JPH02141497A - Epitaxial growth of iii-v compound semiconductor - Google Patents

Epitaxial growth of iii-v compound semiconductor

Info

Publication number
JPH02141497A
JPH02141497A JP29434588A JP29434588A JPH02141497A JP H02141497 A JPH02141497 A JP H02141497A JP 29434588 A JP29434588 A JP 29434588A JP 29434588 A JP29434588 A JP 29434588A JP H02141497 A JPH02141497 A JP H02141497A
Authority
JP
Japan
Prior art keywords
gas
epitaxially grown
film
epitaxial growth
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29434588A
Other languages
Japanese (ja)
Other versions
JP2753523B2 (en
Inventor
Toyoaki Imaizumi
今泉 豊明
Mitsuaki Ikuwa
光朗 生和
Yoji Seki
関 洋二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP63294345A priority Critical patent/JP2753523B2/en
Publication of JPH02141497A publication Critical patent/JPH02141497A/en
Application granted granted Critical
Publication of JP2753523B2 publication Critical patent/JP2753523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the epitaxially grown film which is uniform in carrier concn. over the entire part in the thickness direction of the epitaxially grown film by etching the part which exists on the surface of the epitaxially grown film and where the carrier concn. is nonuniform. CONSTITUTION:A gas for epitaxial growth and a doping gas are supplied into a reaction tube contg. group III raw materials and a semiconductor substrate and the III-V compd. semiconductor layer doped with an impurity is vapor-grown on the above-mentioned substrate. After the epitaxial layer is formed thicker than the prescribed film thickness, the surface of the epitaxially grown film formed on the substrate is etched down to the prescribed film thickness. The part which exists on the surface of the grown film mentioned above and where the carrier concn. is nonuniform is etched in this way and the epitaxially grown film having the carrier concn. uniform over the entire part in the film thickness direction is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体ウェハ製造技術さらにはm −■族化
合物半導体の気相エピタキシャル成長方法に利用して有
効な技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a technology that is effective for use in a semiconductor wafer manufacturing technology and a vapor phase epitaxial growth method for an m-■ group compound semiconductor.

[従来の技術] 一般に、不純物をドーピングしたGaAs、GaP、I
nP、InAs等の1■−■族化合物半導体を基板上に
気相エピタキシャル成長させるには、例えば第6図に示
すような気相成長装置を用いて行なっている。
[Prior art] Generally, impurity-doped GaAs, GaP, I
In order to vapor phase epitaxially grow a 1-2 group compound semiconductor such as nP or InAs on a substrate, a vapor phase growth apparatus such as that shown in FIG. 6 is used, for example.

この気相成長装置は、両端が閉塞された円筒状をなす石
英製の反応管1と、この反応管1を外部から加熱する電
気炉2とからなり、電気炉2は反応管1の軸方向温度分
布を制御できるように構成されている。この気相成長装
置によりGaAsを気相エピタキシャル成長させる場合
、反応管1内には、上流側(図では左側)に材料源であ
るガリウム3を収納した原料ボート4を配置し、下流側
に気相成長をさせるG a A s基板5を配置する。
This vapor phase growth apparatus consists of a cylindrical quartz reaction tube 1 with both ends closed, and an electric furnace 2 that heats the reaction tube 1 from the outside. It is configured so that temperature distribution can be controlled. When GaAs is vapor-phase epitaxially grown using this vapor-phase growth apparatus, a raw material boat 4 containing gallium 3, which is a material source, is arranged on the upstream side (left side in the figure) in the reaction tube 1, and a vapor-phase epitaxy is placed on the downstream side. A GaAs substrate 5 to be grown is placed.

一方、反応管1の上流端には、原料ボート4をバイパス
してガスを基板5の上流に供給するための第1のガス導
入管6aと第2のガス導入管6bが接続されている。ま
た、反応管1の上流端には原料ボート4にガスを供給す
るための第3のガス導入管6cが接続されている。
On the other hand, a first gas introduction pipe 6a and a second gas introduction pipe 6b are connected to the upstream end of the reaction tube 1 to bypass the raw material boat 4 and supply gas upstream of the substrate 5. Further, a third gas introduction pipe 6c for supplying gas to the raw material boat 4 is connected to the upstream end of the reaction tube 1.

そして、ガス導入管6b、6cの管路途中にはそれぞれ
A s Cn3の入ったバブラ8b、8cが介装されて
いる。ガス導入管6b、6cには、H2ガスが導入され
、バブラ8 b、8 c内のA s Cn 3中へH2
ガスを吹き込むことによってA s CQ3+H2の混
合ガスを反応管1内に供給できるように構成されている
。また、バブラ8b、8cは温度制御可能な恒温槽(図
示省略)に入れ、温度を制御することによってA s 
CQ 3の蒸発量を制御するようにしである。なお、9
は反応管1の下流端に接続された排気管である。
Bubblers 8b and 8c containing A s Cn3 are interposed in the middle of the gas introduction pipes 6b and 6c, respectively. H2 gas is introduced into the gas introduction pipes 6b and 6c, and H2 gas is introduced into the A s Cn 3 in the bubblers 8b and 8c.
It is configured such that a mixed gas of A s CQ3+H2 can be supplied into the reaction tube 1 by blowing the gas. In addition, the bubblers 8b and 8c are placed in a temperature-controllable constant temperature bath (not shown), and by controlling the temperature, A s
This is to control the amount of CQ 3 evaporated. In addition, 9
is an exhaust pipe connected to the downstream end of the reaction tube 1.

以下の説明ではガス導入管6aからなるガス供給系をA
系統と、また、バブラ8bおよびガス導入管6bからな
るガス供給系をB系統と、さらに、バブラ8cおよびガ
ス導入管8cからなるガス供給系をC系統と呼ぶ。
In the following explanation, the gas supply system consisting of the gas introduction pipe 6a is referred to as A.
The gas supply system consisting of the bubbler 8b and the gas introduction pipe 6b is called the B system, and the gas supply system consisting of the bubbler 8c and the gas introduction pipe 8c is called the C system.

従来、上記構成の気相成長装置によりG a A sの
気相成長を行なうには、先ずC系統からA s CQ3
+H2の混合ガスの供給を開始する。次に、所定時間経
過後、B系統からAsCθ3+H2の混合ガスを供給す
ると同時に、A系統からドーピングガスを供給し始め、
気相成長を行なう。そして、成長終了後は、A、B、C
系統全てのガス供給を同時に停止していた。
Conventionally, in order to perform vapor phase growth of Ga A s using a vapor phase growth apparatus having the above configuration, first, A s CQ3 is grown from the C system.
Start supplying +H2 mixed gas. Next, after a predetermined period of time has passed, the mixed gas of AsCθ3+H2 is supplied from the B system, and at the same time, the doping gas is started to be supplied from the A system,
Carry out vapor phase growth. After the growth is complete, A, B, C
Gas supply to all systems was stopped at the same time.

しかし、このようにガス供給を同時に停止すると、ドー
ピングガスの分圧の減少が遅れるために。
However, if the gas supply is stopped simultaneously in this way, the reduction in the partial pressure of the doping gas will be delayed.

ドーピングガス分圧が相対的に高まって、エピタキシャ
ル成長膜の最終形成部分(表面部分)でキャリア濃度が
高くなってしまうという問題があった。キャリア濃度が
エピタキシャル成長膜の表面にて変動すると、FET等
のデバイスを製造する際、正常な金属−半導体電極を得
ることが困難となる。
There is a problem in that the doping gas partial pressure becomes relatively high, resulting in a high carrier concentration in the final formed portion (surface portion) of the epitaxially grown film. If the carrier concentration varies at the surface of the epitaxially grown film, it becomes difficult to obtain a normal metal-semiconductor electrode when manufacturing devices such as FETs.

そこで、例えば特開昭62−20251.5号公報に開
示されるように、A系統のドーピングガス供給とC系統
のエピタキシャル成長用ガス供給とを同時に停止した後
、5〜10秒程度経過してからB系統ガス供給を停止す
ることにより、エピタキシャル成長膜内でのキャリア濃
度の均一化を図った技術が提案されている。これは、B
系統のAsCQ3+H,の混合ガスが、反応管1内のA
s2の分圧を高めてドーピングガスの分圧を下げ、不純
物濃度を下げる作用を有するためである。
Therefore, as disclosed in JP-A No. 62-20251.5, for example, after stopping the supply of doping gas for system A and the supply of epitaxial growth gas for system C at the same time, after about 5 to 10 seconds have elapsed, A technique has been proposed in which the carrier concentration in the epitaxially grown film is made uniform by stopping the supply of B-system gas. This is B
The mixed gas of AsCQ3+H in the system is A in the reaction tube 1.
This is because it has the effect of increasing the partial pressure of s2, lowering the partial pressure of the doping gas, and lowering the impurity concentration.

[発明が解決しようとする課題] しかし、上記公報に開示された気相エピタキシャル成長
方法では、ある程度のキャリア濃度の均一化を図ること
はできるものの、均一化のためのガス濃度の制御等が困
難で、エピタキシャル成長膜の表面部分と他の部分とで
完全な均一化を図ることはできなかった。
[Problems to be Solved by the Invention] However, although the vapor phase epitaxial growth method disclosed in the above publication can achieve a certain degree of uniformity of carrier concentration, it is difficult to control the gas concentration for uniformity. However, it was not possible to achieve complete uniformity between the surface portion and other portions of the epitaxially grown film.

本発明は、かかる従来の問題点に鑑みてなされたもので
、成長させたエピタキシャル成長膜の表面にあるキャリ
ア濃度が不均一な部分をエツチングすることにより、エ
ピタキシャル成長膜の厚さ方向全体にわたってキャリア
濃度が均一な■−■族化合物半導体のエピタキシャル成
長膜を得ることができる■−■族化合物半導体の気相エ
ピタキシャル成長方法を提供することを目的とする。
The present invention was made in view of such conventional problems, and by etching the portion where the carrier concentration is uneven on the surface of the epitaxially grown film, the carrier concentration is increased throughout the thickness direction of the epitaxially grown film. It is an object of the present invention to provide a method for vapor phase epitaxial growth of a ■-■ group compound semiconductor, which can obtain a uniform epitaxially grown film of a ■-■ group compound semiconductor.

[課題を解決するための手段] 上記目的を達成するために、本発明は、■族原料と基板
を収容した反応管中へエピタキシャル成長用ガスとドー
ピングガスとを供給して■−■族化合物半導体基板上に
不純物をドーピングした■−■族化合物半導体のエピタ
キシャル成長膜を気相成長させる気相エピタキシャル成
長方法において、所定の膜厚より厚くエピタキシャル層
が形成された後、基板上に形成したエピタキシャル成長
膜の表面を所定の膜厚までエツチングするようにした。
[Means for Solving the Problems] In order to achieve the above object, the present invention supplies an epitaxial growth gas and a doping gas into a reaction tube containing a group III raw material and a substrate to produce a group III compound semiconductor. In a vapor phase epitaxial growth method in which an epitaxially grown film of a ■-■ group compound semiconductor doped with impurities is grown in a vapor phase on a substrate, the surface of the epitaxially grown film formed on the substrate after an epitaxial layer is formed thicker than a predetermined film thickness. is etched to a predetermined film thickness.

[作用] 上記のようなm−v族化合物半導体の気相エピタキシャ
ル成長方法においては、キャリア濃度が不均一となり易
いエピタキシャル成長膜表面が、気相成長停止後に導入
されるエツチングガスにより削除されるため、基板表面
のエピタキシャル成長膜の厚さ方向全体に亘ってキャリ
ア濃度を均一化することができる。
[Function] In the vapor phase epitaxial growth method for m-v group compound semiconductors as described above, the surface of the epitaxially grown film, where the carrier concentration tends to be non-uniform, is removed by the etching gas introduced after the vapor phase growth is stopped. The carrier concentration can be made uniform over the entire thickness of the epitaxially grown film on the surface.

[実施例] 第2図に、本発明に係る気相エピタキシャル成長方法に
使用する気相成長装置の一例を示す。
[Example] FIG. 2 shows an example of a vapor phase growth apparatus used in the vapor phase epitaxial growth method according to the present invention.

この気相成長装置は、第7図に示すものとほぼ同様であ
るが、電気炉2は反応管1の軸方向に移動可能であり、
反応管1を室温で急冷することができるように構成され
ている。また、ガス導入管6b、6cには、三方弁10
b、10c、llcがそれぞれ介装されており、N2ガ
スをバブラ8b、8c内のA s CQ 3に吹き込ま
せてA s CQ 3+H2の混合ガスとしたり、N2
ガスをそのまま反応管1内へ供給できるように設けられ
ている。
This vapor phase growth apparatus is almost the same as that shown in FIG. 7, but the electric furnace 2 is movable in the axial direction of the reaction tube 1,
The reaction tube 1 is configured to be rapidly cooled at room temperature. In addition, a three-way valve 10 is provided in the gas introduction pipes 6b and 6c.
b, 10c, and llc are interposed respectively, and N2 gas is blown into A s CQ 3 in the bubblers 8b and 8c to form a mixed gas of A s CQ 3 + H2, and N2 gas is
It is provided so that the gas can be supplied into the reaction tube 1 as it is.

本実施例においては、上記気相成長装置を用いて第1図
に示すような手順に従って、A、B、C系統のガスの供
給開始、停止を行なうことにより、G a A s基板
5上にSiドープG a A s層を気相成長させる。
In this example, by starting and stopping the supply of gases of A, B, and C systems according to the procedure shown in FIG. 1 using the above-mentioned vapor phase growth apparatus, G A Si-doped GaAs layer is grown in a vapor phase.

すなわち、時刻T。−T1まではBおよびC系統からN
2ガスを供給して反応管1内を一旦N2ガスで置換した
後、時刻T1〜T2までN2ガスを供給して反応管1内
をN2で置換し、電気炉2を作動させ、反応管1内の温
度分布を第3図に示すように、Ga源は820℃に、基
板5は750℃になるように保持する。
That is, time T. -N from B and C systems up to T1
After replacing the inside of the reaction tube 1 with N2 gas, supplying N2 gas from time T1 to T2 to replace the inside of the reaction tube 1 with N2, operating the electric furnace 2, and replacing the inside of the reaction tube 1 with N2 gas. As shown in FIG. 3, the temperature distribution of the Ga source is maintained at 820° C., and the temperature of the substrate 5 is maintained at 750° C.

次に、時刻T2から、BおよびC系統を介してA s 
CQ 3を含有するN2ガスを供給する。すると、先ず
ボー1〜部4ではA s 4がGa中に溶解限度まで溶
は込んでG a A sクラストが生成されるとともに
、このとき発生したHCQが下流に移動して基板5の表
面がエツチングされる。そして、Ga源3がG a A
 s膜で完全に覆われると、GaAsとHCQが反応し
てGaCQとAs4が生成され、これが下流の基板5に
供給され、基板5の表面にてG a A sが析出し、
G a A s Mが成長する。このとき、B系統から
供給されるA s Cn 3+ H2ガスは、成長され
るバッファ層の81の取り込みを抑制するように作用す
る。
Next, from time T2, A s
Supply N2 gas containing CQ3. Then, first, in parts 1 to 4, As 4 melts into Ga to the solubility limit and Ga As crust is generated, and the HCQ generated at this time moves downstream and the surface of substrate 5 is Etched. Then, Ga source 3 is Ga A
When completely covered with the S film, GaAs and HCQ react to generate GaCQ and As4, which are supplied to the downstream substrate 5, and GaAs is precipitated on the surface of the substrate 5.
G a A s M grows. At this time, the A s Cn 3+ H2 gas supplied from the B system acts to suppress the incorporation of 81 into the grown buffer layer.

バッファ層が所定の厚さまで成長すると、時刻T3でB
系統の供給ガスをN2に切換え、A系統からはドーピン
グガスとして5iH4(水素稀釈]Oppm)を供給し
始め、不純物をドーピングしながら基板5上にG a 
A s活性層を所望の膜厚よりも後にエツチング除去す
る分だけ厚くエピタキシヤル成長させる。この際、B系
統から供給されるN2は、Siの取り込みを一定にする
作用をなす。
When the buffer layer grows to a predetermined thickness, B
The supply gas of the system was switched to N2, and 5iH4 (hydrogen dilution Oppm) was started to be supplied as a doping gas from the A system, and Ga was applied onto the substrate 5 while doping impurities.
The As active layer is epitaxially grown to a thickness that is etched away after the desired thickness. At this time, N2 supplied from the B system acts to keep the Si uptake constant.

次に、時刻T4でA系統のドーピングガス(Sj、H,
)の供給を停止するとともに、C系統の供給ガス髪エピ
タキシャル成長用ガス(AsCQ3+H2)からN2ガ
スに切換え、B系統からはN2ガスの代わりにAsCQ
3+H,の混合ガスを供給し始め、熱分解によって得ら
れたHCQで基板5上に形成したエピタキシャル成長膜
の表面のエツチングを開始する。ただし、ドーピング停
止後。
Next, at time T4, the A-system doping gas (Sj, H,
) and switched from the hair epitaxial growth gas (AsCQ3+H2) of the C system to N2 gas, and from the B system, AsCQ was used instead of N2 gas.
A mixed gas of 3+H is started to be supplied, and etching of the surface of the epitaxially grown film formed on the substrate 5 is started using HCQ obtained by thermal decomposition. However, after doping stops.

B系統の供給ガスを直ちにN2ガスからA s CQ+
82に切り替える代わりに、しばらく (数秒間)B系
統からN2ガスを流し続け、時刻T、、でN2ガスをA
sCQ+H2の混合ガスに切り替えるようにしてもよい
Immediately change the supply gas of B system from N2 gas to A s CQ+
Instead of switching to 82, continue to flow N2 gas from line B for a while (several seconds), and then switch to A at time T.
It is also possible to switch to a mixed gas of sCQ+H2.

その後、時刻Tr、でB系統の供給ガスをN2に切換え
、反応管1内のエツチング用ガスをN2で置換し、時刻
T7で電気炉2を反応管1の軸方向上流側(第2図にお
いて左側)に移動させ、室温で急冷を行なう。そして、
時刻TI、でBおよびC系統の供給ガスをN2に切換え
、反応管1内をN2で置換し、時刻T9でエピタキシャ
ル成長した基板5を取り出して終了する。
Thereafter, at time Tr, the supply gas of the B system is switched to N2, the etching gas in the reaction tube 1 is replaced with N2, and at time T7, the electric furnace 2 is switched to the upstream side of the reaction tube 1 in the axial direction (in Fig. 2). left side) and rapidly cooled at room temperature. and,
At time TI, the supply gas of the B and C systems is switched to N2, the inside of the reaction tube 1 is replaced with N2, and the epitaxially grown substrate 5 is taken out at time T9, and the process ends.

なお、上記実施例においては、バブラ8b、8Cの温度
を20℃とした。
In the above example, the temperature of the bubblers 8b and 8C was 20°C.

以上のようにして得られた気相エピタキシャル成長膜の
キャリヤ濃度分布をC−v?FIII定により測定した
。その結果を第4図に示す。第4図は、横軸にエピタキ
シャル成長膜の表面からの深さを、縦軸にキャリア濃度
をとったものである。同図から判るように、表面から0
.05〜0.5μmの深さにおいて、キャリア濃度は6
 X 1017■−3で一定しており、表面近傍でキャ
リア濃度が変化することはなかった。
The carrier concentration distribution of the vapor phase epitaxially grown film obtained as described above is C-v? Measured by FIII method. The results are shown in FIG. In FIG. 4, the horizontal axis represents the depth from the surface of the epitaxially grown film, and the vertical axis represents the carrier concentration. As can be seen from the figure, 0 from the surface
.. At a depth of 0.05-0.5 μm, the carrier concentration is 6
X was constant at 1017■-3, and the carrier concentration did not change near the surface.

また、上記実施例では、時刻TGでB系統の供給ガスを
N2に切換え、反応管1内のエツチング用ガスをN2で
置換し、時刻T7で反応管1から電気炉2を移動して室
温で急冷することとしたので、各成長毎に所定のエピタ
キシャル成長膜の厚さを再現性良く得ることができ、ま
た面内均一性も良好となった。
Furthermore, in the above example, at time TG, the supply gas of the B system is switched to N2, the etching gas in the reaction tube 1 is replaced with N2, and at time T7, the electric furnace 2 is moved from the reaction tube 1 to leave it at room temperature. Since rapid cooling was used, it was possible to obtain a predetermined epitaxially grown film thickness for each growth with good reproducibility, and the in-plane uniformity was also good.

第5図は、エツチング時間(TG  ’r5)と面内均
一性との関係を検討したもので、横軸にウェハ(基板)
内の位置を、縦軸に膜厚分布(1/シート抵抗×103
)をとったものである。第5図において、各実線1]〜
15はエツチング時間を異ならせたもので、実線11は
エツチング時間20秒、実線12は30秒、実線13は
40秒、実線14は50秒、実線15は60秒とした場
合である。シー1〜抵抗測定結果の平均値(Ω/口)は
、実線11が99.2、実線12が10.76、実線1
3が141.5、実線14が195.2、実線15が2
74.7であった。また、標準偏差/平均値(%)は、
実線11が2.8、実線12が3.0、実線13が3.
1、実線14が5.3、実線15が14.5であった。
Figure 5 examines the relationship between etching time (TG'r5) and in-plane uniformity, with the horizontal axis representing the wafer (substrate).
Film thickness distribution (1/sheet resistance x 103
). In FIG. 5, each solid line 1]~
No. 15 shows the case where the etching time was changed; solid line 11 shows the case where the etching time is 20 seconds, solid line 12 is 30 seconds, solid line 13 is 40 seconds, solid line 14 is 50 seconds, and solid line 15 is 60 seconds. Sea 1 ~ The average value (Ω/mouth) of the resistance measurement results are 99.2 for solid line 11, 10.76 for solid line 12, and 10.76 for solid line 1.
3 is 141.5, solid line 14 is 195.2, solid line 15 is 2
It was 74.7. In addition, the standard deviation/average value (%) is
The solid line 11 is 2.8, the solid line 12 is 3.0, and the solid line 13 is 3.
1, solid line 14 was 5.3, and solid line 15 was 14.5.

エツチング時間が60秒以上になると膜厚分布のばらつ
きが大きくなり、10秒以下ではエツチングの効果が現
われないので、エツチング時間としては10秒を超え6
0秒未満、好ましくは20秒以上50秒以下の範囲で選
ばれる。対応するエツチングの厚みは0゜05μmを超
え0.30μm未満、好ましくは0゜1cμm以上0.
25μm以下である。
If the etching time exceeds 60 seconds, the variation in the film thickness distribution will increase, and if the etching time is less than 10 seconds, the etching effect will not appear.
The time is selected to be less than 0 seconds, preferably in the range of 20 seconds or more and 50 seconds or less. The thickness of the corresponding etching is more than 0.05 μm and less than 0.30 μm, preferably more than 0.1 cm μm and 0.05 μm.
It is 25 μm or less.

なお、前記実施例においては、エツチングガスとしてA
 S CQ 3 + H2の混合ガスを用いたが、本発
明はかかる実施例に限定されるものではなく、例えばA
 s CQ3の代わりにHCQおよびAs分圧付与のた
めのA s H3を含む気体を用いてもよく、エピタキ
シャル成長膜表面をエツチングできるものであればガス
に限らず、エツチング液、機械研磨、電解研磨などでも
よい。
In the above embodiment, A is used as the etching gas.
Although a mixed gas of S CQ 3 + H2 was used, the present invention is not limited to such an example.
Instead of s CQ3, a gas containing HCQ and As H3 for imparting an As partial pressure may be used, and it is not limited to gases as long as the surface of the epitaxially grown film can be etched, such as etching liquid, mechanical polishing, electrolytic polishing, etc. But that's fine.

また、本発明は、GaAsの気相エピタキシャル成長方
法にのみ適用されるものではなく、GaP、InP、I
nAs等の気相エピタキシャル成長方法にも適用できる
ことは勿論である。
Furthermore, the present invention is not only applicable to the vapor phase epitaxial growth method of GaAs, but also applies to GaP, InP, I
Of course, it can also be applied to vapor phase epitaxial growth methods such as nAs.

[発明の効果] 以上のように、本発明のm−v族化合物半導体の気相エ
ピタキシャル成長方法によれば、反応管内にエピタキシ
ャル成長用ガスとドーピングガスを供給して、基板上に
m−v族化合物半導体層を所定の膜厚より厚く成長させ
た後、基板上に形成したエピタキシャル成長膜の表面を
所定の膜厚までエツチングすることとしたので、膜厚方
向全体にわたり均一なキャリア濃度を有するエピタキシ
ャル成長膜を得ることができる。
[Effects of the Invention] As described above, according to the vapor phase epitaxial growth method of an m-v group compound semiconductor of the present invention, an epitaxial growth gas and a doping gas are supplied into a reaction tube, and an m-v group compound semiconductor is grown on a substrate. After growing the semiconductor layer to a thickness greater than a predetermined thickness, the surface of the epitaxially grown film formed on the substrate is etched to a predetermined thickness, so that an epitaxially grown film having a uniform carrier concentration throughout the film thickness can be obtained. Obtainable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るIII −V族化合物半導体の気
相エピタキシャル成長方法の一実施例におけるガス制御
タイミング図、 第2図は本発明の一実施例に用いた気相成長装置を示す
縦断正面図、 第3図は本発明の一実施例における反応管内の温度分布
を示すグラフ、 第4図は本発明の一実施例で得たエピタキシャル成長膜
のキャリア濃度分布を示すグラフ、第5図はエツチング
時間を変化させた場合のエピタキシャル成長膜の膜厚分
布を示すグラフ、第6図は従来のm−v族化合物半導体
の気相エピタキシャル成長方法で用いた気相成長装置を
示す縦断正面図である。 1・・・・反応管、2・・・・電気炉、3・・・・Ga
源、4・・・・原料ボート、5・・・・基板、6,6a
、6b、6c・・・・ガス導入管、8b、8c・・・・
バブ第 図 深 第 図 うエノ\内C)4に苦巨 手続補正書 (自発) 1、事件の表示 昭和63年特許願第294345号 2、発明の名称 ■−■族化合物半導体のエピタキシャル成長方法3、補
正をする者 事件との関係
FIG. 1 is a gas control timing diagram in one embodiment of the vapor phase epitaxial growth method for III-V group compound semiconductors according to the present invention. FIG. 2 is a vertical cross-sectional front view showing a vapor phase growth apparatus used in one embodiment of the present invention. Figure 3 is a graph showing the temperature distribution inside the reaction tube in an example of the present invention, Figure 4 is a graph showing the carrier concentration distribution of an epitaxially grown film obtained in an example of the present invention, and Figure 5 is a graph showing the carrier concentration distribution in the epitaxially grown film obtained in an example of the present invention. FIG. 6 is a graph showing the film thickness distribution of an epitaxially grown film as time is changed. FIG. 6 is a longitudinal sectional front view showing a vapor phase growth apparatus used in a conventional vapor phase epitaxial growth method for m-v group compound semiconductors. 1...Reaction tube, 2...Electric furnace, 3...Ga
Source, 4... Raw material boat, 5... Substrate, 6, 6a
, 6b, 6c...Gas introduction pipe, 8b, 8c...
1. Indication of the case Patent Application No. 294345 filed in 1988 2. Title of the invention ■-■ Epitaxial growth method for group compound semiconductors 3 , relationship with the person making the amendment

Claims (1)

【特許請求の範囲】[Claims] (1)III族原料と半導体基板とを収容した反応管中へ
エピタキシャル成長用ガスとドーピングガスとを供給し
て、上記半導体基板上に不純物をドーピングしたIII−
V族化合物半導体膜を気相成長させるIII−V族化合物
半導体の気相エピタキシャル成長方法において、エピタ
キシャル成長膜が所望の膜厚より厚く成長した後、基板
上に形成したエピタキシャル成長膜の表面を所望の膜厚
までエッチングすることを特徴とするIII−V族化合物
半導体の気相エピタキシャル成長方法。
(1) Epitaxial growth gas and doping gas are supplied into a reaction tube containing a group III raw material and a semiconductor substrate, and the semiconductor substrate is doped with impurities.
In a method for vapor phase epitaxial growth of a III-V compound semiconductor in which a group V compound semiconductor film is grown in a vapor phase, after the epitaxially grown film has grown thicker than the desired thickness, the surface of the epitaxially grown film formed on the substrate is grown to the desired thickness. 1. A method for vapor phase epitaxial growth of III-V compound semiconductors, characterized by etching up to
JP63294345A 1988-11-21 1988-11-21 (III) -Epitaxial growth method of group V compound semiconductor Expired - Lifetime JP2753523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63294345A JP2753523B2 (en) 1988-11-21 1988-11-21 (III) -Epitaxial growth method of group V compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63294345A JP2753523B2 (en) 1988-11-21 1988-11-21 (III) -Epitaxial growth method of group V compound semiconductor

Publications (2)

Publication Number Publication Date
JPH02141497A true JPH02141497A (en) 1990-05-30
JP2753523B2 JP2753523B2 (en) 1998-05-20

Family

ID=17806505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63294345A Expired - Lifetime JP2753523B2 (en) 1988-11-21 1988-11-21 (III) -Epitaxial growth method of group V compound semiconductor

Country Status (1)

Country Link
JP (1) JP2753523B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5924224A (en) * 1997-03-20 1999-07-20 Rowenta-Werke Gmbh Steam iron with anti-drip device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627700A (en) * 1985-07-03 1987-01-14 Nec Corp Vapor phase epitaxial growth method for compound semiconductor
JPS6235577A (en) * 1985-08-08 1987-02-16 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627700A (en) * 1985-07-03 1987-01-14 Nec Corp Vapor phase epitaxial growth method for compound semiconductor
JPS6235577A (en) * 1985-08-08 1987-02-16 Fujitsu Ltd Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5924224A (en) * 1997-03-20 1999-07-20 Rowenta-Werke Gmbh Steam iron with anti-drip device

Also Published As

Publication number Publication date
JP2753523B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
US4632710A (en) Vapor phase epitaxial growth of carbon doped layers of Group III-V materials
EP0068839A1 (en) Method and apparatus for vapor phase growth of a semiconductor
EP0667638B1 (en) Method of etching a compound semiconductor
JPH02141497A (en) Epitaxial growth of iii-v compound semiconductor
JPH04160100A (en) Method for epitaxial-growing iii-v compound semiconductor
JP2735190B2 (en) Molecular beam epitaxy growth method and growth apparatus
JPH01179788A (en) Method for growing iii-v compound semiconductor on si substrate
JPH04354325A (en) Epitaxial growing method of compound semiconductor
JPH0355438B2 (en)
JPH0427116A (en) Method of forming semiconductor heterojunction
JPH03159993A (en) Epitaxial growth process of group iii-v compound semiconductor
JP2847198B2 (en) Compound semiconductor vapor phase growth method
JPH03159994A (en) Vapor-phase growth process of group iii-v compound semiconductor
JPH04199507A (en) Solid phase diffusion of n-type impurity to iii-v compound semiconductor
JPH09213635A (en) Formation of heteroepitaxial semiconductor substrate, compound semiconductor device having the substrate and its manufacture
JPH04357192A (en) Process for epitaxial growth of compound semiconductor
JPH0613323A (en) Vapor phase epitaxy method for compound semiconductor mixed crystal
JPH042692A (en) Vapor-phase growing of compound semiconductor
JPH0580136B2 (en)
JPS62137821A (en) Vapor growth method for semiconductor
JPH0687459B2 (en) Vapor phase growth equipment
JPH0194662A (en) Manufacture of mis type semiconductor using gallium arsenide
JPH0618189B2 (en) Method for vapor phase etching of group III-V compound semiconductor
JPH0426591A (en) Vapor growth method for compound semiconductor mixed crystal
JPH04309241A (en) Manufacture of ii-vi compound semiconductor thin film