JPS61115324A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPS61115324A
JPS61115324A JP23782484A JP23782484A JPS61115324A JP S61115324 A JPS61115324 A JP S61115324A JP 23782484 A JP23782484 A JP 23782484A JP 23782484 A JP23782484 A JP 23782484A JP S61115324 A JPS61115324 A JP S61115324A
Authority
JP
Japan
Prior art keywords
gas
line
pressure
flow rate
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23782484A
Other languages
Japanese (ja)
Other versions
JPH0642454B2 (en
Inventor
Nagataka Ishiguro
永孝 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP59237824A priority Critical patent/JPH0642454B2/en
Publication of JPS61115324A publication Critical patent/JPS61115324A/en
Publication of JPH0642454B2 publication Critical patent/JPH0642454B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To remove unstableness of growth conditions at the starting of the growth and to improve remarkably quality of the growth layer, by eliminating pressure variation when switching gases. CONSTITUTION:Non-raw-material gas is supplied into an exhausting line 4 or an introducing line 5 through a gas flow rate controller 3 from a supplying line 2, the same as raw material gas is supplied. At the beginning, the pressure of the introducing line 5 is regulated at the atmospheric pressure through a carrier gas supplying line 6 by a flow rate regulator 7, for the purpose of eliminating large variation of the pressure in the vessel when it is switched from the exhausting line 4 with the atmospheric pressure into the introducing line 5 with a reduced pressure F (0.1 barometric pressure) through the flow rate regulator 7 by switching cocks 8 (81 or 82). At the initial state, the gas switching cock 81 is connected to the exhausting line 4 while the switching cock 82 is connected to the introducing line 5, so that raw material gas resulted from TEI bubbling and non-raw-material H2 gas being controlled at the same flow rate as the raw material gas can be simultaneously switched and supplied.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体の気相成長過程における原料ガスの供給
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for supplying raw material gas during the vapor phase growth process of semiconductors.

従来の技術 半導体の気相成長法は、液相エピタキシャル成長法と比
べて、はるかに薄い成長層を均一な厚さで精度よく形成
できる事から、半導体薄膜形成法として最も有力な方法
となっている。最近では、異なる組成の薄膜層を交互に
成長させる気相成長技術によって、量子井戸型レーザや
高性能電界効果トランジスタなどが実現されるようにな
ってきている。
Conventional technology The vapor phase growth method for semiconductors is the most effective method for forming semiconductor thin films because it can form a much thinner growth layer with uniform thickness and precision compared to the liquid phase epitaxial growth method. . Recently, quantum well lasers, high-performance field effect transistors, and the like have been realized by vapor phase growth technology in which thin film layers of different compositions are grown alternately.

発明が解決しようとする問題点 上記のような従来の気相成長法では、成長層の均一性を
増し、さらに精度良い薄膜層を得るだめに、装置内の圧
力を下げ、減圧下で成長を行なうようになってきている
。このような場合、気相成長用原料ガスを、空流し状態
から成長装置内へ導入する際、原料ガスや成長装置内の
圧力が変動するため、過渡的に原料ガスの流量制御がで
きなくなり、結果として、成長層の組成や特性を成長開
始時では制御できなくなるなど、不安定性を生ずる。
Problems to be Solved by the Invention In the conventional vapor phase growth method as described above, in order to increase the uniformity of the grown layer and obtain a thin film layer with higher precision, it is necessary to lower the pressure inside the apparatus and perform growth under reduced pressure. People are starting to do it. In such a case, when the raw material gas for vapor phase growth is introduced into the growth apparatus from an empty flow state, the raw material gas and the pressure inside the growth apparatus fluctuate, making it impossible to control the flow rate of the raw material gas transiently. As a result, instability occurs, such as the composition and properties of the grown layer becoming uncontrollable at the start of growth.

問題点を解決するだめの手段 本発明は、上記問題点が原料ガス導入前後での導入ガス
総量の変化に起因している事に注目し、これを解決する
ため、原料ガスと並列に圧力調整された水素ガスあるい
は不活性ガスによる非原料ガスの供給ラインを設け、さ
らに原料ガスと前記圧力調整された非原料ガスが互いに
反対に、排気ラインと成長装置への導入ラインとに接続
されるように切換える供給方法であり、装置には、切換
えコックを設置した。
Means to Solve the Problem The present invention focuses on the fact that the above problem is caused by a change in the total amount of introduced gas before and after introducing the raw material gas, and in order to solve this problem, pressure is adjusted in parallel with the raw material gas. A line for supplying a non-source gas with hydrogen gas or an inert gas is provided, and the source gas and the pressure-adjusted non-source gas are connected oppositely to an exhaust line and an inlet line to the growth apparatus. This is a supply method that can be switched to, and the equipment is equipped with a switching cock.

作用 本発明によると、上記構成のもとに、前記圧力調整され
た非原料ガスの流量を原料ガスと同等量になし、成長装
置内へ流入するガスの総量を原料ガス導入の前後で一定
に保つことにより、成長装置内および原料ガス供給ライ
ンの圧力変動を抑え、成長開始時での流量制御を容易に
することができる。
According to the present invention, based on the above structure, the flow rate of the pressure-adjusted non-source gas is made equal to that of the source gas, and the total amount of gas flowing into the growth apparatus is kept constant before and after introducing the source gas. By maintaining this, pressure fluctuations in the growth apparatus and in the raw material gas supply line can be suppressed, and the flow rate at the start of growth can be easily controlled.

実施例 第1図は本発明実施例に用いた装置の概要図であり、第
2図はその応用例である。本発明の方法を燐化インジウ
ム(InP)の有機金属熱分解成長法に応用した例での
べる。原料ガスとしては、供給ライン1からは、ホスフ
ィン(PH3)とトリエチルインジウム(TRI)との
混合物を供給する。
Embodiment FIG. 1 is a schematic diagram of an apparatus used in an embodiment of the present invention, and FIG. 2 is an example of its application. An example in which the method of the present invention is applied to an organic metal pyrolysis growth method of indium phosphide (InP) will be described. As the raw material gas, a mixture of phosphine (PH3) and triethyl indium (TRI) is supplied from the supply line 1.

TRIは常温で液体であるため、この混合物を形成する
には、第2図のように水素ガス(H2)をTRI容器1
1内でバブリングさせ、飽和蒸気圧までTRIを蒸発さ
せることによシ供給している。したがって、TRIの供
給量は、H2流量、温度及び容器内の圧力によシ変化す
るため、これらを正確に制御しなければならない。非原
料ガスは、供給ライン2よシ、原料ガスの供給と同様に
、ガス流量制御器3を介して、排気ライン4または導入
ライン5に供給される。始めに、導入ライン6の圧力は
搬送用ガス供給ライン6を通じ流量調整器7により大気
圧に調節される。これは、切換えコック8(81または
82)を通じ大気圧の排気ライン4から流量調整器7を
介して、減圧F(0,1気圧とした)の導入ライン5へ
切換える際の容器内圧力の大きな変動をなくすためであ
る。初期状態において、ガス切換えコック81は排気ラ
イン4へ接続され、一方、切換えコック82は導入ライ
ン6へ接続されており、TRIバブリングによる原料ガ
スと同流量に制御された非原料ガスのH2ガスを同時に
切換え供給するように構成されている。なお、第2図で
は、ホスフィンは別の供給ライン12を通じて、切換え
コック83より供給される。
Since TRI is a liquid at room temperature, to form this mixture, hydrogen gas (H2) is poured into the TRI container 1 as shown in Figure 2.
The TRI is supplied by bubbling in the TRI and evaporating it to the saturated vapor pressure. Therefore, the amount of TRI supplied changes depending on the H2 flow rate, temperature, and pressure within the container, and these must be accurately controlled. The non-source gas is supplied to the exhaust line 4 or the inlet line 5 via the gas flow rate controller 3 in the same way as the supply line 2 and the source gas. First, the pressure in the introduction line 6 is adjusted to atmospheric pressure by the flow regulator 7 through the carrier gas supply line 6. This is due to the large pressure inside the container when switching from the atmospheric pressure exhaust line 4 through the switching cock 8 (81 or 82) to the reduced pressure F (0.1 atm) introduction line 5 via the flow regulator 7. This is to eliminate fluctuations. In the initial state, the gas switching cock 81 is connected to the exhaust line 4, while the switching cock 82 is connected to the introduction line 6, and the non-raw material gas H2 gas is controlled to the same flow rate as the material gas by TRI bubbling. It is configured to switch and supply at the same time. In addition, in FIG. 2, phosphine is supplied from a switching cock 83 through another supply line 12.

この状態から、切換えコック81.82を同時に、互い
に反対になるように切換えて、TRIを導入した場合の
圧力および流量の変動量を調べたところ、はとんど変動
は観測されなかった。
From this state, when the changeover cocks 81 and 82 were switched simultaneously in opposite directions to examine the amount of variation in pressure and flow rate when TRI was introduced, almost no variation was observed.

一方、本発明の方法である非原料ガス供給ライン2を用
いない場合の例として、搬送ガス流量をH2: 500
cc/分とし、TRI・バブリングガス流量をH2:2
00 Cc 7分として同様に圧力変動を調べた。
On the other hand, as an example of the method of the present invention in which the non-raw material gas supply line 2 is not used, the carrier gas flow rate is H2: 500.
cc/min, TRI/bubbling gas flow rate H2:2
00 Cc for 7 minutes, and the pressure fluctuation was similarly investigated.

コック切換え後、圧力は1.4気圧まで増加し、これは
TRIの蒸発量が約2/3に減少した事に対応する。ま
た、圧力変動に要した時間は約15秒程度であり、成長
層厚に換算すると約60人の過渡領域層を形成する事に
なる。
After switching the cock, the pressure increased to 1.4 atm, which corresponds to a reduction in the amount of TRI evaporation by about 2/3. Further, the time required for the pressure fluctuation is about 15 seconds, and when converted into a growth layer thickness, it means that a transition region layer of about 60 people is formed.

第3図は以上の結果をまとめたものであり、従来法にお
けるガス切換時の圧力変動は、特性人のように大きな変
動がみられるのに対し、本発明の方法では特性Bのよう
に、はとんど観測されず、圧力変動に伴なう問題点は著
しく改善される事が確認できた。
Figure 3 summarizes the above results, and shows that the pressure fluctuations during gas switching in the conventional method show large fluctuations as in characteristic B, whereas in the method of the present invention, as in characteristic B, It was confirmed that the problems associated with pressure fluctuations were significantly improved.

発明の詳細 な説明してきたように、本発明の方法ではガス切換時の
圧力変動がなくなるため、成長開始時での成長条件の不
安定性を取り除くことができ、成長層の品質を著しく向
上できる。また、圧力変動に伴なう過渡層がなくなるた
め、品質の良い薄膜層を再現性よく提供する事を可能に
し、その工業的価値は大といえる。
As described in detail, the method of the present invention eliminates pressure fluctuations during gas switching, thereby eliminating instability in growth conditions at the start of growth and significantly improving the quality of the grown layer. Furthermore, since there is no transient layer caused by pressure fluctuations, it is possible to provide a high-quality thin film layer with good reproducibility, and its industrial value can be said to be great.

【図面の簡単な説明】 第1図は本発明の方法の構成を示す図、第2図は本発明
の一実施例の構成を示す図、第3図は導入ラインの圧力
変動を従来法と本発明の実施例とで比較した樗脅梓面ζ
“あ3゜ 1・・・・・・原料ガス供給ライン、2・・・・・・非
原料ガス供給ライン、3・・・・・・ガス流量制御器、
4・・・・・・排気ライン、6・・・・・・導入ライン
、8(81,82,83)・・・・・・ガス切換コック
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図 藁 31!I 綺 間 【抄】
[Brief Description of the Drawings] Figure 1 is a diagram showing the configuration of the method of the present invention, Figure 2 is a diagram showing the configuration of an embodiment of the present invention, and Figure 3 is a diagram showing pressure fluctuations in the introduction line compared to the conventional method. Bamboo and azusa surface ζ compared with the embodiment of the present invention
"A3゜1... Raw material gas supply line, 2... Non-raw material gas supply line, 3... Gas flow rate controller,
4...Exhaust line, 6...Introduction line, 8 (81, 82, 83)...Gas switching cock. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 31! I Ki-ma [Excerpt]

Claims (1)

【特許請求の範囲】[Claims]  圧力、流量を制御した気相成長用原料ガス供給の第1
の系統から、これと異なる圧力、流量に制御された非原
料ガス供給の第2の系統とを切換える際に、前記原料ガ
スと同等量に制御した非原料ガスを前記第2の系統から
前記第1の系統に切換える事を特徴とした気相成長方法
The first step in supplying raw material gas for vapor phase growth with controlled pressure and flow rate.
When switching from the second system to the second system for supplying non-raw material gas controlled at a different pressure and flow rate, the non-raw material gas controlled to be equal in amount to the raw material gas is transferred from the second system to the second system for supplying non-raw material gas, which is controlled at a different pressure and flow rate. A vapor phase growth method characterized by switching to system 1.
JP59237824A 1984-11-12 1984-11-12 Vapor growth method Expired - Lifetime JPH0642454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59237824A JPH0642454B2 (en) 1984-11-12 1984-11-12 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237824A JPH0642454B2 (en) 1984-11-12 1984-11-12 Vapor growth method

Publications (2)

Publication Number Publication Date
JPS61115324A true JPS61115324A (en) 1986-06-02
JPH0642454B2 JPH0642454B2 (en) 1994-06-01

Family

ID=17020943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237824A Expired - Lifetime JPH0642454B2 (en) 1984-11-12 1984-11-12 Vapor growth method

Country Status (1)

Country Link
JP (1) JPH0642454B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136587A (en) * 1974-04-06 1976-03-27 Int Standard Electric Corp
JPS5513922A (en) * 1978-07-14 1980-01-31 Matsushita Electric Ind Co Ltd Vapor phase growthing method and its device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136587A (en) * 1974-04-06 1976-03-27 Int Standard Electric Corp
JPS5513922A (en) * 1978-07-14 1980-01-31 Matsushita Electric Ind Co Ltd Vapor phase growthing method and its device

Also Published As

Publication number Publication date
JPH0642454B2 (en) 1994-06-01

Similar Documents

Publication Publication Date Title
JP3582437B2 (en) Thin film manufacturing method and thin film manufacturing apparatus used therefor
JP2797233B2 (en) Thin film growth equipment
JPS61115324A (en) Vapor growth method
JPH0927455A (en) Manufacture of semiconductor substrate and material gas supplying apparatus
JPH02296799A (en) Method for growing silicon carbide
KR940012531A (en) Method for manufacturing dielectric thin film having high dielectric constant and apparatus therefor
JPH10237654A (en) Vapor growth device
JPH04240198A (en) Vapor phase growth method for thin film
JP4754087B2 (en) Deposition method
JPH0232532A (en) Gaseous phase growth device
JPH03232221A (en) Vapor growth method for compound semiconductor
JPH0368131A (en) Organic metal vapor growth method
JPS61229321A (en) Vapor growth method
JP3707079B2 (en) Compound semiconductor thin film growth method
JP4634572B2 (en) Copper thin film formation method
JPH02141497A (en) Epitaxial growth of iii-v compound semiconductor
JPH02116120A (en) Crystal growth method
JPH01313390A (en) Vertical vapor growth device for organometallic compound
JPH0594949A (en) Semiconductor vapor growth device
JP2002246315A (en) Substrate processor
JPH02297924A (en) Metal organic vapor growth method for compound semiconductor
JPS60126818A (en) Pyrolytically decomposing vapor growth device of compound semiconductor
JPS63159296A (en) Vapor phase epitaxy
JPS61121430A (en) Manufacturing device of reduced pressure cvd film
JPH06204145A (en) Organic metal vapor growth equipment of compound semiconductor