JPH0434921A - Vaporpiase growth method for group iii-v compound semiconductor - Google Patents

Vaporpiase growth method for group iii-v compound semiconductor

Info

Publication number
JPH0434921A
JPH0434921A JP14069690A JP14069690A JPH0434921A JP H0434921 A JPH0434921 A JP H0434921A JP 14069690 A JP14069690 A JP 14069690A JP 14069690 A JP14069690 A JP 14069690A JP H0434921 A JPH0434921 A JP H0434921A
Authority
JP
Japan
Prior art keywords
supplied
group
ash3
gas
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14069690A
Other languages
Japanese (ja)
Inventor
Kazuo Mori
一男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14069690A priority Critical patent/JPH0434921A/en
Publication of JPH0434921A publication Critical patent/JPH0434921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly form an extremely thin film containing Al as a constituent element by alternately supplying a volatile organic compound having direct bond of the Al and halogen and a group V element or group V volatile compound, and using iodine as the halogen. CONSTITUTION:Material gases are supplied, for example, from an AsH3 gas bottle 9, a DEGaCl bubbler 10, a DEAlI bubbler 11, carrier H2 gas 12, and flow rates are controlled by a flowrate controller 13 and a stop valve 14. H2 gas is fed as carrier gas, a pressure in a reaction tube 1 is regulated, and a GaAs board 3 on a carbon susceptor 2 is heated by high frequency heating. After As3 is supplied into a reaction vessel 1, the AsH3 is stopped, and DEAlI is then supplied. A material no supplying time is taken, and the AsH3 is supplied. This operation is repeated. In order to prevent deterioration due to oxidation of the grown AlAs layer in the air, a thin GaAs layer as a cap layer, DEGaCl and AsH3 are likewise alternately supplied and grown, to be epitaxially grown.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はAρを構成元素に含む■−V族化合物半導体の
気相成長方法に関し、特に■族原料とV族原料とを交互
に供給する原子層エピタキシャル成長技術に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for vapor phase growth of a ■-V group compound semiconductor containing Aρ as a constituent element, and in particular, a method for alternately supplying a group ■ raw material and a group V raw material. It relates to atomic layer epitaxial growth technology.

〔従来の技術〕[Conventional technology]

■−V族化合物半導体のエピタキシャル成長層は発光ダ
イオード、レーザダイオードなどの光デバイスや、FE
Tなとの高速デバイスなどに広く応用されている。
■-Epitaxially grown layers of group V compound semiconductors are used in optical devices such as light emitting diodes and laser diodes, and in FE.
It is widely applied to high-speed devices such as T.

さらにデバイス性能を向上させるため、数〜数十人の薄
層半導体を積み重ねた構造が要求されている。
Furthermore, in order to improve device performance, a structure in which several to dozens of thin semiconductor layers are stacked is required.

例えば量子井戸構造のレーザーダイオードでは駆動電流
の低減や温度特性の向上、短波長化が可能になる。
For example, a laser diode with a quantum well structure can reduce drive current, improve temperature characteristics, and shorten wavelength.

また高速低雑音デバイスとして二次元電子ガスを利用し
たFETなと、単体レベルではすでに実用化が始まって
いる。
Furthermore, FETs that utilize two-dimensional electron gas as high-speed, low-noise devices have already begun to be put to practical use at the individual level.

薄層エピタキシャル成長法として、有機金属気相成長法
(MOCVD法)やハロゲン輸送法などのガスを用いる
気相成長法(VPE法)が実用化され、供給ガスの流量
、成長温度および成長時間などの精密な制御により、膜
厚をコントロールしている。
As a thin layer epitaxial growth method, vapor phase epitaxy (VPE method) using gas such as metal organic chemical vapor deposition method (MOCVD method) and halogen transport method has been put into practical use. Film thickness is controlled through precise control.

また高真空中で構成元素の分子状または原子状のビーム
を照射して成長を行なう分子線エピタキシャル成長法(
MBE法〉は比較的厚さ制御が容易であるが、やはり分
子線強度や成長温度、時間などの精密な制御が必要であ
った。
In addition, molecular beam epitaxial growth method (in which growth is performed by irradiating molecular or atomic beams of constituent elements in a high vacuum)
Although thickness control is relatively easy with the MBE method, precise control of molecular beam intensity, growth temperature, time, etc. is still required.

このような精密制御を続けて単原子層毎に交互に積み重
ねて超格子構造を作成することも可能である。
It is also possible to create a superlattice structure by continuing such precise control and alternately stacking each monoatomic layer.

しかし単体レベルの試作はともかく、このような薄層デ
バイス集積化し、大面積基板に均一に、再現性良く生産
することができなかった。
However, apart from prototyping at the single-unit level, it has not been possible to integrate such thin-layer devices and produce them uniformly and with good reproducibility on large-area substrates.

この問題を克服する技術として、原子層エピタキシャル
成長法(ALE法)が、第16凹面体素子・材料コンフ
ァレンス予稿集(T、5untora、Extende
d Abstract of the 16th Co
nference on 5olid 5tate D
evices and Materials、Kobe
、1984.PP、647−650>に発表された。
As a technology to overcome this problem, atomic layer epitaxial growth (ALE) has been proposed in the Proceedings of the 16th Concave Elements and Materials Conference (T, 5untora, Extende).
d Abstract of the 16th Co.
nference on 5olid 5tate D
evices and Materials, Kobe
, 1984. PP, 647-650>.

これは化合物半導体の構成元素、あるいはその元素を含
むガスを交互に供給して単原子層あるいは単分子層ずつ
吸着または反応させて所定の厚さの化合物半導体層を成
長させるものである。
In this method, constituent elements of a compound semiconductor or gases containing the elements are alternately supplied and adsorbed or reacted one atomic layer or one monomolecular layer at a time to grow a compound semiconductor layer of a predetermined thickness.

すなわち■−V族化合物半導体の場合、■族および■族
原料を交互に供給する操作の繰り返し回数によって成長
膜厚が決まる。
That is, in the case of a ■-V group compound semiconductor, the thickness of the grown film is determined by the number of repetitions of the operation of alternately supplying the group ■ and group ■ raw materials.

さらに■族原料の選択と成長条件の最適化によって、ガ
スの供給操作1回当りの吸着量を原料の供給分圧や成長
温度に依存せず一定にすることが可能になって、容易に
単原子層レベルで急峻な界面を持つ多層薄膜構造を形成
することができる。
Furthermore, by selecting the group III raw material and optimizing the growth conditions, it is possible to keep the adsorption amount per gas supply operation constant regardless of the raw material supply partial pressure or growth temperature, making it easy to use. Multilayer thin film structures with steep interfaces at the atomic layer level can be formed.

同時にその性質から高均一性を兼ね備えた薄膜を形成で
きることが大きな利点であり、量子井戸レーザーダイオ
ードや二次元電子ガスFETなどの集積化において、単
原子層エピタキシャル技術の果す役割は大きい。
At the same time, it has the great advantage of being able to form thin films with high uniformity due to its properties, and monoatomic layer epitaxial technology plays a major role in the integration of quantum well laser diodes, two-dimensional electron gas FETs, etc.

原子層エピタキシャル成長のなかでも特に■族原料とし
て■族原子とハロゲン元素、そのうち塩素と結合した有
機金属化合物、例えば(C2H5) 2 G a C4
(diethylgallium  chloride
: D EGaCA)を用いる方法が最も広い成長条件
の範囲でGaAs単分子層単位の成長が得られ、ガス状
の原料をバルブで切り替えて反応容器に供給するため多
数の大口径基板上に一度に成長することができ、量産に
適した技術として、APL(Applied Phys
ics Letters ) vol、52.no、1
.PP、L27−29に紹介されている。
In atomic layer epitaxial growth, group III atoms and halogen elements, among them organometallic compounds combined with chlorine, are particularly used as group III raw materials, such as (C2H5) 2 G a C4
(diethylgallium chloride
The method using DEGaCA) allows the growth of GaAs monolayer units over the widest range of growth conditions, and because the gaseous raw material is switched by a valve and supplied to the reaction vessel, it can be grown on many large-diameter substrates at once. APL (Applied Phys.
ics Letters) vol, 52. no, 1
.. Introduced in PP, L27-29.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

■族原料として■族原子とハロゲン元素の結合を持つ有
機金属化合物を用い、これとV族原料とを交互に供給す
ることによる原子層エピタキシャル技術にはつぎのよう
な問題がある。
Atomic layer epitaxial technology using an organometallic compound having a bond between a group II atom and a halogen element as a group III raw material and alternately supplying this and a group V raw material has the following problems.

A i A s / G a A sに代表されるなA
、&を構成元素に含むヘテロ構造は、大きなバンドギャ
ップを持ちながら格子不整合度が極めて小さく、良好な
多層薄膜構造の作成には欠かせないものである。AjI
系の原子層エピタキシャル成長を行なうためのAjIと
ハロゲン元素との結合を持つ有機金属化合物としては、
Gaの場合と同様にA、i2と塩素との結合を持つ、例
えば広く工業用原料となり入手が容易なA ll (C
2H5) 2 CJl (diethylalumin
ium chloride : D E A II C
1)が用いられてきた。ところがDEAfC,eとAs
H3とを用いたAJIAsとの原子層エピタキシャル成
長ではAfflAs成長層の表面が荒れ、極薄膜の膜厚
制御が困難であるなど問題があ・す、Aρ供給源として
満足できるものではなかった。
A is represented by A i As / Ga As.
, & as constituent elements has a large bandgap but an extremely small degree of lattice mismatch, and is indispensable for creating a good multilayer thin film structure. AjI
As an organometallic compound having a bond between AjI and a halogen element for performing atomic layer epitaxial growth of the system,
As in the case of Ga, A ll (C
2H5) 2 CJl (diethylalumin
ium chloride: D E A II C
1) has been used. However, DEAfC,e and As
In atomic layer epitaxial growth with AJIAs using H3, there are problems such as the surface of the AfflAs growth layer being rough and it being difficult to control the thickness of an extremely thin film, making it unsatisfactory as an Aρ supply source.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のAJを構成元素に含む■−■族化合物半導体の
気相成長方法は、AJと沃素との直接結合を有する揮発
性の有機化合物と■族元素または■族揮発性化合物とを
交互に基板上に供給するものである。
In the vapor phase growth method of the ■-■ group compound semiconductor containing AJ as a constituent element of the present invention, a volatile organic compound having a direct bond between AJ and iodine and a group-■ element or a group-■ volatile compound are alternately grown. It is supplied onto the substrate.

〔作用〕[Effect]

DEAJCJとAsH3とを用いたA、RAsの原子層
エピタキシャル成長における成長温度(通常400〜6
00℃)において、DEAJCjIの分解によって生じ
たAJ(11が不安定であることに問題があると考えら
れる。すなわちAllClはこの温度範囲で不均等化反
応を起し、つぎのようにA、ffとA I C12sと
を生成する。
Growth temperature in atomic layer epitaxial growth of A, RAs using DEAJCJ and AsH3 (usually 400-6
It is thought that the problem lies in the instability of AJ (11) produced by the decomposition of DEAJCjI at 00℃).In other words, AllCl undergoes a disproportionation reaction in this temperature range, and A, ff and A I C12s are generated.

3A、fCA→2 A II + A 41 Cji 
sそのため基板表面に金属A、Rが無制限に堆積し、原
子層エピタキシャル成長に期待されるAρ化合物の被覆
とそれによるさらなるA、R化合物の付着の抑制という
過程、いわゆる自己停止機能が作用しないと考えられる
。このなめ表面荒れと膜厚制御の困難が生じている。
3A, fCA → 2 A II + A 41 Cji
s Therefore, the metals A and R are deposited on the substrate surface without limit, and the so-called self-stop function, which is the process of coating with the Aρ compound expected in atomic layer epitaxial growth and thereby suppressing the adhesion of further A and R compounds, does not work. It will be done. This roughening of the surface causes difficulties in controlling the film thickness.

A、Rに直接結合するハロゲンとして一般に塩素が用い
られてきたが、他に弗素(F)、臭素(Br)、沃素(
I)が考えられる。
Chlorine has generally been used as a halogen that directly bonds to A and R, but other halogens such as fluorine (F), bromine (Br), and iodine (
I) is possible.

第2図にAJF、AICJI、AfflBr、AJI 
Iのそれぞれについて熱平衡計算を行なってその安定性
を調べた結果を示す。
Figure 2 shows AJF, AICJI, AfflBr, and AJI.
The results of thermal equilibrium calculations and stability studies for each of I are shown below.

モノハロゲン化AJの初期分圧をlXl0−5〜10−
’atm (7,6X10−’〜7.6X10−2”l
’orr)とした場合の、熱平衡後の未反応モノハロゲ
ン化Ajjの初期分圧に対する割合(%)を示してい石
。いずれも低温はど未反応モノハロゲン化AJの割合が
減少し、不均等化反応が起り易いことを示している。
The initial partial pressure of monohalogenated AJ is lXl0-5~10-
'atm (7,6X10-'~7.6X10-2"l
'orr) indicates the ratio (%) of unreacted monohalogenated Ajj to the initial partial pressure after thermal equilibrium. In both cases, the proportion of unreacted monohalogenated AJ decreases at low temperatures, indicating that the disproportionation reaction is more likely to occur.

AICtlは初期分圧IlXl0−5at、温度550
℃では、不均等化反応はほとんど起らず、はぼ100%
のAfflIが安定に存在することがわかる。
AICtl is initial partial pressure IlXl0-5at, temperature 550
At ℃, almost no disproportionation reaction occurs, almost 100%
It can be seen that AfflI exists stably.

A(を構成要素に含むI−V族化合物半導体の原子層エ
ピタキシャル成長において、AIIに直接結合するハロ
ゲンが沃素である有機化合物、例えば(C2H5) 2
 A、RI (diet、hylaluminiu+m
 fadide : DEAJI I )を用いて、自
己停止機能をもたせることができる。
In the atomic layer epitaxial growth of a group IV compound semiconductor containing A (as a constituent element), an organic compound in which the halogen directly bonded to AII is iodine, for example (C2H5) 2
A, RI (diet, hylaluminiu+m
fadide: DEAJI I) can be used to provide a self-stopping function.

〔実施例〕〔Example〕

本発明の一実施例について、第1図の横型減圧MOCV
D装置を参照して説明する。
Regarding one embodiment of the present invention, a horizontal reduced pressure MOCV as shown in FIG.
This will be explained with reference to device D.

加熱用の高周波コイル8が巻かれた反応容器1の中にカ
ーボンサセプタ2があり、サセプタホルダ4で支持され
ている。
A carbon susceptor 2 is located inside a reaction vessel 1 around which a high-frequency coil 8 for heating is wound, and is supported by a susceptor holder 4.

基板結晶3はサセプタ2の上に置かれる。A substrate crystal 3 is placed on the susceptor 2.

フィルタ5、排気装置i6、排気管7でガスを排気して
いる。
Gas is exhausted by a filter 5, an exhaust device i6, and an exhaust pipe 7.

AsH3ガスボトル9、DEGaCAバブラ10、DE
A、12 Iバブラ11、キャリア用H2ガス12から
原料ガスを供給し、流量制御装置13とストップバルブ
14とで流量を制御している。
AsH3 gas bottle 9, DEGaCA bubbler 10, DE
A, 12 A raw material gas is supplied from an I bubbler 11 and a carrier H2 gas 12, and the flow rate is controlled by a flow rate control device 13 and a stop valve 14.

エピタキシャル成長の選択性を調べるため、GaAs基
板3の表面の一部に5i02マスク(図示せず)を設け
ることができる。
In order to examine the selectivity of epitaxial growth, a 5i02 mask (not shown) can be provided on a portion of the surface of the GaAs substrate 3.

キャリアガスとしてH2を9J、/sin流し、反応管
1内の圧力を100Torrとして高周波加熱によって
カーボンサセプタ2上のGaAs基板3を400〜60
0℃に加熱した。このとき反応容器1内にl Torr
の分圧のAsH3供給したあとAsHsを停止し、1秒
経過後3X10−’〜4×102Torrの分圧のDE
A、& Iを3秒間供給した。
GaAs substrate 3 on carbon susceptor 2 was heated to 400 to 600 Torr by high-frequency heating by flowing H2 as a carrier gas at 9 J/sin and setting the pressure inside reaction tube 1 to 100 Torr.
Heated to 0°C. At this time, l Torr inside the reaction vessel 1
After supplying AsH3 with a partial pressure of
A, & I were supplied for 3 seconds.

このあと原料無供給時間を1秒とり、そのあとl To
rrの分圧のAsH3を1秒間供給しな。
After this, there is a 1-second non-supply period of raw materials, and then l To
Supply AsH3 at a partial pressure of rr for 1 second.

原料無供給時間の1秒間は、反応管1内から原料が排除
されるのに充分な時間である。
One second of the raw material non-supply time is sufficient time for the raw material to be removed from the reaction tube 1.

この6秒間の操作を1000回繰り返した。This 6 second operation was repeated 1000 times.

さらに成長したAfIAs層の空気中での酸化による劣
化を防ぐため、キャップ層としての薄いGaAs層を、
DEGaCjlとAsH3とを同様に200回交互に供
給して成長させた。エピタキシャル成長後、試料を襞間
して断面SEM観察してAJIAs層の膜厚を測定した
Furthermore, in order to prevent the grown AfIAs layer from deteriorating due to oxidation in the air, a thin GaAs layer was added as a cap layer.
DEGaCjl and AsH3 were similarly supplied alternately 200 times for growth. After the epitaxial growth, the sample was folded and cross-sectional SEM observation was performed to measure the thickness of the AJIAs layer.

第3図に成長温度550℃でDEAρIの分圧を変化さ
せたときの1回当りに換算しな膜厚を示す。
FIG. 3 shows the film thickness calculated per growth when the partial pressure of DEAρI is varied at a growth temperature of 550°C.

DEAJI Iの分圧が1〜3×1O−2Torrの範
囲では(100)面上のAfflAsの単分子層の厚さ
2.83人と良く一致している。
When the partial pressure of DEAJI I is in the range of 1 to 3×1 O −2 Torr, it agrees well with the thickness of the AfflAs monolayer on the (100) plane, which is 2.83 Torr.

しかしDEAffl Iの分圧が3 X 10−2To
rrより大きくなると不均等化反応が次第に顕著となり
、膜厚は単分子層の厚さを越えて大きくなる傾向を示し
ている。
However, the partial pressure of DEAffl I is 3 x 10-2To
When it becomes larger than rr, the unequalization reaction becomes gradually more pronounced, and the film thickness tends to exceed the thickness of a monomolecular layer.

不均等化反応による膜厚増加の起る最低分圧は成長温度
が低いほど低下したが、DEAJ2 Iが充分分解する
450℃以上で、成長温度550℃の場合と同様にAρ
Asの膜厚が分圧に依存せずに単分子層の厚さに等しく
なる範囲が認められた。
The lowest partial pressure at which film thickness increases due to the unequalization reaction decreases as the growth temperature decreases;
A range in which the As film thickness was equal to the monomolecular layer thickness was observed, independent of the partial pressure.

さらに不均等化反応による膜厚増加が起らない低い分圧
範囲では、いずれの条件で成長した場合でも、S i 
02マスク部分にはAJAsの析出は認められず、選択
成長が可能であった。
Furthermore, in a low partial pressure range where film thickness increase due to unequalization reaction does not occur, Si
No precipitation of AJAs was observed in the 02 mask portion, and selective growth was possible.

第3図には比較のため、DEA!2■の替りに従来の(
11系原料であるDEA!jCρを用いた結果も示しで
あるが、この場合AJAsの膜厚はDEAJjcJlの
分圧に比例して増加し、A、&As単分子層の厚さに飽
和するような傾向は全く得られない これは成長温度400〜600℃の範囲内で変わらず、
この範囲で成長した場合はS i 02マスク上にもA
7Asの析出が認められ、選択性は得られなかった。
Figure 3 shows DEA! for comparison. 2. Instead of the conventional (
DEA, which is a 11-series raw material! The results using jCρ are also shown, but in this case, the film thickness of AJAs increases in proportion to the partial pressure of DEAJjcJl, and there is no tendency to be saturated with the thickness of the A, &As monolayer. remains unchanged within the growth temperature range of 400 to 600°C,
When grown in this range, A also appears on the S i 02 mask.
Precipitation of 7As was observed, and selectivity could not be obtained.

DEAjIIを原料として用いることによって、非常に
広い条件範囲でAJAsの理想的な原子層エピタキシャ
ル成長が実現でき、選択成長も可能であることが示され
た。
It has been shown that by using DEAjII as a raw material, ideal atomic layer epitaxial growth of AJAs can be achieved under a very wide range of conditions, and selective growth is also possible.

さらにV族元素の種類を変えなAρPやAJNの成長、
またAfGaASなどを含む混晶の成長にも本発明を適
用することができる。
Furthermore, the growth of AρP and AJN without changing the type of group V elements,
The present invention can also be applied to the growth of mixed crystals including AfGaAS and the like.

本実施例では気相成長装置として減圧MOCVDを用い
たが、常圧MOCVD装置、あるいは逆に真空中で成長
を行なうMOMBE装置などでも同様の成果を得ること
ができる。
In this embodiment, low pressure MOCVD was used as the vapor phase growth apparatus, but similar results can be obtained with an atmospheric pressure MOCVD apparatus or, conversely, a MOMBE apparatus that performs growth in a vacuum.

またA(の有機金属化合物を構成するアルキル基として
、エチル基を持つ化合物を用いたが、分解脱離が容易で
あれば他のアルキル基を持つ有機金属化合物を用いるこ
ともできる。
Although a compound having an ethyl group was used as the alkyl group constituting the organometallic compound of A, other organometallic compounds having an alkyl group may be used as long as they can be easily decomposed and eliminated.

■族原料としてはA s H3を用いたが、水素化合物
の他、例えばAs (C2H5) s  (triet
hylarsine : T E A S )でもよく
、さらに他のアルキル基を持つものや、水素の一部をア
ルキル基で置き替えな(CH3) 3 AsH2(te
rtiary butylarsine : T B 
A s )でもよい、また原料供給の0n10ffが可
能ならV族金属そのものを用いて加熱蒸発させてもよい
As the group III raw material, As H3 was used, but in addition to hydrogen compounds, for example, As (C2H5) S (triet
(CH3) 3 AsH2 (te
tiary butylarsine: T B
A s ) may be used, or if the raw material supply rate of 0n10ff is possible, the group V metal itself may be used for heating and evaporation.

〔発明の効果〕〔Effect of the invention〕

自己停止機能をもつAffを構成元素に含む■−V族化
合物半導体の原子層エピタキシャル成長が可能になった
Atomic layer epitaxial growth of a ■-V group compound semiconductor containing Aff, which has a self-stopping function, as a constituent element has become possible.

AjIを構成元素に含む■−V族化合物半導体の極薄膜
を均一に形成する気相成長方法が実現された。
A vapor phase growth method for uniformly forming an extremely thin film of a ■-V group compound semiconductor containing AjI as a constituent element has been realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例で用いた気相成長装置の構成
図、第2図はエピタキシャル成長の反応を示すグラフ、
第3図は本発明の一実施例におけるDEAJ Iと、比
較のためのDEAfflCJとを用いた場合の1サイク
ル当りの原料供給分圧と成長膜厚との関係を示すグラフ
である。 1・・・反応容器、2・・・カーボンサセプタ、3・・
・基板結晶、4・・・サセプタホルダ、5・・・フィル
タ、6・・・排気装置、7・・・排気管、8・・・高周
波誘導コイル、9−A s H3ボンベ、10 ・・−
D E G a CIIバブラ、11・・・DEAρI
バブラ、12・・・キャリアH2ガス、13・・・流量
制御装置、14・・・バルブ。
FIG. 1 is a block diagram of a vapor phase growth apparatus used in an embodiment of the present invention, and FIG. 2 is a graph showing the reaction of epitaxial growth.
FIG. 3 is a graph showing the relationship between the raw material supply partial pressure per cycle and the grown film thickness when using DEAJ I in one embodiment of the present invention and DEAfflCJ for comparison. 1... Reaction container, 2... Carbon susceptor, 3...
- Substrate crystal, 4... Susceptor holder, 5... Filter, 6... Exhaust device, 7... Exhaust pipe, 8... High frequency induction coil, 9-A s H3 cylinder, 10...-
D E G a CII Bubbler, 11...DEAρI
Bubbler, 12...Carrier H2 gas, 13...Flow rate control device, 14...Valve.

Claims (1)

【特許請求の範囲】[Claims]  Alとハロゲンとの直接結合を有する揮発性の有機化
合物とV族元素またはV族揮発性化合物とを交互に基板
上に供給する、Alを構成元素に含むIII−V族化合物
半導体の気相成長方法において、前記ハロゲンが沃素で
あることを特徴とするIII−V族化合物半導体の気相成
長方法。
Vapor phase growth of a III-V group compound semiconductor containing Al as a constituent element, in which a volatile organic compound having a direct bond between Al and a halogen and a group V element or a group V volatile compound are alternately supplied onto a substrate. A method for vapor phase growth of a III-V compound semiconductor, characterized in that the halogen is iodine.
JP14069690A 1990-05-30 1990-05-30 Vaporpiase growth method for group iii-v compound semiconductor Pending JPH0434921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14069690A JPH0434921A (en) 1990-05-30 1990-05-30 Vaporpiase growth method for group iii-v compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14069690A JPH0434921A (en) 1990-05-30 1990-05-30 Vaporpiase growth method for group iii-v compound semiconductor

Publications (1)

Publication Number Publication Date
JPH0434921A true JPH0434921A (en) 1992-02-05

Family

ID=15274620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14069690A Pending JPH0434921A (en) 1990-05-30 1990-05-30 Vaporpiase growth method for group iii-v compound semiconductor

Country Status (1)

Country Link
JP (1) JPH0434921A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060947A (en) * 2000-07-07 2002-02-28 Asm Internatl Nv Cvd of atomic layer
JP2007027791A (en) * 1999-01-04 2007-02-01 Genus Inc Processing chamber for atomic layer deposition process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027791A (en) * 1999-01-04 2007-02-01 Genus Inc Processing chamber for atomic layer deposition process
JP2002060947A (en) * 2000-07-07 2002-02-28 Asm Internatl Nv Cvd of atomic layer

Similar Documents

Publication Publication Date Title
US5483919A (en) Atomic layer epitaxy method and apparatus
EP0523917A2 (en) Atomic layer epitaxy of compound semiconductor
JPH01296613A (en) Method of vapor growth of iii-v compound semiconductor
JPH0434921A (en) Vaporpiase growth method for group iii-v compound semiconductor
JP2743443B2 (en) Compound semiconductor vapor growth method and apparatus
JPS6385098A (en) Vapor growth method for iii-v compound semiconductor
JP2736655B2 (en) Compound semiconductor crystal growth method
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
JP3159788B2 (en) Compound semiconductor crystal growth method
JP2739778B2 (en) Method for selective growth of group 3-5 compound semiconductor
JPH0489399A (en) Formation of thin film of iii-v compound semiconductor
JP3052269B2 (en) Vapor phase growth apparatus and growth method thereof
JPS6317293A (en) Method for forming thin film of compound semiconductor and device therefor
JPH0657636B2 (en) Compound semiconductor thin film formation method
JP3335671B2 (en) Method of forming quantum wires and quantum boxes by atomic layer growth
JPH07226380A (en) Atomic layer crystal growth method
JPS61260622A (en) Growth for gaas single crystal thin film
JP2840381B2 (en) (III)-Crystal growth method for group V compound semiconductor and crystal growth apparatus used in this method
JPH0529228A (en) Atomic layer crystal deposition method and device
JPH05186295A (en) Method for growing crystal
JP2577543B2 (en) Single crystal thin film growth equipment
JPH01103982A (en) Production of single crystal of group iii-v compound semiconductor
JP3110923B2 (en) Method and apparatus for producing p-type II-VI compound semiconductor thin film
JPH01290222A (en) Semiconductor vapor growth method
JPH05190474A (en) Crystal growth method of compound semiconductor