JPS61136993A - Method for growing semiconductor crystal - Google Patents

Method for growing semiconductor crystal

Info

Publication number
JPS61136993A
JPS61136993A JP25912284A JP25912284A JPS61136993A JP S61136993 A JPS61136993 A JP S61136993A JP 25912284 A JP25912284 A JP 25912284A JP 25912284 A JP25912284 A JP 25912284A JP S61136993 A JPS61136993 A JP S61136993A
Authority
JP
Japan
Prior art keywords
gas
flow rate
crystal growth
raw material
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25912284A
Other languages
Japanese (ja)
Inventor
Isao Hino
日野 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP25912284A priority Critical patent/JPS61136993A/en
Publication of JPS61136993A publication Critical patent/JPS61136993A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain an interface having excellent sharpness by increasing or decreasing the flow rate of a diluent gas free of a raw gas when the raw has is changed in the formation of a multilayered thin film of a semiconductor by a vapor phase growth method. CONSTITUTION:A raw gas such as AsH3, trimethylgallium, trimethylaluminum, diethyllead, and hydrogen selenide and a carrier gas (e.g., hydrogen) are prepared. The raw gases are introduced in the desired order into a crystal growth chamber 18 by switching valves 7, 8, 9, 10, etc., and a multilayered thin film of a semiconductor is formed on a substrate 19 arranged in the crystal growth chamber 18. At this time, the flow rate of a carrier gas is increased or decreased along with the switching of the raw gas by the operating of valves 31 and 32 to keep the total flow rate of the gases flowing into the crystal growth chamber 18 constant. Consequently, interfacial sharpness of less than several Angstrom can be provided to the boundary between each layer.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体エピタキシャル結晶の成長方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for growing semiconductor epitaxial crystals.

(従来技術とその問題点) 半導体の結晶成長法として気相成長法がある。(Prior art and its problems) There is a vapor phase growth method as a method for growing semiconductor crystals.

これは気体状の原料を結晶成長室に送シこんで気相原料
から半導体結晶を成長せしめるものである。
In this method, a gaseous raw material is sent into a crystal growth chamber to grow a semiconductor crystal from the gaseous raw material.

特に有機金属原料の熱分解反応を利用した気相成長(M
O−CVD)法は、広い応用範囲を以て高品質の結晶成
長を行なえ、かつ量産性に優れた方法として注目されて
いる。MO−CVD法ではエピタキシャル結晶の組成や
ドーピングの制御を“、反応室3図に示す。これはAl
GaAsエピタキシャル成長装置の例である。原料ガス
アルシン(AsH3) 、)リメチルガリウム(TMG
a)、)リメチルアルミニウム(TMAI)、ジエチル
亜鉛(DBZn )、セレン化水素(Ht8e)の流れ
をそれぞれ図中番号1〜5で示す。これらの原料ガスは
、ストップバルブ6と11t7と12j8と13t9と
ttt 10と15をそれぞれ相互に開閉を切り替える
ことKよシ、本流23への流れとバイパスライン24へ
の流れとの間で切り替えられる。本流23の流れはニー
ドルバルブ16を経て反応管18に流れこむ。反応管1
8内では、サセプタ20の上に置かれて基板19の上で
、流れこんだ原料ガスの反応による結晶成長が生ずる。
In particular, vapor phase growth (M
The O-CVD (O-CVD) method is attracting attention as a method that can perform high-quality crystal growth in a wide range of applications and is excellent in mass productivity. In the MO-CVD method, control of the composition and doping of the epitaxial crystal is shown in Figure 3.
This is an example of a GaAs epitaxial growth apparatus. Raw material gas arsine (AsH3), )limethyl gallium (TMG)
a),) The flows of remethylaluminum (TMAI), diethylzinc (DBZn), and hydrogen selenide (Ht8e) are indicated by numbers 1 to 5 in the figure, respectively. These source gases are switched between the flow to the main stream 23 and the flow to the bypass line 24 by switching the stop valves 6, 11t7, 12j8, 13t9, ttt 10 and 15 to open and close, respectively. . The main stream 23 flows into the reaction tube 18 via the needle valve 16 . Reaction tube 1
In the chamber 8 , crystal growth occurs on the substrate 19 placed on the susceptor 20 due to the reaction of the flowing source gas.

反応後の廃ガスは排気口26よシ外部にとり出される。The waste gas after the reaction is taken out to the outside through the exhaust port 26.

一方、バイパスライン24に流れ込んだガスはニードル
バルブ17を経てバイパス出口25よシ外部に棄てられ
る。
On the other hand, the gas flowing into the bypass line 24 passes through the needle valve 17 and is discarded to the outside through the bypass outlet 25.

バイパスライン24は゛、原料ガスが反応管に導入され
ていないときも一定の流れを維持するために設けられて
いる。つまシ、成長に必要になったときにはじめて、原
料ガスの出口のパルプを開けると、安定した一定の原料
ガスの流れが得られる迄にある時間を要するために、成
長したエピタキシャル層中に組成の一定でない遷移層が
できるが、このような現象を防ぐために一定の流れを維
持するためのバイパスラインが設けられているものであ
る。例えば第3図の装置でセレン(8e)をドープした
GaAs 1亜鉛(Zn)をドープしたAILj Ga
6.yAsの2層を順に連続的に成長する場合について
述べる。SeドープのG a A s成長時はストップ
パルプ6s7plO113y14が開き、ストップパル
プ899り11,12715が閉じている。こうしてA
8Hs p TMGa s Ho5eは本流23に流れ
込んで反応管18に流れこみ、SeドープのG a A
 s成長に寄与し、TMAIおよびDEZnはバイパス
ライン24に流れこみ、反応管をバイパスして外部に棄
てられる。続いてZnドープA 1 o、s Ga O
,? A ’の成長に移るとき、ストップパルプ1(1
1114が閉じ、15,8.9が開いて、H2Seは本
流からバイパスラインに、TMAIとDEZnはバイパ
スラインから本流にそれぞれ切り替わる。こうしてZn
ドープのA l 6.3 Ga 6,7 A sの成長
に移る。ニードルバルブ16,17の調節および水素流
27.28切り替えた時のガス流量の変動を最小限にす
るためのものである。しかしながら、このようにしても
、ガス切り替え時には、本流23に流れ込むガスの総流
量と、バイパスライン24に流れ込むガスの総流量が変
動するために、各ラインの圧力が一時的に変動するため
に、エピタキシャル成長層の界面に組成やドーパント濃
度の遷移層が生ずることはまぬがれ得ない。第4図に、
第3図の構成で前述の8eドープG a A sおよび
ZnドープAlxG a 1−x A s層をこの順に
連続的に成長させたときの、境界附近でのA1組成およ
びドーパントの成長方向のプロファイルを示す。遷移層
の厚さは、成長速度が毎秒10X以上の実用的な成長速
度の場合には数100kにおよぶため、数芙以下の界面
急峻性を要する超薄膜を形成する場合に大きな障害とな
る。このように従来法によると、MOCVD法により半
導体の多層薄膜を形成した場合、その各層の境界面に組
成やドーパント濃度の遷移層が数100^の厚さで生ず
るという欠点を有する。
The bypass line 24 is provided to maintain a constant flow even when the raw material gas is not introduced into the reaction tube. However, when the pulp at the outlet of the source gas is opened only when it is needed for growth, it takes a certain amount of time to obtain a stable and constant flow of the source gas. In order to prevent this phenomenon, a bypass line is provided to maintain a constant flow. For example, in the apparatus shown in FIG. 3, GaAs doped with selenium (8e) 1 AILj Ga doped with zinc (Zn)
6. A case will be described in which two layers of yAs are successively grown in order. During Se-doped GaAs growth, stop pulp 6s7plO113y14 is open and stop pulp 89911,12715 is closed. Thus A
8Hs p TMGa s Ho5e flows into the main stream 23 and flows into the reaction tube 18, and Se-doped Ga A
s growth, TMAI and DEZn flow into the bypass line 24, bypass the reaction tube, and are discarded to the outside. Subsequently, Zn-doped A 1 o, s Ga O
,? When moving on to the growth of A', stop pulp 1 (1
1114 is closed, 15 and 8.9 are opened, H2Se is switched from the main flow to the bypass line, and TMAI and DEZn are switched from the bypass line to the main flow. In this way, Zn
We now turn to the growth of doped Al 6.3 Ga 6,7 As. This is to minimize fluctuations in the gas flow rate when adjusting the needle valves 16, 17 and switching the hydrogen flow 27,28. However, even with this method, when switching gases, the total flow rate of gas flowing into the main flow 23 and the total flow rate of gas flowing into the bypass line 24 fluctuate, so the pressure in each line fluctuates temporarily. It is inevitable that a transition layer of composition and dopant concentration will occur at the interface of the epitaxially grown layer. In Figure 4,
Profile of the A1 composition near the boundary and the dopant growth direction when the 8e-doped GaAs and Zn-doped AlxGa1-xAs layers are successively grown in this order in the configuration shown in Figure 3. shows. The thickness of the transition layer reaches several 100K when the growth rate is a practical growth rate of 10X or more per second, which is a major obstacle when forming an ultra-thin film that requires an interface steepness of several degrees or less. As described above, the conventional method has the disadvantage that when a multilayer thin film of semiconductor is formed by MOCVD, a transition layer of composition and dopant concentration is formed at the interface between each layer with a thickness of several hundred degrees.

(発明の目的) 本発明は、このような従来法の欠点を除去せしめて、半
導体の多層薄膜を形成する際に生産に実用的な成長速度
を以てしてもその各層の境界に数λ以下の界面急峻性を
もたせることを可能とじた結晶成長方法を提供すること
にある。
(Objective of the Invention) The present invention eliminates the drawbacks of such conventional methods, and even when forming a multilayer semiconductor thin film at a growth rate that is practical for production, the boundary between each layer has a thickness of several λ or less. The object of the present invention is to provide a crystal growth method that makes it possible to provide a steep interface.

(本発明の構成) 本発明は、原料ガスを結晶成長室へ流し込み、当該結晶
成長室内に設置された基板上に半導体結晶を成長する方
法において、原料ガスの切り替えと同時に原料ガスを含
まない稀釈ガスの流量を増減して前記結晶成長室に流れ
込むガスの総量を一定に保つことを特徴としている。
(Structure of the Present Invention) The present invention provides a method for flowing a raw material gas into a crystal growth chamber and growing a semiconductor crystal on a substrate installed in the crystal growth chamber, in which the raw material gas is switched and at the same time diluted without containing the raw material gas. The method is characterized in that the total amount of gas flowing into the crystal growth chamber is kept constant by increasing or decreasing the gas flow rate.

(実施例) 本発明は上述の構成をとることによシ従来技術の問題を
解決した。
(Embodiment) The present invention solves the problems of the prior art by adopting the above-described configuration.

第1図に示した本発明の一実施例を実現するための図を
用いて本発明の詳細な説明する。第1図はZn或いはS
eをドープしたGaAs或いはAlGaA3の多層薄膜
を形成するだめの構成で、本発明の実施例を実現するた
めの変更点すなわち、稀釈ガス(この実施例では水素1
2水素2)の導入管を設けた以外は第3図に示した前述
の従来例の構成と同じである。同一の構成要素に対して
は第3図と同一番号が附しである。原料ガスAsH8p
 TMGa −TMAI p DF!Zn p Hl 
Seの流れは図中矢印1〜5で示す。これらの原料ガス
は、ストップパルプ6と11シフと12p8と13#9
と14および10と15をそれぞれ相互に開閉を切り替
えることによシ本流23への流れとバイパスライン24
への流れとの間で切り替えられる。本流23の流れはニ
ードルパルプ16を経て、結晶成長室である反応管18
に流れ込む。反応管18内では、サセプタ20の上に基
板19が置かれ、その上で流れ込んだ原料ガスの反応に
よる結晶成長が生ずる。反応後の廃ガスは排気口26よ
シ外部に取シ出される。一方、バイパスライン24の流
れはニードルバルブ17を経て、結晶成長室である反応
室18をバイパスして、バイパス出口25より外部に導
ひかれる。このバイパスライン24は、従来技術の説明
でも述べた如く、原料ガスが反応管18に導入されてい
ないときも一定の流れを維持するために設けられている
。圧力計21および22は、それぞれ本流23およびバ
イパスライン24の圧力を測るものである。本流23お
よびバイパスライン24には稀釈ガスとして水素流27
および28を形成する。この水素流27.28の流量お
よびニードルパル7/16,17のコンタクタンスヲ調
節することにより、圧力計21122を用いて本流23
およびバイパスライン24の圧力を等しく保つようにす
る。29および30はそれぞれ水素の流れ1および2を
表わす。これらの水素流もストップパルプ31と33お
よび32と34の開閉によシ本流23への流れとバイパ
スライン24への流れの切り替えを行なう。第1図に示
した構成により、8eドープn fiAl 6.3Ga
6.yAs NアンドープGaAs、Znnドープ型A
l 6,3 GaAsの各層をこの順番で成長させる場
合について、本発明を適用した実施例を述べる。8eド
ープのn型A16,3Ga6.yAs成長時には、スト
ップパルプ697p8−10j14を開き、11,12
,13,9,15を閉じて、本流23にAsH3p T
MGa p TMAI p Hl Seを流しこみ反応
管18に導びき、DEznとバイイスライン24に流し
込み反応管18をバイパスさせる。
The present invention will be described in detail using a diagram for realizing an embodiment of the present invention shown in FIG. Figure 1 shows Zn or S
In order to form a multilayer thin film of GaAs or AlGaA3 doped with e.
The structure is the same as that of the conventional example shown in FIG. 3, except that an inlet pipe for hydrogen 2) is provided. The same components are given the same numbers as in FIG. 3. Raw material gas AsH8p
TMGa-TMAI p DF! Zn p Hl
The flow of Se is indicated by arrows 1 to 5 in the figure. These raw material gases are stop pulp 6, 11 schiff, 12p8 and 13#9.
14 and 10 and 15, respectively, to connect the flow to the main stream 23 and the bypass line 24.
You can switch between the flow to and from. The main flow 23 passes through the needle pulp 16 and then into the reaction tube 18 which is a crystal growth chamber.
flows into. In the reaction tube 18, a substrate 19 is placed on a susceptor 20, and crystal growth occurs on the substrate 19 due to the reaction of the raw material gas flowing therein. The waste gas after the reaction is taken out to the outside through the exhaust port 26. On the other hand, the flow in the bypass line 24 passes through the needle valve 17, bypasses the reaction chamber 18 which is a crystal growth chamber, and is guided to the outside through the bypass outlet 25. As described in the description of the prior art, this bypass line 24 is provided to maintain a constant flow even when the raw material gas is not introduced into the reaction tube 18. Pressure gauges 21 and 22 measure the pressure of the main flow 23 and bypass line 24, respectively. The main flow 23 and the bypass line 24 have a hydrogen flow 27 as a diluent gas.
and 28. By adjusting the flow rate of the hydrogen flow 27, 28 and the contactance of the needle pals 7/16 and 17, the main flow 23 is adjusted using the pressure gauge 21122.
and the pressure in the bypass line 24 is kept equal. 29 and 30 represent hydrogen streams 1 and 2, respectively. These hydrogen flows are also switched between the flow to the main stream 23 and the flow to the bypass line 24 by opening and closing the stop pulps 31 and 33 and 32 and 34. With the configuration shown in FIG. 1, 8e doped n fiAl 6.3Ga
6. yAs N undoped GaAs, Znn doped type A
An example will be described in which the present invention is applied to a case where each layer of l 6,3 GaAs is grown in this order. 8e doped n-type A16,3Ga6. When growing yAs, open stop pulp 697p8-10j14 and
, 13, 9, and 15, and AsH3p T in the main stream 23.
MGa p TMAI p Hl Se is poured into the reaction tube 18 and DEzn and vice line 24 are poured to bypass the reaction tube 18 .

各原料ガスのキャリアガス(生の原料ガスと混合して送
る稀釈用ガス。本実施例では水素)を含めたガス流量は
、本例では、A s Hsが毎分300 Ce。
In this example, the gas flow rate including the carrier gas (dilution gas mixed with the raw raw material gas and sent, hydrogen in this example) for each raw material gas is A s Hs of 300 Ce per minute.

TMGaが毎分400 CC,TMAIが毎分300 
CC。
TMGa is 400 CC per minute, TMAI is 300 CC per minute
C.C.

Ho5eが20ccである。アンドープG a A s
成長時には、ストップパルプ6p7p13−14−15
を開き、8,9ν10111,12を閉じて、本流23
にAsH3−TMGapを流しこみ、TMAI IDB
Zn = Ho5eをバイパスライン24に流す。各原
料ガスのキャリアガスを含めたガス流量はAsH3が毎
分300 cc 、ITMGaが毎分400 ccであ
る。
Ho5e is 20cc. Undoped Ga As
During growth, stop pulp 6p7p13-14-15
Open 8,9ν10111,12, main stream 23
Pour AsH3-TMGap into TMAI IDB
Zn=Ho5e is passed through the bypass line 24. The gas flow rate of each source gas including the carrier gas is 300 cc/min for AsH3 and 400 cc/min for ITMGa.

さらにZnnドープ型A16,3Ga6,7As成長時
には、ストップパルプ6y7y8t9t15を開き、1
1112.13ツ14り10を閉じて、本流23にAs
H3pTMGa p TMAI pDEZnを流しこみ
、Ho5eをバイパスライン24に流す。各原料ガスの
キャリアガスを含めた流量はA s Hsが毎分300
 cc。
Furthermore, when growing Znn-doped A16,3Ga6,7As, the stop pulp 6y7y8t9t15 is opened and 1
1112. Close the 13th 14th 10 and As to the main stream 23
H3pTMGa pTMAI pDEZn is poured in, and Ho5e is poured into the bypass line 24. The flow rate of each raw material gas including the carrier gas is A s Hs of 300 per minute.
cc.

TMGaが毎分400 cclTMAIが毎分300 
cclDEZnが毎分300□ccである。n型AI6
.30a6,7Asの成長時車流23に各原料ガスのラ
インから流れこむ、キャリアガスを含めた原料ガス流量
の総和は毎分1020ccである。アンドープG a 
A s成長時の原料ガス流量の総和は毎分700cc、
P型AtoJGa6.yA♂成長時の原料ガス流量の総
和は毎分13oOCCである。これらの原料ガスの流れ
のほかに水素1の2イン29には毎分320 ccの水
素を、水素2のライン30には毎分280 ccの水素
を流しておく。n型AI。、5oao、tAs#As時
にはストップパルプ32ν33を開き、31ν34を閉
じると水素2のライフ30から流量毎分280 ccの
水素が本流23に流れ込む。アンドープG a A s
成長時には、ストップパルプ31.32を開き、33.
34を閉じると水素1のライン29および水素2のライ
ン30から毎分320 ccおよび280 ccの水素
が本流23に流れ込む。p型A1゜J GAG、? ”
層成長時にはストップパルプ31132を閉じて、33
.34を開くと、水素1のライン29および水素2のラ
イン30の水素はすべてバイパスライン24に流れ込む
。このようにすると、本流23に流れこむガス流量の総
和は、n型A 16.3 Ga OJ As %アンド
ープGaAs%p型A10.3Ga0.7Asの成長時
に常に毎分1300ccに保たれる。このように本流2
3に流れこむガス流量の総和を常に等しく保つようにす
ると、圧力を等しく保たれた本流23とバイパスライン
24との相互間で原料ガスを切り替えたときに、各ライ
ンの圧力の変動を完全に抑えることができるので、ガス
流量の過渡現象を極小にすることができ、その・結果、
組成切替や不純分ドーピングの切替えを極めて急峻に行
なうことができる。第2図に本実施例によって得られた
層厚方向の組成プロファイルナドーピング濃度プロファ
イルを示す。n型Alo、3Ga0.yAs層とアンド
ープGaAs層との境界、或いはアンドープGaAs層
とp型k16.3 Ga6.?As層との境界に於ける
組成及びドーピング濃度は数^以下と極めて小さく、従
来例に較べて2桁以上改善された。この値は、成長速度
が毎秒20X(毎時7.2μm)程度の生産性を落とさ
ない実用的な値に対して得られる。さらに成長速度を毎
秒5X程度と遅くすれば、一原子層の急峻性をもつ界面
が得られる。これらの結果、厚さ数10X以下の量子井
戸構造や、変調ドープ構造の層構造が大幅に改善され、
それらを用いた量子井戸構造レーザや高電子易動度トラ
ンジスタなどの特性が改善された。
TMGa is 400 per minute cclTMAI is 300 per minute
cclDEZn is 300□cc per minute. n-type AI6
.. During the growth of 30a6, 7As, the total flow rate of the raw material gases including the carrier gas flowing into the vehicle flow 23 from the respective raw material gas lines is 1020 cc per minute. Undoped Ga
The total flow rate of raw material gas during A s growth is 700 cc/min,
P-type AtoJGa6. The total flow rate of raw material gas during yA♂ growth is 13 oOCC per minute. In addition to the flow of these raw material gases, 320 cc/min of hydrogen is allowed to flow into the 2-in 29 of hydrogen 1, and 280 cc/min of hydrogen is allowed to flow into the hydrogen 2 line 30. n-type AI. , 5oao, tAs#As, when the stop pulp 32ν33 is opened and 31ν34 is closed, hydrogen flows into the main flow 23 from the life 30 of the hydrogen 2 at a flow rate of 280 cc/min. Undoped Ga As
During growth, open the stop pulp 31.32 and 33.
When 34 is closed, 320 cc and 280 cc of hydrogen per minute flow into the main stream 23 from hydrogen 1 line 29 and hydrogen 2 line 30. p-type A1゜J GAG,? ”
During layer growth, the stop pulp 31132 is closed and the 33
.. 34, all hydrogen in hydrogen 1 line 29 and hydrogen 2 line 30 flows into bypass line 24. In this way, the total gas flow rate flowing into the main stream 23 is always maintained at 1300 cc per minute during the growth of n-type A 16.3 Ga OJ As % undoped GaAs % p-type A 10.3 Ga 0.7 As. In this way, mainstream 2
By always keeping the sum of the gas flow rates equal to each other, when the raw material gas is switched between the main flow 23 and the bypass line 24, which maintain the same pressure, the fluctuations in pressure in each line can be completely suppressed. As a result, the transient phenomenon of gas flow rate can be minimized, and as a result,
Composition switching and impurity doping switching can be performed extremely sharply. FIG. 2 shows the composition profile and doping concentration profile in the layer thickness direction obtained in this example. n-type Alo, 3Ga0. The boundary between the yAs layer and the undoped GaAs layer, or the boundary between the undoped GaAs layer and the p-type k16.3 Ga6. ? The composition and doping concentration at the boundary with the As layer are extremely small, less than a few degrees, and are improved by more than two orders of magnitude compared to the conventional example. This value is obtained for a practical value where the growth rate does not reduce productivity on the order of 20X per second (7.2 μm per hour). If the growth rate is further reduced to about 5X per second, an interface with a steepness of one atomic layer can be obtained. As a result, the layer structure of quantum well structures with a thickness of several tens of times or less and modulation doped structures has been significantly improved.
The characteristics of quantum well structure lasers and high electron mobility transistors using these materials have been improved.

本実施例では、SeドープA 16.3 Ga 6.7
 A S 1  アンドープGaAsおよびZnドープ
Al@、3Ga(1,yAsをこの順番で成長する場合
について述べたが、AI X Ga@−、cA8の組成
やドーパントの種類によらず本発明を適用できることは
言うまでもない。また層の数も任意である。さらに、本
発明は他の半導体Gap I n)xPyAsl−y系
や(Al xGa I −x ) y I n 1−7
 F系などのI−■化合物、Zn8xSe1−z系やH
gxCdt−x Te系などの[−VI化合物、Pd 
X S n 1−z T e系などのIV−VI化合物
、その他あらゆる半導体の気相成長法に適用できる。
In this example, Se-doped A 16.3 Ga 6.7
A case has been described in which undoped GaAs and Zn-doped Al@, 3Ga(1,yAs) are grown in this order, but the present invention can be applied regardless of the composition of AI X Ga@-, cA8 or the type of dopant. Needless to say, the number of layers is also arbitrary.Furthermore, the present invention can be applied to other semiconductors such as Gap I n)xPyAsl-y system and (Al
I-■ compounds such as F series, Zn8xSe1-z series and H
[-VI compounds such as gxCdt-x Te, Pd
It can be applied to the vapor phase growth method of IV-VI compounds such as X S n 1-z Te type and all other semiconductors.

(発明の効果) 本発明を適用することにより、半導体の多層薄膜を形成
する際に、生産に実用的な成長速度を以てしてもその各
層の境界に数x以下の界面急峻性をもたせることを可能
とした結晶成長方法が得られる。
(Effects of the Invention) By applying the present invention, when forming a multilayer thin film of semiconductor, it is possible to provide an interface steepness of several x or less at the boundary of each layer even at a growth rate that is practical for production. A crystal growth method that makes it possible can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を実現するための装置の構成
図、第2図は本発明において改善効果を示す図、第3図
は従来技術による一例を示す図であシ、第4図は従来技
術の欠点を示す図である。 1〜5は原料ガス、18は反応管、19は基板29.3
0は稀釈用ガス である。 工業技術院長 七袈嘆  (杓
FIG. 1 is a block diagram of a device for realizing an embodiment of the present invention, FIG. 2 is a diagram showing the improvement effect of the present invention, FIG. 3 is a diagram showing an example according to the prior art, and FIG. The figure shows the drawbacks of the prior art. 1 to 5 are raw material gases, 18 is a reaction tube, and 19 is a substrate 29.3
0 is dilution gas. The director of the Agency of Industrial Science and Technology

Claims (1)

【特許請求の範囲】[Claims]  原料ガスを結晶成長室へ流し込み、当該結晶成長室内
に設置された基板上に半導体結晶を成長する方法におい
て、原料ガスの切り替えと同時に原料ガスを含まない稀
釈ガスの流量を増減して前記結晶成長室に流れ込むガス
の総量を一定に保つことを特徴とする半導体結晶の成長
方法。
In a method of flowing a raw material gas into a crystal growth chamber and growing a semiconductor crystal on a substrate installed in the crystal growth chamber, the crystal growth is performed by increasing or decreasing the flow rate of a dilution gas that does not contain the raw material gas at the same time as switching the raw material gas. A method for growing semiconductor crystals characterized by keeping the total amount of gas flowing into the chamber constant.
JP25912284A 1984-12-10 1984-12-10 Method for growing semiconductor crystal Pending JPS61136993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25912284A JPS61136993A (en) 1984-12-10 1984-12-10 Method for growing semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25912284A JPS61136993A (en) 1984-12-10 1984-12-10 Method for growing semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS61136993A true JPS61136993A (en) 1986-06-24

Family

ID=17329618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25912284A Pending JPS61136993A (en) 1984-12-10 1984-12-10 Method for growing semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS61136993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275195A (en) * 1985-05-29 1986-12-05 Nippon Telegr & Teleph Corp <Ntt> Method and device for forming compound semiconductor thin film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513922A (en) * 1978-07-14 1980-01-31 Matsushita Electric Ind Co Ltd Vapor phase growthing method and its device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513922A (en) * 1978-07-14 1980-01-31 Matsushita Electric Ind Co Ltd Vapor phase growthing method and its device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61275195A (en) * 1985-05-29 1986-12-05 Nippon Telegr & Teleph Corp <Ntt> Method and device for forming compound semiconductor thin film

Similar Documents

Publication Publication Date Title
US6645302B2 (en) Vapor phase deposition system
US4368098A (en) Epitaxial composite and method of making
Murakami et al. Growth of Si-doped AlxGa1–xN on (0001) sapphire substrate by metalorganic vapor phase epitaxy
US5168077A (en) Method of manufacturing a p-type compound semiconductor thin film containing a iii-group element and a v-group element by metal organics chemical vapor deposition
McDermott et al. Atomic layer epitaxy of GaInP ordered alloy
JPS61136993A (en) Method for growing semiconductor crystal
US6461884B1 (en) Diode laser
JPS6390121A (en) Vapor phase crystal growth system
JPS60131968A (en) Vapor growth deposition device
JPH08288226A (en) Metal organic vapor growth apparatus
JPH0639705B2 (en) Gas supply device
JPH0265124A (en) Crystal growth of compound semiconductor
JPH0471993B2 (en)
JPH08130187A (en) Semiconductor vapor phase growth apparatus and semiconductor vapor phase growth method
JPH0572743B2 (en)
JPH0626187B2 (en) Semiconductor crystal manufacturing equipment
JPS61231174A (en) Manifold for vapor growth
JPH0594949A (en) Semiconductor vapor growth device
JPS62274712A (en) Molecular beam crystal growth
JPS636835A (en) Manufacture of semiconductor thin film
JPH01110720A (en) Vapor growth method of iii-v compound semiconductor
JPS6119120A (en) Manufacture of compound semiconductor substrate
JPH0573322B2 (en)
JPS635515A (en) Epitaxial growth of compound semiconductor
Oatis Heterojunction abruptness in GaAs/AlGaAs superlattices grown in an atmospheric pressure inverted-vertical MOCVD reactor