JPS62137821A - Vapor growth method for semiconductor - Google Patents

Vapor growth method for semiconductor

Info

Publication number
JPS62137821A
JPS62137821A JP27950585A JP27950585A JPS62137821A JP S62137821 A JPS62137821 A JP S62137821A JP 27950585 A JP27950585 A JP 27950585A JP 27950585 A JP27950585 A JP 27950585A JP S62137821 A JPS62137821 A JP S62137821A
Authority
JP
Japan
Prior art keywords
group
growing
layer
semiconductor layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27950585A
Other languages
Japanese (ja)
Inventor
Nagataka Ishiguro
永孝 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27950585A priority Critical patent/JPS62137821A/en
Publication of JPS62137821A publication Critical patent/JPS62137821A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an excellent interface characteristic and to apply the advantage of vapor phase growing widely, by performing the vapor-phase growing of a second III-V semiconductor layer, which forms a lattice alignment with a first III-V semiconductor layer and includes other group V elements, on the III-V semiconductor layer including group V elements, and further performing the vapor-phase growing of a third III-V semiconductor layer, which forms lattice alignment with the second layer and include other group V elements. CONSTITUTION:An InP substrate 1 is kept at 650 deg.C, which is a growing temperature in PH3 gas. Under this state, AsH3 gas triehylindium (TEI) and triethylgallium (TEG) are introduced, and InGaAsP 3 is grown. The gas compositions at the time of the growing are PH3/AsH3approx.=4 and TEG/TEI=0.61. The composition of the growing layer has a difference in lattice constant of + or -0.1%. The growing time is 1min, and the thickness is 200Angstrom . Thereafter, the PH3 gas is stopped, and InGaAs 2, which undergoes lattice alignment by the gas ratio of TEC/TEI=0.89, is grown. Then, the growing layer having extremely excellent state of the surface, is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、化合物半導体、特にi−v族化合物半導体の
気相成長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for vapor phase growth of compound semiconductors, particularly group IV compound semiconductors.

従来の技術 半導体の気相成長法は、液相エピタキシャル成長法と比
較して、はるかに薄い成長層を精度よく、均一に成長で
き、また、メルトバックなどの不都合な現象がないこと
から、半導体薄膜形成法として、最も有力な方法となっ
ている。最近では、異なる組成の薄層を交互に何層も成
長させる気相成長技術によシ、量子井戸レーザや高性能
電界効果トランジスタなどが実現されるようになってき
ている。このような高性能半導体素子の実現は、半導体
へテロ接合によるところが太きい。このため、成長技術
としては、ペテロ界面での欠陥発生などを抑え、良質の
接合面を得ることが要求される。
Conventional technology Compared to liquid phase epitaxial growth, the vapor phase growth method for semiconductors can grow a much thinner growth layer with higher precision and uniformity, and there are no disadvantageous phenomena such as meltback. This is the most effective method of formation. Recently, quantum well lasers, high-performance field effect transistors, and the like have been realized using vapor phase growth technology in which thin layers of different compositions are grown alternately. The realization of such high-performance semiconductor devices relies heavily on semiconductor heterojunctions. Therefore, the growth technique is required to suppress the occurrence of defects at the Peter interface and to obtain a high-quality bonding surface.

発明が解決しようとする問題点 しかしながら、厘−■化合物半導体では、高温でV族元
素の飽和蒸気圧が増大するため、V族元素の原料ガスの
量によっては、熱分解を生じやすく、とくに、V放光、
素の種類の異なる半導体へテロ接合の気相成長では、原
料ガスの切換時に成長層の一部が熱分解し、結晶性が悪
化することがさけられない。例えば、隣化インジウム(
Ink)上に砒rヒインジウム・ガリウム(InCaA
s) f成長させる場合には、Pの原料ガスであるホス
フィン(PH5)を成長装置内から完全に除去した後、
Asの原料ガスであるアルシン(AsH3)f導入し、
InGaAsの成長を行なわねばならず、rnPの成長
終了からInGaAs の成長開始までのわずかな時間
にInPの一部が熱分解してしまう。 一方、PH3ガ
スが完全に除去される以前に、適量に側脚されないAS
H3ガスを導入し、InGaAg  の成長を開始しよ
うとするならば、組成制卸できないInGaAsP中間
層が生じ、格子不整のため、結晶性の悪化が避けられな
い。
Problems to be Solved by the Invention However, in compound semiconductors, the saturated vapor pressure of group V elements increases at high temperatures, so depending on the amount of raw material gas of group V elements, thermal decomposition is likely to occur, especially in compound semiconductors. V emission,
In the vapor phase growth of semiconductor heterojunctions made of different types of elements, it is unavoidable that a part of the grown layer is thermally decomposed when switching source gases, resulting in deterioration of crystallinity. For example, indium neighbored (
Ink) on arsenic indium gallium (InCaA)
s) In the case of f-growth, after completely removing phosphine (PH5), which is the raw material gas for P, from inside the growth apparatus,
Introducing arsine (AsH3), which is a raw material gas for As,
InGaAs must be grown, and part of the InP is thermally decomposed in a short period of time from the end of rnP growth to the start of InGaAs growth. On the other hand, AS is not properly removed before the PH3 gas is completely removed.
If an attempt is made to introduce H3 gas and start the growth of InGaAg, an InGaAsP intermediate layer whose composition cannot be controlled will be formed, and deterioration of crystallinity due to lattice misalignment will inevitably occur.

問題点を解決するための手段 本発明は、前記の問題点を解決するため、■族元素のう
ちの少なくとも1つを含む第1のi −v族半導体層上
に、前記第1群の■族元素と前記第1のI−V族半導体
層に含まれるV族元素以外のV族元素のうちの少なくと
も1つを含み、かつ、前記第1のm−v族半導体層と格
子整合をなす第2のI−Vi半導体層を気相成長させる
工程と、前記第2のm −v r、33半導体居上に、
前記第2の■−V族半導体層に含まれる■族元素を含み
、かつ、前記第2のM−V族半導体層と格子整合をなす
第30■−V族半導体層を気相成長させる工程とを含む
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a first group (I)-v semiconductor layer containing at least one of the group (II) elements. Contains at least one group element and a group V element other than the group V element contained in the first group IV semiconductor layer, and is lattice matched with the first group M-V semiconductor layer. a step of vapor phase growing a second I-Vi semiconductor layer; and on the second m-v r, 33 semiconductor layer;
A step of growing a 30th ■-V group semiconductor layer in a vapor phase, which contains the group ■ element contained in the second ■-V group semiconductor layer and is lattice-matched with the second M-V group semiconductor layer. including.

作用 本発明によれば、第1の層のV族原料ガスを止めること
なく中間層の成長が開始でき、同様に、中間層の構成V
族元素の一部ガスを流して熱分解を抑えた状態で、第2
の層の成長へと移行できるため、熱的な劣化要因を排除
できる。さらに、中間層の組成が第1層と第2層とに格
子整合するように設定されているので力学的な要因によ
る結晶性の悪化をなくすことも可能となる。
According to the present invention, the growth of the intermediate layer can be started without stopping the Group V raw material gas for the first layer, and similarly, the structure of the intermediate layer V
While some of the group element gas is flowing to suppress thermal decomposition, the second
Thermal deterioration factors can be eliminated. Furthermore, since the composition of the intermediate layer is set to lattice match the first layer and the second layer, deterioration of crystallinity due to mechanical factors can be avoided.

実施例 本発明の方法を、InP上にInGaAs f成長させ
る有機金属熱分解気相成長法に応用し念実施列を第1図
に従って以下に説明する。InP基板1は、PH3i1
%の濃度で含む水素ガス中では、650°C1時間の熱
処理でも何の変化もないが、PH5を含まない雰囲気で
は、1〜2分程度の短時間でも熱分解し、In粒を形成
する。このため、InP上に直接1nGaAs  を成
長させる方法では良質な面は得られなかった。
EXAMPLE The method of the present invention is applied to a metal organic pyrolysis vapor phase epitaxy method for growing InGaAs f on InP, and a virtual array will be described below with reference to FIG. InP substrate 1 is PH3i1
% concentration of hydrogen gas, there is no change even after heat treatment at 650° C. for 1 hour, but in an atmosphere that does not contain PH5, thermal decomposition occurs even in a short time of about 1 to 2 minutes, forming In grains. For this reason, a high-quality surface could not be obtained by growing 1nGaAs directly on InP.

本発明の実施列では、InP基板1をPH3ガス中で成
長温度である650’Cに保持し、この状態で、AsH
,ガスおよびトリエチルインジウム(T]i:I)、 
トリエチルガリウム(TEG)を導入し、InGaAs
P 3を成長させた。成長時のガス組成はPI(3/A
SH,=4 、 Tel/TEI :0.61であり、
成長層の組成は格子定数のちがいが±0.1裂以下にな
っている。また成長時間は1分とし、厚さでは約200
人である。その後、PH,ガスを止め、TEG/TEI
=0.89  のガス比によシ格子整合したInGaA
g2 f成長させたところ、きわめて表面状態の良好な
成長層が得られた。
In the embodiment of the present invention, the InP substrate 1 is held at the growth temperature of 650'C in PH3 gas, and in this state, AsH
, gas and triethylindium (T]i:I),
By introducing triethyl gallium (TEG), InGaAs
Grew P3. The gas composition during growth was PI (3/A
SH,=4, Tel/TEI: 0.61,
The composition of the grown layer has a difference in lattice constant of ±0.1 fission or less. The growth time was 1 minute, and the thickness was about 200 mm.
It's a person. After that, stop the PH and gas, and TEG/TEI.
InGaA lattice-matched by a gas ratio of =0.89
When the layer was grown at 100 g2f, a grown layer with an extremely good surface condition was obtained.

第2図は、これらの結果全定量的に評価するために成長
層の厚さに対する低温(77K )での電子移動度を調
べた結果である。InGaAs1’の中間−を設けない
場合、曲線5で示すようにInGaAs層の厚さが薄く
なると移動度が低下し、界面付近の悪影響が大きい事を
示している。一方、InGaAsP中間層を用いた場合
では、曲線4に示すようにそのような傾向は見られず、
良好なペテロ界面が得られていることがわかった。
FIG. 2 shows the results of examining the electron mobility at low temperature (77K) with respect to the thickness of the grown layer in order to fully quantitatively evaluate these results. When the InGaAs 1' intermediate layer is not provided, as shown by curve 5, as the thickness of the InGaAs layer becomes thinner, the mobility decreases, indicating that the adverse effect near the interface is large. On the other hand, when an InGaAsP intermediate layer is used, no such tendency is observed as shown in curve 4.
It was found that a good Peter interface was obtained.

発明の効果 ・本発明によれば、構成V族元素の異なるペテロ接合の
気相成長においても、簡単な方法で、すぐれた界面特性
が得られ、気相成長の利点をさらに広く応用できること
が可能になると期待され、その工業的価値は犬である。
Effects of the invention - According to the present invention, excellent interfacial properties can be obtained by a simple method even in the vapor phase growth of petrojunctions with different constituent group V elements, and the advantages of vapor phase growth can be applied more widely. It is expected to become, and its industrial value is a dog.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のへテロ接合層の断面図、第
2図は本発明の一実施例で得られたInGaAs層厚と
電子移動度との関係を従来法のものと比較した図である
。 1・・・・・・InP基板、2・・・・・・InGaA
s成長層、3・・・・・・InGaAsP中間層、4・
・・・・・本発明の方法によシ得られたInGaAs層
の電子移動度、5・・・・・従来法によるInGaAs
層の電子移動度。
Figure 1 is a cross-sectional view of a heterojunction layer according to an embodiment of the present invention, and Figure 2 is a comparison of the relationship between InGaAs layer thickness and electron mobility obtained in an embodiment of the present invention with that of a conventional method. This is a diagram. 1...InP substrate, 2...InGaA
s growth layer, 3...InGaAsP intermediate layer, 4.
...Electron mobility of InGaAs layer obtained by the method of the present invention, 5...InGaAs layer obtained by conventional method
Electron mobility of the layer.

Claims (1)

【特許請求の範囲】[Claims]  V族元素のうちの少なくとも1つを含む第1のIII−
V族半導体層上に、前記第1群のV族元素と前記第1の
III−V族半導体層に含まれるV族元素以外のV族元素
のうちの少なくとも1つとを含み、かつ、前記第1のI
II−V族半導体層と格子整合をなす第2のIII−V族半
導体層を気相成長させる工程と、前記第2のIII−V族
半導体層上に、前記第2のIII−V族半導体層に含まれ
るV族元素を含み、かつ、前記第2のIII−V族半導体
層と格子整合をなす第3のIII−V族半導体層を気相成
長させる工程とを含む事を特徴とする半導体気相成長方
法。
a first III- containing at least one group V element;
On the group V semiconductor layer, the first group V element and the first group
and at least one group V element other than the group V element contained in the III-V group semiconductor layer, and the first I
a step of vapor phase growing a second III-V group semiconductor layer that is lattice-matched to the II-V group semiconductor layer; The method is characterized by comprising a step of vapor phase growing a third group III-V semiconductor layer that includes a group V element contained in the layer and is lattice-matched with the second group III-V semiconductor layer. Semiconductor vapor phase growth method.
JP27950585A 1985-12-12 1985-12-12 Vapor growth method for semiconductor Pending JPS62137821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27950585A JPS62137821A (en) 1985-12-12 1985-12-12 Vapor growth method for semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27950585A JPS62137821A (en) 1985-12-12 1985-12-12 Vapor growth method for semiconductor

Publications (1)

Publication Number Publication Date
JPS62137821A true JPS62137821A (en) 1987-06-20

Family

ID=17611979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27950585A Pending JPS62137821A (en) 1985-12-12 1985-12-12 Vapor growth method for semiconductor

Country Status (1)

Country Link
JP (1) JPS62137821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358821A (en) * 1986-08-29 1988-03-14 Sony Corp Vapor growth method
JPH0373517A (en) * 1989-08-14 1991-03-28 Nec Corp Semiconductor optical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317066A (en) * 1976-07-30 1978-02-16 Nippon Telegr & Teleph Corp <Ntt> Vapor phase epitaxial growth method
JPS61111518A (en) * 1984-03-12 1986-05-29 Kokusai Denshin Denwa Co Ltd <Kdd> Vapor phase epitaxial growth equipment
JPS61166124A (en) * 1985-01-18 1986-07-26 Oki Electric Ind Co Ltd Vapor-phase epitaxial growth method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5317066A (en) * 1976-07-30 1978-02-16 Nippon Telegr & Teleph Corp <Ntt> Vapor phase epitaxial growth method
JPS61111518A (en) * 1984-03-12 1986-05-29 Kokusai Denshin Denwa Co Ltd <Kdd> Vapor phase epitaxial growth equipment
JPS61166124A (en) * 1985-01-18 1986-07-26 Oki Electric Ind Co Ltd Vapor-phase epitaxial growth method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358821A (en) * 1986-08-29 1988-03-14 Sony Corp Vapor growth method
JPH0373517A (en) * 1989-08-14 1991-03-28 Nec Corp Semiconductor optical device

Similar Documents

Publication Publication Date Title
US5948161A (en) Method of fabricating a semiconductor device and method of cleaning a crystalline semiconductor surface
JP3093904B2 (en) Method for growing compound semiconductor crystal
JPH0484418A (en) Method of heteroepitaxial development of iii-v group compound semiconductor for different types of substrates
JP3158651B2 (en) Compound semiconductor and method of manufacturing the same
EP0524817B1 (en) Crystal growth method of III - V compound semiconductor
JPH0794494A (en) Manufacture of compound semiconductor device
JPS62137821A (en) Vapor growth method for semiconductor
CA1234036A (en) Lpe growth on group iii-v compound semiconductor substrates containing phosphorus
JP4528413B2 (en) Vapor growth method
JP4940562B2 (en) Compound semiconductor epitaxial substrate and manufacturing method thereof
JPH0684805A (en) Compound semiconductor crystalline growth method
JP2003173977A (en) Method for manufacturing compound semiconductor
JP3242571B2 (en) Vapor growth method
JP2735190B2 (en) Molecular beam epitaxy growth method and growth apparatus
JPS61166124A (en) Vapor-phase epitaxial growth method
JP3101753B2 (en) Vapor growth method
JPS63124408A (en) Crystal growth method of iii-v compound semiconductor
JP2503255B2 (en) Method for manufacturing compound semiconductor substrate
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JP2576524B2 (en) Vapor growth method
JP2897107B2 (en) Crystal growth method
JPH0680632B2 (en) Molecular beam epitaxial growth method
JPH0620968A (en) Metal film/compound semiconductor laminated structure on element semiconductor substrate and manufacture thereof
JPS5833823A (en) Molecular beam epitaxial growth apparatus
JPS6358821A (en) Vapor growth method