JP2576524B2 - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JP2576524B2
JP2576524B2 JP21474787A JP21474787A JP2576524B2 JP 2576524 B2 JP2576524 B2 JP 2576524B2 JP 21474787 A JP21474787 A JP 21474787A JP 21474787 A JP21474787 A JP 21474787A JP 2576524 B2 JP2576524 B2 JP 2576524B2
Authority
JP
Japan
Prior art keywords
growth
inp substrate
layer
vapor phase
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21474787A
Other languages
Japanese (ja)
Other versions
JPS6457711A (en
Inventor
秀人 石川
幹夫 鎌田
俊雅 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP21474787A priority Critical patent/JP2576524B2/en
Publication of JPS6457711A publication Critical patent/JPS6457711A/en
Application granted granted Critical
Publication of JP2576524B2 publication Critical patent/JP2576524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気相成長方法、特にInP基板上に格子整合
するAlInAs、GaInAs等の化合物半導体層を気相成長する
方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth method, and more particularly to a method of vapor phase growing a compound semiconductor layer such as AlInAs or GaInAs lattice-matched on an InP substrate.

〔発明の概要〕[Summary of the Invention]

本発明は、InP基板上への化合物半導体層の気相成長
方法において、成長前にPH3雰囲気中で成長温度以上、3
0分以上の熱処理をInP基板に施した後、化合物半導体層
の気相成長を開始することにより、InP基板と気相成長
層との界面に存在していたキャリアを減少もしくは消失
するようにしたものである。
The present invention provides a vapor growth method of a compound semiconductor layer on an InP substrate, a growth temperature higher before growing in PH 3 atmosphere, 3
After performing a heat treatment of 0 minute or more on the InP substrate, the vapor phase growth of the compound semiconductor layer is started to reduce or eliminate the carriers present at the interface between the InP substrate and the vapor phase growth layer. Things.

〔従来の技術〕[Conventional technology]

InP基板上にAlInAs、GaInAs等の混晶を結晶成長させ
る研究はMOCVD(有機金属気相成長)法をはじめMBE(分
子線エピタキシ)法、CBE(ケミカル ビーム エピタ
キシ)法等で行われている。
Research on crystal growth of mixed crystals such as AlInAs and GaInAs on InP substrates has been conducted by MOCVD (metal organic chemical vapor deposition), MBE (molecular beam epitaxy), CBE (chemical beam epitaxy), and the like.

III族元素の原料として有機金属を用いるMOCVD法では
V族元素の原料としてAsH3、PH3等の水素化物が用いら
れるのが一般的である。
In the MOCVD method using an organic metal as a raw material for a group III element, a hydride such as AsH 3 or PH 3 is generally used as a raw material for a group V element.

AlxIn1-xAs,GaxIn1-xAs等の混晶を混晶比を制御する
ことによりInPと格子整合させることが可能である。MOC
VD法によりInP基板上に格子整合したAlInAs、GaInAs等
の混晶を結晶成長させる際、InP基板が所定の成長温度
になるまでの基板加熱中は蒸気圧の大きなV族元素の基
板からの解離を防ぐため、リン圧を加える必要がある。
このため、例えばGaAs基板でGaAs系のエピタキシャル成
長する際、GaAs基板を加熱するときにAsH3を供給すると
同様に、InP基板加熱時に水素化物であるPH3に反応管に
供給してInP基板にリン圧を加える方法が一般的に行わ
れている。そして、従来はInP基板が所定の成長温度に
保たれる様になった後(例えば2〜3分後)、PH3の供
給を止め、反応管にAsH3と所望の有機金属ガスを供給し
てInP基板上にAlInAs、GaInAs等の混晶の成長を開始し
ていた。
Mixed crystals such as AlxIn 1 -xAs and GaxIn 1 -xAs can be lattice-matched to InP by controlling the mixed crystal ratio. MOC
When growing a mixed crystal of AlInAs, GaInAs, etc. lattice-matched on an InP substrate by the VD method, dissociation of the group V element with a high vapor pressure from the substrate during the heating of the substrate until the InP substrate reaches a predetermined growth temperature To prevent this, it is necessary to apply phosphorous pressure.
Thus, for example, when the epitaxial growth of GaAs-based with GaAs substrates, as well as supplying AsH 3 when heating the GaAs substrate, phosphorus InP substrate by supplying the reaction tube PH 3 is hydride when InP substrate heating A method of applying pressure is generally used. Conventionally, after the InP substrate is kept at a predetermined growth temperature (for example, after a few minutes), supply of PH 3 is stopped, and AsH 3 and a desired organometallic gas are supplied to the reaction tube. Therefore, the growth of mixed crystals of AlInAs, GaInAs, etc. on the InP substrate was started.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述のようにして得られたほぼ格子整合、もしくは格
子整合した上記混晶の電気伝導性をホール測定手段で測
定すると、常にn型であり、p型が得られたという報告
例はない。(すなわちアンドープ混晶の場合V/III比の
制御だけでp型、n型を制御できなかった。) 第4図に示す半絶縁性InP基板(1)上に成長した例
えば1μm厚のエピタキシャル成長層(2)を表面より
徐々にエッチングしホール測定を繰り返して行と、第3
図に示すようにエッチング量に対するキャリア濃度はエ
ピタキシャル成長層の体積濃度に対応した傾きをもって
減少するが、エピタキシャル成長層(2)とInP基板
(1)との界面近傍までエッチングしてもn型のキャリ
アが観測されることが多い。
When the electrical conductivity of the above-obtained lattice-matched or crystal-matched mixed crystal obtained by the above-described method is measured by the Hall measuring means, there is no report that n-type is obtained and p-type is obtained. (That is, in the case of an undoped mixed crystal, p-type and n-type could not be controlled only by controlling the V / III ratio.) For example, a 1 μm-thick epitaxial growth layer grown on the semi-insulating InP substrate (1) shown in FIG. (2) is gradually etched from the surface, and the hole measurement is repeated.
As shown in the figure, the carrier concentration with respect to the etching amount decreases with a slope corresponding to the volume concentration of the epitaxial growth layer, but n-type carriers remain even when the etching is performed near the interface between the epitaxial growth layer (2) and the InP substrate (1). Often observed.

この界面に存在するn型のキャリア(3)により、成
長層(2)の特性を評価する際に悪影響を及ぼし、正し
く評価できない、或はFETなどのデバイス構造を作製し
たときに好ましくない電気伝導のパスを生じてしまう等
の不都合があった。
The n-type carrier (3) present at this interface has an adverse effect on the evaluation of the characteristics of the growth layer (2) and cannot be evaluated correctly, or unfavorable electric conduction when fabricating a device structure such as an FET. There was an inconvenience such as that a pass was generated.

本発明は、上記の点に鑑み、n型の界面伝導が減少も
しくは消失するようにInP基板上に化合物半層を成長す
ることができる気相成長方法を提供するものである。
The present invention has been made in view of the above circumstances, and provides a vapor phase growth method capable of growing a compound half layer on an InP substrate so that n-type interface conduction is reduced or eliminated.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は、MOCVD法を用いてInP基板上にInPに格子整
合するAlInAs、GaInIs等の化合物半導体層を気相成長す
るに際し、成長前に反応管内にPH3を導入し、このPH3
囲気中で気相成長温度以上、30分以上の熱処理をInP基
板に施した後、反応ガスに切換えて化合物半導体層の気
相成長を開始するようになす。
The present invention, AlInAs lattice-matched to InP on an InP substrate by MOCVD, when the compound semiconductor layer such as GaInIs vapor phase growth, introducing PH 3 before growth into the reaction tube, the PH 3 atmosphere After performing a heat treatment on the InP substrate at a temperature equal to or higher than the vapor phase growth temperature for 30 minutes or more, the reaction gas is switched to start the vapor phase growth of the compound semiconductor layer.

〔作用〕[Action]

成長前にPH3雰囲気中で気相成長温度以上、30分以上
の熱処理をInP基板に施して後、気相成長を開始するこ
とにより、気相成長された化合物半導体層とInP基板と
の界面において従来観測されるn型の伝導が減少もしく
は消失される。
Before the growth, the InP substrate is subjected to a heat treatment at a temperature equal to or higher than the vapor phase growth temperature for 30 minutes or more in a PH 3 atmosphere, and then the vapor phase growth is started, so that the interface between the compound semiconductor layer and the InP substrate. In this case, the n-type conduction conventionally observed is reduced or eliminated.

〔実施例〕〔Example〕

第2図に示すようにMOCVD法により半絶縁性InP基板
(1)上に厚さ1μmのアンドープGaInAs層(4)をエ
ピタキシャル成長する場合について説明する。
A case where an undoped GaInAs layer (4) having a thickness of 1 μm is epitaxially grown on a semi-insulating InP substrate (1) by MOCVD as shown in FIG. 2 will be described.

反応管内のサセプタ上にInP基板(1)を配し、成長
前に反応管内に水素ベース20%のPH3(流量400cc/分)
とキャリアガスとしてのH2ガス(流量12/分)を毎秒
1mの流速で供給する。圧力は常圧とした。
An InP substrate (1) is placed on the susceptor in the reaction tube, and 20% hydrogen-based PH 3 (flow rate 400 cc / min) is placed in the reaction tube before growth.
And H 2 gas (flow rate 12 / min) as carrier gas every second
Supply at a flow rate of 1m. The pressure was normal pressure.

そしてInP基板(1)を加熱し、基板温度が気相成長
温度640℃に保たれた後、この状態を所定時間保持してP
H3の供給を止め、ガスを切換えて反応管内にキャリアガ
スと共にAsH3とTMG(トリメチル カリウム)、TMI(ト
リメチル インジウム)による反応ガスを供給し、アン
ドープGaInAs層(4)の成長を開始する。
Then, the InP substrate (1) is heated, and the substrate temperature is maintained at a vapor phase growth temperature of 640 ° C., and this state is maintained for a predetermined period of time.
The supply of H 3 is stopped, the gas is switched, and a reaction gas of AsH 3 , TMG (trimethyl potassium) and TMI (trimethyl indium) is supplied into the reaction tube together with the carrier gas, and the growth of the undoped GaInAs layer (4) is started.

第1図は成長前にPH3雰囲気中でInP基板(1)が熱処
理されたときの処理時間即ちInP基板(1)が成長温度6
40℃に加熱された後の保持時間に対するエピタキシャル
成長層(アンドープGaInAs層)−InP基板界面(5)に
おけるシートキャリア濃度Noの変化を示すグラフであ
る。同図中、曲線(I)はシートキャリア濃度、曲線
(II)はInP基板(1)の基板温度を示す。
FIG. 1 shows the processing time when the InP substrate (1) was heat-treated in a PH 3 atmosphere before growth, that is, the InP substrate (1) was grown at a growth temperature of 6 ° C.
FIG. 7 is a graph showing a change in sheet carrier concentration No at an epitaxial growth layer (undoped GaInAs layer) -InP substrate interface (5) with respect to a holding time after being heated to 40 ° C. FIG. In the figure, curve (I) shows the sheet carrier concentration, and curve (II) shows the substrate temperature of the InP substrate (1).

第1図から明らかなように、InP基板(1)が成長温
度640℃に保たれた後、InP基板をPH3雰囲気中に保持し
ておく保持時間(PH3処理時間)の増大とともに、界面
(5)における伝導を示すシートキャリア濃度Noは減少
する傾向にある。そして、保持時間を30分以上にすると
きは、シートキャリア濃度を極めて減少もしくは0にす
ることができる。
As is clear from FIG. 1, after the InP substrate (1) was maintained at the growth temperature of 640 ° C., the retention time (PH 3 processing time) for keeping the InP substrate in the PH 3 atmosphere was increased, and the interface was increased. The sheet carrier concentration No indicating the conduction in (5) tends to decrease. When the holding time is set to 30 minutes or more, the sheet carrier concentration can be extremely reduced or set to zero.

尚、上例では成長前の熱処理時のInP基板の温度を成
長温度の640℃としたが、その他例えば第1図の曲線(I
II)で示すように成長温度より高い例えば700℃に保
ち、成長時に成長温度640℃としてもよく、或は曲線(I
V)で示すように熱処理時の前半を例えば700℃とした後
半を成長温度640℃に保ようにしてもよい。
In the above example, the temperature of the InP substrate during the heat treatment before the growth was set to the growth temperature of 640 ° C.
As shown in II), the growth temperature may be maintained at, for example, 700 ° C. higher than the growth temperature, and the growth temperature may be set to 640 ° C. during growth, or the curve (I
As shown in V), the first half of the heat treatment may be, for example, 700 ° C., and the second half may be maintained at the growth temperature of 640 ° C.

〔発明の効果〕〔The invention's effect〕

本発明によれば、成長前にPH3雰囲気中で成長温度以
上、30分以上の熱処理をInP基板に施した後、反応ガス
に切換えて気相成長を開始することにより、エピタキシ
ャル成長層−InP基板界面でのn型の伝導を減少もしく
は消失させることができる。しかも従来のMOCVD装置に
何ら変更を加えることなくこれを実施できる。
According to the present invention, the epitaxial growth layer-InP substrate is subjected to a heat treatment at a growth temperature or more in a PH 3 atmosphere for 30 minutes or more before the growth, and thereafter, the gaseous growth is started by switching to a reaction gas. N-type conduction at the interface can be reduced or eliminated. Moreover, this can be performed without making any changes to the conventional MOCVD apparatus.

従って、本方法を用いてInP基板上に化合物半導体層
を気相成長すれば、その成長層の特性の評価を正しく行
うことができ、またFETなどのデバイス構造を作製した
際にも電気伝導のパスが生じないものである。
Therefore, if a compound semiconductor layer is vapor-phase grown on an InP substrate using this method, the characteristics of the grown layer can be correctly evaluated, and the electrical conductivity can be improved even when a device structure such as an FET is manufactured. No path occurs.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による気相成長方法の説明に供する界面
におけるシートキャリア濃度とPH3処理時間の関係を示
すグラフ、第2図は本実施例の試料の断面図、第3図は
従来例の説明に供するエピタキシャル成長層の各深さ位
置におけるシートキャリア濃度nSの変化を示すグラフ、
第4図は第3図の測定試料の断面図である。 (1)はInP基板、(2)はエピタキシャル成長層、
(4)はアンドープGaInAs層である。
Graph showing the relationship between sheet carrier concentration and the PH 3 processing time at the interface Figure 1 is for explaining the vapor growth method according to the invention, FIG. 2 is a cross-sectional view of the sample of the present embodiment, FIG. 3 is a conventional example Graph showing the change of the sheet carrier concentration n S at each depth position of the epitaxial growth layer provided for the description,
FIG. 4 is a sectional view of the measurement sample of FIG. (1) InP substrate, (2) epitaxial growth layer,
(4) is an undoped GaInAs layer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】InP基板上に化合物半導体層を気相成長す
るに際し、 PH3雰囲気中で成長温度以上、30分以上の熱処理を上記I
nP基板に施した後、 上記化合物半導体層の気相成長を開始することを特徴と
する気相成長方法。
1. A method according to claim 1, wherein said compound semiconductor layer is subjected to a heat treatment at a growth temperature of 30 ° C. or more in a PH 3 atmosphere for growing said compound semiconductor layer on the InP substrate in a vapor phase.
After applying to an nP substrate, the vapor phase growth of the compound semiconductor layer is started.
JP21474787A 1987-08-28 1987-08-28 Vapor growth method Expired - Lifetime JP2576524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21474787A JP2576524B2 (en) 1987-08-28 1987-08-28 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21474787A JP2576524B2 (en) 1987-08-28 1987-08-28 Vapor growth method

Publications (2)

Publication Number Publication Date
JPS6457711A JPS6457711A (en) 1989-03-06
JP2576524B2 true JP2576524B2 (en) 1997-01-29

Family

ID=16660915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21474787A Expired - Lifetime JP2576524B2 (en) 1987-08-28 1987-08-28 Vapor growth method

Country Status (1)

Country Link
JP (1) JP2576524B2 (en)

Also Published As

Publication number Publication date
JPS6457711A (en) 1989-03-06

Similar Documents

Publication Publication Date Title
US4876219A (en) Method of forming a heteroepitaxial semiconductor thin film using amorphous buffer layers
US5168077A (en) Method of manufacturing a p-type compound semiconductor thin film containing a iii-group element and a v-group element by metal organics chemical vapor deposition
US20010055660A1 (en) Bulk single crystal gallium nitride and method of making same
JPH0383332A (en) Manufacture of silicon carbide semiconductor device
US4948751A (en) Moelcular beam epitaxy for selective epitaxial growth of III - V compound semiconductor
WO1998056091A9 (en) LONG WAVELENGTH DH, SCH AND MQW LASERS BASED ON Sb
EP0524817B1 (en) Crystal growth method of III - V compound semiconductor
JP2576524B2 (en) Vapor growth method
JPH05175150A (en) Compound semiconductor and its manufacture
JP2735190B2 (en) Molecular beam epitaxy growth method and growth apparatus
JP2885435B2 (en) Method for manufacturing compound semiconductor thin film
JP2661155B2 (en) Vapor phase epitaxial growth method
JPH0888185A (en) Semiconductor crystal growth method
JPH02199875A (en) Semiconductor element and manufacture thereof
JP3101753B2 (en) Vapor growth method
JPH04199507A (en) Solid phase diffusion of n-type impurity to iii-v compound semiconductor
JP2790013B2 (en) Method for epitaxial growth of III-V compound semiconductor
JP2533501B2 (en) Semiconductor epitaxial growth method
JP3316828B2 (en) Semiconductor thin film regrowth method
JPH02156522A (en) Manufacture of semiconductor device
RU2032960C1 (en) Process of manufacture of epitaxial structure containing layers of indium phosphide and arsenide-indium phosphide in as oox p oo1-oox
JPS62137821A (en) Vapor growth method for semiconductor
JP2652665B2 (en) Vapor phase epitaxial layer growth method
JPH03247597A (en) Epitaxial growth method of iii-v compound semiconductor on silicon substrate
JPH0613323A (en) Vapor phase epitaxy method for compound semiconductor mixed crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term