JPS63227008A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPS63227008A
JPS63227008A JP6154487A JP6154487A JPS63227008A JP S63227008 A JPS63227008 A JP S63227008A JP 6154487 A JP6154487 A JP 6154487A JP 6154487 A JP6154487 A JP 6154487A JP S63227008 A JPS63227008 A JP S63227008A
Authority
JP
Japan
Prior art keywords
vapor phase
mixer
reaction gases
chamber
growth method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6154487A
Other languages
Japanese (ja)
Inventor
Yasuhito Takahashi
康仁 高橋
Mototsugu Ogura
基次 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6154487A priority Critical patent/JPS63227008A/en
Publication of JPS63227008A publication Critical patent/JPS63227008A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the irregularities in the composition, the doping and the layer thickness of a grown thin film by sufficiently mixing the same group element reaction gases and different group element reaction gases by a mixer through an opening adjustable orifice. CONSTITUTION:Reaction gases are introduced into a crystal growing chamber, and a thin film is formed on a substrate on a susceptor placed in the chamber. Here, all the first same element reaction gases and at least one of the second element reaction gases are sufficiently mixed, for example, by mixers 102, 103 made of finer tubes than an inlet 100 through an opening adjustable orifice 101 formed at the inlet 100 to be introduced into the chamber. Thus, a uniform thin film can be easily formed over a large area.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は化合物半導体等の半導体薄膜積層成長において
、特に組成や不純物濃度の分布が大面積にわたって均一
である成長層を再現性よく得ることのできる気相成長方
法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the growth of thin films of semiconductors such as compound semiconductors, in which growth layers having a uniform composition and impurity concentration distribution over a large area can be obtained with good reproducibility. A phase growth method is provided.

従来の技術 最近、化合物半導体を用いたベテロ接合デバイスの研究
開発が盛んに行なわれている。薄膜のエピタキシャル成
長法としては、従来の液相成長(L P E ; Li
quid Phase Kpitaxy )法にかわり
、超薄膜多層構造の形成が容易な分子線エピタキシー 
(M B E ; Moleculag Beam K
pitaxy )法や気相成長(V P IC; Va
por Phase Rpitaxy)法が主流を占め
ている。この気相成長法のうち有機金属化合物を用いた
有機金属気相成長(MOVPE; Metal Org
anic Vapor Phase Epitaxy 
)法が、特に量産性の高い方法として注目されている。
BACKGROUND OF THE INVENTION Recently, research and development of beterojunction devices using compound semiconductors has been actively conducted. Conventional liquid phase epitaxy (LPE; Li
Molecular beam epitaxy, which can easily form ultra-thin multilayer structures, replaces the Quid Phase Kpitaxy method.
(MBE; Moleculag Beam K
pitaxy) method and vapor phase growth (V PIC; Va
por Phase Rpitaxy) method is the mainstream. Among these vapor phase growth methods, metal organic vapor phase epitaxy (MOVPE; Metal Org) using an organometallic compound
anic Vapor Phase Epitaxy
) method is attracting attention as a method with particularly high mass production efficiency.

一般に、この種の気相成長法に用いられる装置は、結晶
成長室内の気体の圧力によって、常圧(大気圧)vpx
装置および減圧VPE装置に大別される。常圧vpx装
置の方が、装置が簡単であり、反応ガスの切り換え等に
よる結晶成長室内の圧力変動も少ない。しかし、エピタ
キシャル成長する材料によっては、結晶成長室内の圧力
が、大気圧よりも低い方が好ましい場合がある。特にI
nP系の場合や高純度の結晶膜の場合顕著である。
Generally, the equipment used for this type of vapor phase growth method uses the pressure of the gas in the crystal growth chamber to create a normal pressure (atmospheric pressure) vpx.
It is broadly divided into equipment and reduced pressure VPE equipment. The atmospheric pressure VPX apparatus is simpler and has less pressure fluctuations in the crystal growth chamber due to switching of reaction gas, etc. However, depending on the material to be epitaxially grown, it may be preferable for the pressure inside the crystal growth chamber to be lower than atmospheric pressure. Especially I
This is noticeable in the case of nP type or high purity crystalline films.

従来、減圧気相成長法には第6図に示すような装置が用
いられていた(犬場康夫ら、1985年7月19日応用
物理学結晶工学分科会第2回結晶工学シンポジウム予稿
集P37)。1はキャリアガス用水素(H2)である。
Conventionally, an apparatus as shown in Figure 6 has been used for the reduced pressure vapor phase growth method (Yasuo Inuba et al., Proceedings of the 2nd Crystal Engineering Symposium, Applied Physics Crystal Engineering Subcommittee, July 19, 1985, P37 ). 1 is hydrogen (H2) for carrier gas.

本装置は(ム1xG4+−X)yIn1yP系の結晶成
長に用いられる。■族原料ガス及びP型ドーパントガス
には、トリメチルガリウムT M G ((CH3)3
Ga )、トリメチルアルミニウム7M人((CH5)
MAl)、トリメチルインジウムTMI((CHs>5
In )、及びジメチルジ/りDMZ((OL)2Zn
)が用いられ、それらは同一配管内に導入され、ニード
ル弁32を介して導入管41に導入される。又V族原料
ガス及びn型ドーパントガスには、ホスフィンPH33
3,77177人5H334及びセレン化水素H2S6
35が用いられ、それらは同一配管に導入され、ニード
ル弁31を介して、導入管4o及び41へと導入され、
■族原料ガスと混合し、石英炉芯管44内へ導入される
This apparatus is used for crystal growth of the (M1xG4+-X)yIn1yP system. Trimethylgallium TMG ((CH3)3
Ga), trimethylaluminum 7M ((CH5)
MAl), trimethylindium TMI ((CHs>5
), and dimethyldi/diDMZ ((OL)2Zn
) are used, and they are introduced into the same pipe and introduced into the introduction pipe 41 via the needle valve 32. In addition, phosphine PH33 is used as the V group raw material gas and n-type dopant gas.
3,77177 people 5H334 and hydrogen selenide H2S6
35 are used, they are introduced into the same pipe, and are introduced into the introduction pipes 4o and 41 through the needle valve 31,
It is mixed with the Group (1) raw material gas and introduced into the quartz furnace core tube 44 .

石英炉芯管44内の気体圧力は、ニードル弁31゜32
及び圧力調整弁51を調整することにより、所望の圧力
に設定される。この時、真空装置としてロータリポンプ
62が用いられる。第4図に示される装置では、■族原
料ガス及びP型ドーパントガスは同一配管内で混合され
、■族原料ガス及びn型ドーパントガスは同一配管内で
混合され、各々ニードル弁31.32を介して導入管4
1に導びかれる構造になっていた。
The gas pressure inside the quartz furnace core tube 44 is controlled by the needle valves 31 and 32.
By adjusting the pressure regulating valve 51, the desired pressure is set. At this time, a rotary pump 62 is used as a vacuum device. In the apparatus shown in FIG. 4, the Group 1 raw material gas and the P-type dopant gas are mixed in the same pipe, and the Group 2 raw material gas and the N-type dopant gas are mixed in the same pipe, and the needle valves 31 and 32 are respectively mixed. Introductory tube 4 through
The structure was guided by 1.

発明が解決しようとする問題点 しかしながら上記のような装置を用いた方法だと、■族
原料ガス36.37.38及びD M Z39はニード
ル弁32を介して導入管41に導入される時混合される
が、V族原料やH2Seとの混合には導入管41内のみ
であり、結晶成長室に導入さnた時、充分混合されない
。したがって大面積にわたって均一な薄膜の形成は非常
に難しい問題点があった。
Problems to be Solved by the Invention However, in the method using the above-mentioned device, the group (I) raw material gases 36, 37, 38 and D M Z 39 are mixed when introduced into the introduction pipe 41 via the needle valve 32. However, the group V raw material and H2Se are mixed only in the introduction tube 41, and when they are introduced into the crystal growth chamber, they are not mixed sufficiently. Therefore, it is very difficult to form a uniform thin film over a large area.

問題点を解決するための手段 本発明は上記問題点を解決するため、第1の同一元素反
応ガスの全てと第2の同一元素反応ガスの少なくとも1
種を、たとえば入口側に設けられた開閉度調整可能なオ
リスイスを介して入口側よりも細い管からなる混合器を
用いて充分に混合し結晶成長室内へ導入するようにした
ものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides that all of the first same-element reaction gases and at least one of the second same-element reaction gases
For example, the seeds are thoroughly mixed using a mixer made of a narrower tube than the inlet side, and then introduced into the crystal growth chamber via an oriSwiss that is provided on the inlet side and whose opening/closing degree can be adjusted.

作用 この技術的手段による作用は次のようになる。action The effect of this technical means is as follows.

同一族元素反応ガス及び異族元素反応ガスをガス混合が
行なわれたのち結晶成長室内に導入されるため組成やド
ーピング量のばらつきはきわめて少なくなった。
Since the same family element reaction gas and the different group element reaction gas are introduced into the crystal growth chamber after gas mixing, variations in composition and doping amount are extremely small.

実施例 本発明による具体的な実施例を第1図に示す。Example A specific embodiment according to the present invention is shown in FIG.

100は複数の反応ガスの入口例えば断面積の直径ば%
インチ、101は取手104を摺動することにより開閉
度調整可能なオリフィス、102はオリフィス101を
通過した後、広い空間に出すことによυ混合を促進する
混合部人、103は混合部人を通過した後、狭い空間に
導入することによシ、混合を促進するだけでなく素速く
通過させるため細い管からなる混合部B例えば断面積の
直径はμインチ、106はベローである。
100 is the inlet of multiple reaction gases, for example, the diameter of the cross-sectional area is %
101 is an orifice whose opening/closing degree can be adjusted by sliding the handle 104, 102 is a mixing member that promotes υ mixing by letting it out into a wide space after passing through the orifice 101, and 103 is a mixing member. After passing through, the mixture is introduced into a narrow space to not only promote mixing but also to allow the mixture to pass through quickly. For example, the mixing section B consists of a thin tube, for example, the cross-sectional area has a diameter of .mu.inch, and 106 is a bellows.

本発明の混合器ビ用いて、第2図に示されるようなMO
VPK装置を作製した。この装置を用いて人7ieaA
s系層のエピタキシャル成長を行ない良好な結果を得た
。本発明の効果をより明らかにするために、人dGaA
s / GaAs /人/GaAs / GaAsの単
一井戸層を作製し、フォトルミネッセンスにより、層厚
及び組成のばらつきを調べた。■族反応ガスとしてトリ
メチルガリウムTMG((0H3)3Ga ) 36、
トリメチルアルミニウム7M人((CH5)5ム1)3
7、■族反応ガスとしてアルシンム5H534f用いた
。P型ドーパントにはジメチルジンクD M Z ((
CH,)2Zn ) 39、n型ドーパントにセレン化
水素H2Se 35 i用いた。
Using the mixer bi of the present invention, MO as shown in FIG.
A VPK device was created. Using this device, people 7ieaA
Good results were obtained by epitaxially growing an s-based layer. In order to clarify the effects of the present invention, human dGaA
A single well layer of s/GaAs/Human/GaAs/GaAs was fabricated, and variations in layer thickness and composition were investigated by photoluminescence. Trimethylgallium TMG ((0H3)3Ga) 36 as a group (III) reaction gas,
Trimethylaluminum 7M people ((CH5)5M1)3
7. Alsym 5H534f was used as the group (Ⅰ) reaction gas. Dimethyl zinc DM Z ((
CH, )2Zn ) 39, hydrogen selenide H2Se 35 i was used as the n-type dopant.

キャリアガスはPd拡散膜を通った高純度水素ガスで流
量は6.sl/minである。基板200はeaAs(
1o o )で、基板温度は700°Cである。
The carrier gas is high-purity hydrogen gas that has passed through a Pd diffusion membrane, and the flow rate is 6. sl/min. The substrate 200 is made of eaAs (
1o o ), and the substrate temperature is 700°C.

石英炉芯管44内の気体の圧力は混合器本体106のオ
リフィス101及び圧力調整弁51を調整することによ
り0゜1気圧に保たれる。成長速度は、約1μm/hr
になるように、TMG36もしくはTMG36+TMA
37の濃度を調整する。さらにAjxG4+−xksの
A5の混晶比は0.3になるようにTMG36とTMλ
37の濃度比も合わせて調整する。
The pressure of the gas in the quartz furnace core tube 44 is maintained at 0.degree. and 1 atmosphere by adjusting the orifice 101 of the mixer body 106 and the pressure regulating valve 51. Growth rate is approximately 1 μm/hr
TMG36 or TMG36+TMA so that
Adjust the density of 37. Furthermore, TMG36 and TMλ are adjusted so that the mixed crystal ratio of A5 in AjxG4+-xks is 0.3.
The concentration ratio of 37 is also adjusted accordingly.

ます人jo3Gao7As層201を基板上に約0.2
μIn成長した後、GaAs層202を約40入成長し
、さらにA7J、5Ga(1,7ムS層203を0.2
μm成長してA105G2Lo7ムs / GaAs 
/ Aeo、5G”IL7ムS の5QW(Singl
e Quatum Wall )構造を作製する(第3
図)。第4図は室温における成長結晶のフォトルミネッ
センスを示す。ピーク1は表面のA6o、5Gao、6
ムSのフォトルミネッセンスであり、ピーク2とピーク
3はG&ムS井戸層からのフォトルミネッセンスである
。ヘテロ界面が急峻であるため、ヘビーホールとライト
ホールとの再結合による発光が分離されて観察されてい
るのがわかる。
Place the As layer 201 on the substrate with a thickness of about 0.2
After the μIn growth, a GaAs layer 202 of about 40 μm is grown, and an A7J, 5Ga (1.7 μm) S layer 203 of 0.2 μm is grown.
μm grown A105G2Lo7mus/GaAs
/ Aeo, 5G"IL7MUS's 5QW (Singl
e Quantum Wall) structure (3rd step)
figure). FIG. 4 shows the photoluminescence of the grown crystal at room temperature. Peak 1 is surface A6o, 5Gao, 6
Peak 2 and peak 3 are photoluminescence from the G&muS well layer. It can be seen that because the hetero interface is steep, the light emission due to recombination between the heavy hole and light hole is observed separately.

このスペクトルは、成長結晶のほぼ中央である75ζ直
径が3インチの基板において、ピーク1は±1.5nm
、ピーク2及びピーク3は±3n!Ifはどばらついて
いることがわかった0これらを組成及び井戸層の層厚に
換算すると、±0.01及び±4人となり実用上全く問
題にならないばらつきである。
This spectrum shows that peak 1 is ±1.5 nm at a substrate with a 75ζ diameter of 3 inches, which is approximately the center of the grown crystal.
, peak 2 and peak 3 are ±3n! It was found that If was found to vary widely. When these values are converted into the composition and the thickness of the well layer, they become ±0.01 and ±4 people, which is a variation that does not pose any problem in practice.

すなわち混合器本体106及び混合部B103を用いる
ことにより、組成及び層厚の均一性は飛躍的に向上した
。尚、本発明による混合器を用いずに同様なSQWを作
成した。表面のモフオロジーには大差は見受けられない
が、ヘビーホールとライトホールとの再結合による発光
ははっきりとは分離されなかった。この原因としては、
ヘテロ界面が急峻でないかあるいは層厚あるいは組成が
ばらついているためだと思われる。混合器を用いないだ
けであるので、ヘテロ界面やGILAS井戸層よりもA
JGaAS層の組成のばらつきが犬きく幼いていると思
われる。又ドーピングを行なったところ、P型、n型と
もにほとんどばらつきがない。
That is, by using the mixer main body 106 and the mixing part B103, the uniformity of the composition and layer thickness was dramatically improved. Note that a similar SQW was created without using the mixer according to the present invention. Although there was no significant difference in surface morphology, the light emission due to recombination between heavy holes and light holes could not be clearly separated. The cause of this is
This is probably because the hetero interface is not steep or the layer thickness or composition varies. Since no mixer is used, the A
It seems that the variation in the composition of the JGaAS layer is extremely small. Further, when doping was performed, there was almost no variation in both the P type and the n type.

以上述べた実施例においては、ム7!GaAs /Ga
Asについて説明したが、InGaAsP/InP系や
AlGaInP /GaAs系は勿論のこと、他のI−
V族および■−■族化合物半導体や混晶半導体の結晶成
長に用いることは言うまでもない。尚混合器の構成とし
て、ペローシールニードル弁と断面積の直径が偽インチ
のステンレス管を組み合わせてもよい。
In the embodiment described above, Mu7! GaAs/Ga
Although As has been explained, not only the InGaAsP/InP system and the AlGaInP/GaAs system but also other I-
Needless to say, it can be used for crystal growth of V group and ■-■ group compound semiconductors and mixed crystal semiconductors. The mixer may be constructed by combining a Perot Seal needle valve and a stainless steel tube with a cross-sectional area diameter of approximately 1 inch.

発明の効果 本発明の気相成長方法は、同一族元素反応ガス及び異族
元素反応ガスを開閉度調整可能なオリフィスを介して混
合邦人および混合部已において充分混合されるので、成
長薄膜の組成及びドーピング及び層厚はほとんどばらつ
きがなくなった。すなわち、大面積にわたってヘテロ界
面やPn接合の界面が極めて急峻にしかも再現性よく得
られるようになった。その結果、この結晶より作られる
デバイスのコストも大幅に削減することが可能とな9、
非常に実用的効果は大である。
Effects of the Invention In the vapor phase growth method of the present invention, the same family element reaction gas and the different group element reaction gas are thoroughly mixed in the mixing section through the orifice whose opening/closing degree can be adjusted. The doping and layer thickness are almost uniform. That is, it has become possible to obtain extremely steep hetero interfaces and Pn junction interfaces over a large area with good reproducibility. As a result, it is possible to significantly reduce the cost of devices made from this crystal9.
It has great practical effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例方法に用いる混合器の概略断
面図、第2図は本実施例方法を用いたMOVPE装置の
構成図、第3図は本実施例方法を用いて作製したSQW
層の断面図、第4図は同SQW層の2オドルミネツセン
スを示す特性図、第5図は従来のMO”/PE装置の構
成図である。 44・・・・・・石英炉芯管(結晶成長室)、46・・
・・・・サセプタ、103・・・・・・混合部B、10
6・・・・・・混合器本体、200・・・・・・基板。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図    too−Ao 1蒋−敢予 第4図 ソ炙(nm ]
Fig. 1 is a schematic cross-sectional view of a mixer used in the method of an embodiment of the present invention, Fig. 2 is a configuration diagram of a MOVPE device using the method of this embodiment, and Fig. 3 is a schematic cross-sectional view of a mixer used in the method of the embodiment of the present invention. SQW
A cross-sectional view of the layer, Fig. 4 is a characteristic diagram showing the 2-odorluminescence of the same SQW layer, and Fig. 5 is a configuration diagram of a conventional MO''/PE device. 44...Quartz furnace core Tube (crystal growth chamber), 46...
...Susceptor, 103...Mixing part B, 10
6... Mixer main body, 200... Board. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure too-Ao 1 Jiang-Yanyu Figure 4 So-fu (nm]

Claims (3)

【特許請求の範囲】[Claims] (1)結晶成長室内に反応ガスを導入し、前記結晶成長
室内に載置されたサセプタ上の基板上に薄膜を形成する
に際し、第1の同一族元素反応ガスの全てと第2の同一
族元素反応ガスの少なくとも1種を同一混合器を介して
前記結晶成長室に導入してなる気相成長方法。
(1) When introducing a reactive gas into the crystal growth chamber and forming a thin film on the substrate on the susceptor placed in the crystal growth chamber, all of the first homogeneous element reactive gas and the second homogeneous element reactive gas are introduced into the crystal growth chamber. A vapor phase growth method comprising introducing at least one elemental reaction gas into the crystal growth chamber through the same mixer.
(2)入口側に設けられた開閉度調整可能なオリフィス
を介して入口側よりも細い管からなる混合器を用いる特
許請求の範囲第1項に記載の気相成長方法。
(2) The vapor phase growth method according to claim 1, in which a mixer consisting of a tube narrower than the inlet side is used via an orifice that is provided on the inlet side and whose opening/closing degree can be adjusted.
(3)入口側の断面積の直径はほぼ1/4インチであり
、出口側の細い管の断面積の直径はほぼ1/8インチで
ある混合器を用いる特許請求の範囲第1項に記載の気相
成長方法。(4)減圧有機金属気相成長を行う特許請求
の範囲第1項に記載の気相成長方法。
(3) Claim 1 using a mixer in which the diameter of the cross-sectional area on the inlet side is approximately 1/4 inch, and the diameter of the cross-sectional area of the narrow tube on the outlet side is approximately 1/8 inch. vapor phase growth method. (4) The vapor phase growth method according to claim 1, which performs reduced pressure organometallic vapor phase growth.
JP6154487A 1987-03-17 1987-03-17 Vapor growth method Pending JPS63227008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6154487A JPS63227008A (en) 1987-03-17 1987-03-17 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6154487A JPS63227008A (en) 1987-03-17 1987-03-17 Vapor growth method

Publications (1)

Publication Number Publication Date
JPS63227008A true JPS63227008A (en) 1988-09-21

Family

ID=13174167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6154487A Pending JPS63227008A (en) 1987-03-17 1987-03-17 Vapor growth method

Country Status (1)

Country Link
JP (1) JPS63227008A (en)

Similar Documents

Publication Publication Date Title
US4659401A (en) Growth of epitaxial films by plasma enchanced chemical vapor deposition (PE-CVD)
JP3198912B2 (en) Method for producing group 3-5 compound semiconductor
JP2789861B2 (en) Organometallic molecular beam epitaxial growth method
JP2717786B2 (en) Semiconductor crystal epitaxial growth method and molecular layer epitaxy apparatus used in the method
JPS63227008A (en) Vapor growth method
JPH1174202A (en) Vapor growth device of gallium nitride iii-v compound semiconductor and gallium nitride iii-v compound semiconductor device and its manufacture
Azoulay et al. Selective growth of GaAs by organometallic vapor phase epitaxy at atmospheric pressure
JP2773849B2 (en) Vapor phase growth method and photoexcited vapor phase epitaxy apparatus
JP2934740B2 (en) Equipment for epitaxial growth of semiconductor crystals
Tsang Chemical beam epitaxy of InGaAs
Katsuyama et al. Molecular stream epitaxy of ultrathin InGaAs/GaAsP superlattices
JP2827736B2 (en) Vapor growth method
JPS6333811A (en) Vopor growth method
JP3109149B2 (en) Compound semiconductor crystal growth method
JP2889291B2 (en) Method for manufacturing p-type semiconductors of group III-V
JPS59170000A (en) Device for crystal growth
JPS6290925A (en) Method for vapor growth
JPS6317293A (en) Method for forming thin film of compound semiconductor and device therefor
JPH01206618A (en) Organic metal vapor growth method
US6936103B2 (en) Low indium content quantum well structures
JPH03211723A (en) Forming thin film by vapor phase epitaxy, manufacture of transistor, and apparatus for vapor phase epitaxy
JPH06244110A (en) Vapor growth equipment
JPH0788276B2 (en) Vapor phase epitaxial growth method
JPH04254490A (en) Vapor growth method
JP2687862B2 (en) Method of forming compound semiconductor thin film