group compound semiconductors and mixed crystal semiconductors.

発明の効果 本発明の気相成長方法は、サセプタ上を通過した反応ガ
スが、ガス流反射板によって排気口方向に反射されてフ
ランジに達することがないので、フランジに反応物質が
付着することがなくなり、フランジに取り付けられたオ
ーリングを汚染する心配はなくなり気密性は保たれ、安
全性が損なわれることはなくなった。又、反応ガスはガ
ス流反射板によって排気口の方へ反射され、サセプタ方
向へ再びもどることはないのでヘテロ界面やpn接合の
界面が極めて念唆にしかも再現性よく得られるようにな
った。その結果、この結晶より作られるデバイスのコス
トも大幅に削減することが可能となり、非常に実用的効
果は犬である。
Effects of the Invention In the vapor phase growth method of the present invention, the reaction gas that has passed over the susceptor is reflected toward the exhaust port by the gas flow reflection plate and does not reach the flange, so that the reaction material does not adhere to the flange. There is no need to worry about contaminating the O-ring attached to the flange, airtightness is maintained, and safety is no longer compromised. In addition, since the reactive gas is reflected toward the exhaust port by the gas flow reflector and does not return toward the susceptor, heterointerfaces and pn junction interfaces can be obtained very precisely and with good reproducibility. As a result, it has become possible to significantly reduce the cost of devices made from this crystal, which has a very practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における気相成長装置の模式
図、第2図は本発明を用いて作製したSQW層の断面図
、第3図はSQWのフォトルミネッセンスを示す特性図
、第4図は従来の気相成長装置の模式図である。 2・・・・・・石英炉芯管、5・・・・・・オーリング
、6・・・・・・フランジ、7・・・・・サセプタ支持
棒、8・・・・・・サセプタ、11・・・・・・ガス流
反射板、1o・山・・排気口。
FIG. 1 is a schematic diagram of a vapor phase growth apparatus in an embodiment of the present invention, FIG. 2 is a cross-sectional view of an SQW layer produced using the present invention, FIG. 3 is a characteristic diagram showing photoluminescence of SQW, and FIG. FIG. 4 is a schematic diagram of a conventional vapor phase growth apparatus. 2... Quartz furnace core tube, 5... O-ring, 6... Flange, 7... Susceptor support rod, 8... Susceptor, 11...Gas flow reflector, 1o/mountain...exhaust port.

Claims (5)

【特許請求の範囲】[Claims] (1)結晶成長室内に反応ガスを導入し、前記結晶成長
室内に載置されたサセプタ上の基板に結晶薄膜を形成す
る際、前記サセプタより下流位置にガス流反射板を設置
し、前記サセプタ上を通過した前記反応ガスを反射板に
より排気口に流すことを特徴とする気相成長方法。
(1) When introducing a reactive gas into a crystal growth chamber and forming a crystal thin film on a substrate on a susceptor placed in the crystal growth chamber, a gas flow reflecting plate is installed at a position downstream of the susceptor, A vapor phase growth method characterized in that the reaction gas that has passed above is caused to flow to an exhaust port by a reflection plate.
(2)ガス流反射板はサセプタ支持棒に対し少なくとも
10゜傾斜し、前記サセプタ支持棒と一体化されている
かもしくは脱着可能であることを特徴とする特許請求の
範囲第1項に記載の気相成長方法。
(2) The gas flow reflector plate is inclined at least 10 degrees with respect to the susceptor support rod and is either integrated with the susceptor support rod or detachable from the susceptor support rod. Phase growth method.
(3)ガス流反射板が傾斜し、ガス流が反射される方向
でかつ前記ガス流反射板の近傍に、ガス排気口が具備さ
れていることを特徴とする特許請求の範囲第1項に記載
の気相成長方法。
(3) The gas flow reflection plate is inclined, and a gas exhaust port is provided in the direction in which the gas flow is reflected and in the vicinity of the gas flow reflection plate. Vapor phase growth method as described.
(4)ガス流反射板の大きさは、前記ガス流反射板が設
置される位置の結晶成長室の内壁に接するかもしくはそ
れ以下であることを特徴とする特許請求の範囲第1項に
記載の気相成長方法。
(4) The size of the gas flow reflection plate is such that it is in contact with or smaller than the inner wall of the crystal growth chamber at the position where the gas flow reflection plate is installed. vapor phase growth method.
(5)ガス流反射板がステンレス製であることを特徴と
する特許請求の範囲第1項に記載の気相成長方法。
(5) The vapor phase growth method according to claim 1, wherein the gas flow reflection plate is made of stainless steel.
JP17691186A 1986-07-28 1986-07-28 Vopor growth method Pending JPS6333811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17691186A JPS6333811A (en) 1986-07-28 1986-07-28 Vopor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17691186A JPS6333811A (en) 1986-07-28 1986-07-28 Vopor growth method

Publications (1)

Publication Number Publication Date
JPS6333811A true JPS6333811A (en) 1988-02-13

Family

ID=16021912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17691186A Pending JPS6333811A (en) 1986-07-28 1986-07-28 Vopor growth method

Country Status (1)

Country Link
JP (1) JPS6333811A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070924A (en) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd Method of manufacturing group iii nitride semiconductor optical element and method of measuring photoluminescence spectrum
WO2011016223A1 (en) * 2009-08-04 2011-02-10 キヤノンアネルバ株式会社 Heat treatment apparatus and method for manufacturing semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070924A (en) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd Method of manufacturing group iii nitride semiconductor optical element and method of measuring photoluminescence spectrum
WO2011016223A1 (en) * 2009-08-04 2011-02-10 キヤノンアネルバ株式会社 Heat treatment apparatus and method for manufacturing semiconductor device
CN102473641A (en) * 2009-08-04 2012-05-23 佳能安内华股份有限公司 Heat treatment apparatus and method for manufacturing semiconductor device
JP5497765B2 (en) * 2009-08-04 2014-05-21 キヤノンアネルバ株式会社 Heat treatment apparatus and semiconductor device manufacturing method
US9147742B2 (en) 2009-08-04 2015-09-29 Canon Anelva Corporation Heat treatment apparatus and semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
JPH0350834B2 (en)
JPH09293681A (en) Vapor growth device
JP3882226B2 (en) Method for growing Mg-doped nitride III-V compound semiconductor crystal
JPS6333811A (en) Vopor growth method
JP2717786B2 (en) Semiconductor crystal epitaxial growth method and molecular layer epitaxy apparatus used in the method
JP2004524690A (en) Hybrid growth system and method
JP2733518B2 (en) Compound semiconductor film vapor phase growth system
JPH1174202A (en) Vapor growth device of gallium nitride iii-v compound semiconductor and gallium nitride iii-v compound semiconductor device and its manufacture
JP2934740B2 (en) Equipment for epitaxial growth of semiconductor crystals
JPS5973496A (en) Vapor-phase growth apparatus
Tsang Chemical beam epitaxy of InGaAs
Azoulay et al. Selective growth of GaAs by organometallic vapor phase epitaxy at atmospheric pressure
JP3472976B2 (en) Method and apparatus for forming group III nitride semiconductor
JPH02291113A (en) Vapor growth apparatus for compound semiconductor
KR20020037701A (en) A method for fabricating a iii-v nitride film and an apparatus for fabricating the same
JPS62105417A (en) Vapor growth equipment
JPS59170000A (en) Device for crystal growth
JPS63227008A (en) Vapor growth method
JP3010739B2 (en) Method and apparatus for growing compound semiconductor crystal
JPH0265125A (en) Reaction pipe of mocvd crystal growth device
JPS59111323A (en) Vapor phase growth device
JPH0434921A (en) Vaporpiase growth method for group iii-v compound semiconductor
JPS61215288A (en) Production of semiconductor
JPH02291112A (en) Vapor growth apparatus for compound semiconductor
JPH01224295A (en) Gas source molecular beam crystal growing apparatus