JPH0572743B2 - - Google Patents

Info

Publication number
JPH0572743B2
JPH0572743B2 JP59038014A JP3801484A JPH0572743B2 JP H0572743 B2 JPH0572743 B2 JP H0572743B2 JP 59038014 A JP59038014 A JP 59038014A JP 3801484 A JP3801484 A JP 3801484A JP H0572743 B2 JPH0572743 B2 JP H0572743B2
Authority
JP
Japan
Prior art keywords
gas
reaction tube
pressure
raw material
gases
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59038014A
Other languages
Japanese (ja)
Other versions
JPS60182722A (en
Inventor
Tooru Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3801484A priority Critical patent/JPS60182722A/en
Publication of JPS60182722A publication Critical patent/JPS60182722A/en
Publication of JPH0572743B2 publication Critical patent/JPH0572743B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気相結晶成長装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to a vapor phase crystal growth apparatus.

従来技術とその問題点 半導体工業ではエピタキシヤル結晶成長法とし
て減圧気相結晶法をとる場合が少なくない。気相
成長においては、使用する原料気体同士が、混合
されてから反応管内の結晶基板へ到着するまでの
間に副次的な中間反応をおこし、固体化して基板
到達以前に落下して成長に有効に使用されなかつ
たり、又基板上に落下したときは結晶品質を低下
させる原因となる場合がある。
Prior art and its problems In the semiconductor industry, a reduced pressure vapor phase crystal method is often used as an epitaxial crystal growth method. In vapor phase growth, the raw material gases used undergo a secondary intermediate reaction between the time they are mixed and the time they reach the crystal substrate in the reaction tube, solidify and fall before they reach the substrate, causing growth. If it is not used effectively or if it falls onto the substrate, it may cause deterioration of crystal quality.

たとえば、InGaAsの単結晶を成長させると
き、Inの原料としてトリエチルインジウムIn
(C2H53(以下TEIと略称する。)、Gaの原料とし
てトリエチル又はトリメチルガリウム(Ga
(C2H53又はGa(CH33でそれぞれTEG又は
TMGと略称する。)を使用し、Asの原料として
アルシンAsH3を使用するとき、TEIとAsH3の間
に混合後重合反応をおこし、結晶成長上好ましく
ない。又、TEGとAsH3との間にも同様の反応が
起きている可能性がある。これに対し原料ガス間
の反応の確率を下げるため、反応管内の圧力を常
圧の数分の1以下にし、原料ガス同士の衝突確率
をさげると共に、基板到達までの時間を短縮して
反応の確率を下げることが試みられている。第1
図に従来用いられてきた3種の原料ガスを使用す
る気相結晶装置のうち、ガスバイパス回路を含む
部分を示す。原料ガス1が或る時点の成長に用い
られておらず、待機の状態にあるとき、ガスは
U1を通りポンプ(図示せず)下流の大気圧の点
までバイパスさせられる。この間に原料ガス2と
3は反応管1に導かれ、結晶成長が進行してい
る。圧力調節用の絞りが図示された位置にあると
き、原料ガス2と原料ガス3は絞りの上流画合で
混合されるが、ここは圧力が大気圧又はそれ以上
になつているため、原料ガス同士の衝突確率が大
きく、又ガス流速が減圧部分に比べ小さいため、
原料ガス同士の反応の確率が高くなり前述のよう
な欠点が生じる。
For example, when growing a single crystal of InGaAs, triethylindium In is used as the raw material for In.
(C 2 H 5 ) 3 (hereinafter abbreviated as TEI), triethyl or trimethyl gallium (Ga
(C 2 H 5 ) 3 or Ga(CH 3 ) 3 with TEG or
It is abbreviated as TMG. ) and arsine AsH 3 is used as a raw material for As, a polymerization reaction occurs between TEI and AsH 3 after mixing, which is unfavorable for crystal growth. Furthermore, a similar reaction may also occur between TEG and AsH 3 . On the other hand, in order to reduce the probability of reactions between raw material gases, the pressure inside the reaction tube is reduced to a fraction of normal pressure or less, thereby reducing the probability of collision between raw material gases and shortening the time it takes for the raw material gases to reach the substrate. Attempts are being made to reduce the probability. 1st
The figure shows a part including a gas bypass circuit of a conventional gas phase crystallization apparatus using three types of raw material gases. When the raw material gas 1 is not used for growth at a certain point in time and is in a standby state, the gas is
It is bypassed through U 1 to a point at atmospheric pressure downstream of the pump (not shown). During this time, source gases 2 and 3 are introduced into the reaction tube 1, and crystal growth is progressing. When the pressure regulating throttle is in the position shown in the figure, raw material gas 2 and raw material gas 3 are mixed in the upstream section of the throttle, but since the pressure here is atmospheric pressure or higher, the raw material gas The probability of collision is high, and the gas flow velocity is lower than that of the decompression part
The probability of reactions between raw material gases increases, resulting in the above-mentioned drawbacks.

発明の目的 本発明の目的は原料気体間で副次的な反応を起
こし易い原料気体を用いる気相結晶成長装置にお
いて、副次的な反応を回避し、同時に、結晶成長
用原料気体の組成切換えに伴う、組成切換わりの
時間の短いガス−バイパス回路を有する気相成長
装置を提供することにある。
Purpose of the Invention The purpose of the present invention is to avoid secondary reactions and at the same time change the composition of the raw material gas for crystal growth in a vapor phase crystal growth apparatus that uses raw material gases that tend to cause secondary reactions between raw material gases. Accordingly, it is an object of the present invention to provide a vapor phase growth apparatus having a gas bypass circuit with a short composition switching time.

発明の構成 本発明の装置は各原料ガス種供給ライン毎に圧
力調節用絞りを設けている。すなわち反応管と、
複数種の気体を反応管に導く配管系と、反応管内
で試料を保持する試料ホルダーと、試料を加熱す
る加熱手段とを備えているCVD装置において前
記配管系が、複数本の配管を1つに合流して反応
管に気体を導入する構造を備え、さらに該気体の
合流部よりも上流において各気体の配管の途中に
気体に対するコンダクタンスを小さくする絞りを
それぞれ配置し、かつ各絞りの下流側、合流部よ
り上流側にそれぞれ第1のストツプ弁を配し、又
該ストツプ弁と絞りの間の配管から分岐させた配
管に各々第2のストツプ弁を配し、該第2のスト
ツプ弁の先を反応管内圧とほぼ等しい圧力を有す
る排気チエンバーに接続した構造となつているこ
とに特徴がある。
Structure of the Invention The apparatus of the present invention is provided with a pressure regulating throttle for each raw material gas type supply line. That is, a reaction tube,
In a CVD apparatus that includes a piping system that guides multiple types of gases into a reaction tube, a sample holder that holds a sample in the reaction tube, and a heating means that heats the sample, the piping system connects multiple pipings into one. The gas is introduced into the reaction tube by merging into the reaction tube, and furthermore, upstream of the gas merging part, a restriction is placed in the middle of the piping for each gas to reduce the conductance to the gas, and on the downstream side of each restriction. , a first stop valve is arranged on the upstream side of the confluence, and a second stop valve is arranged on each pipe branched from the pipe between the stop valve and the throttle, and the second stop valve It is characterized by a structure in which the tip is connected to an exhaust chamber whose pressure is approximately equal to the internal pressure of the reaction tube.

発明の作用・効果 本発明は各原料ガス種供給ライン毎に設けた圧
力調節用絞りにより各ガス圧が調節されるため、
混合ガス間の衝突確率を下げることができ、混合
による原料ガス間の反応という不都合を最小限に
回避することができる、この結果エピタキシヤル
結晶の成長速度を上昇させかつ、中間反応生成物
の基板結晶上の落下は着による結晶品質の低下を
防止せしめることが可能となる。
Effects and Effects of the Invention In the present invention, each gas pressure is adjusted by a pressure adjustment throttle provided for each raw material gas type supply line.
The probability of collision between mixed gases can be lowered, and the inconvenience of reactions between raw material gases caused by mixing can be avoided to a minimum.As a result, the growth rate of epitaxial crystals can be increased, and the substrate of intermediate reaction products can be reduced. Falling onto the crystal can prevent deterioration in crystal quality due to deposition.

実施例 以下本発明を実施例をつかつて説明する。第2
図は本発明の一実施例である。横型反応管1の内
部にはカーボン製サセプター2がおかれており、
該サセプター上にInP基板3が乗せられている。
本装置は−族の化合物半導体のInP基板上に
InP又はIn1-xGaxAsyP1-yを単層又は複数層エピ
タキシヤル成長させるものである。基板結晶3は
高周波コイル4により加熱される。原料ガス(a)は
TEI、(b)はTEG、(c)はAsH3、(d)はPH3、(e)はド
ーピングガスである。ドーピングガスは複数種使
用されることもあり、その際はガス系統を更に付
加すればよい。InP基板3上にInP結晶を成長さ
せる場合を説明する。
EXAMPLES The present invention will be explained below using examples. Second
The figure shows one embodiment of the invention. A carbon susceptor 2 is placed inside the horizontal reaction tube 1.
An InP substrate 3 is placed on the susceptor.
This device is mounted on an InP substrate of - group compound semiconductor.
InP or In 1-x Ga x AsyP 1-y is epitaxially grown in a single layer or in multiple layers. Substrate crystal 3 is heated by high frequency coil 4 . Raw material gas (a) is
TEI, (b) TEG, (c) AsH 3 , (d) PH 3 , and (e) doping gas. Multiple types of doping gases may be used, in which case a gas system may be added. A case in which an InP crystal is grown on the InP substrate 3 will be explained.

ガス(b)、(c)、(e)はUb,Uc,Ue開栓、Vb,
Vc,Ve閉栓ガス(a)、(d)についてはUa,Ud閉栓、
Va,Vd開栓の状態にそれぞれあり、TEIとPH3
はVb,Vdを通り合流点5を通り反応管1に導か
れる。NVa〜NVeはコンダクタンス調節用の絞
りであり、これらの絞りの下流側(図面右側)で
は圧力は減圧状態である。従つて、ガスは減圧状
態で混合されることになり、密度が希薄で、流速
が大きい状態で混じ合うことになる。このため、
ガス間の中間反応を軽減し良質のエピタキシヤル
膜を得ることが可能であるInPエピタキシヤル層
上にInGaAsの成長を行なうためには、(d)のPH3
の系統のバルブVdを閉栓し、Udを開栓しPH3
バイパスさせる。つぎに、Ub,Ucを開栓し、
Vb,Vcを開栓してTEG、AsH3を反応管に導く。
絞りの前後のガスの流量は標準状態換算では変わ
りないが圧力が絞りの後では減圧状態になるため
に、ガス流速は大きくなる。流速比は圧力比に反
比例するからである。
Gases (b), (c), and (e) are Ub, Uc, Ue open, Vb,
For Vc, Ve stopper gas (a), (d), Ua, Ud stopper,
Va and Vd are in the open state, respectively, and TEI and PH 3
passes through Vb and Vd, passes through the confluence point 5, and is guided to the reaction tube 1. NVa to NVe are restrictors for adjusting conductance, and the pressure is in a reduced pressure state on the downstream side of these restrictors (on the right side of the drawing). Therefore, the gases are mixed under reduced pressure, with low density and high flow rate. For this reason,
In order to grow InGaAs on the InP epitaxial layer, which can reduce intermediate reactions between gases and obtain a high-quality epitaxial film, the PH 3 of (d)
Close valve Vd of the system and open Ud to bypass PH 3 . Next, open Ub and Uc,
Open Vb and Vc and introduce TEG and AsH 3 into the reaction tube.
The flow rate of gas before and after the throttle remains the same in terms of standard conditions, but since the pressure becomes reduced after the throttle, the gas flow rate increases. This is because the flow rate ratio is inversely proportional to the pressure ratio.

従つてこの方式によつてガス間の混合は常に減
圧状態でおこすことができる。従来の方法は常圧
近傍でガスを混合し、後に絞りによつて減圧状態
に移行していたため、絞り以前の段階で常圧での
混合がおこり、この部分でガス中間反応の確率が
高まり異常反応生成物の発生により結晶性の低下
が見られた。本方法においては、原料諸ガスは減
圧状態で混合され中間反応が減少すると共に、ガ
ス組成切換え時の過度時間を短縮することができ
急岐なエピタキシヤル層界面を得ることが出来
る。なお、バルブUa〜Ueの下流側は、反応管の
下流点6にて合流しフイルターを通じて反応生成
物、未反応ガスの一部を除去し、減圧用真空ポン
プに導かれたのち、排ガス処理装置に導入され
る。実験例の反応管圧力は0.1気圧、絞りバルブ
より上流側の圧力は1気圧である。このときInP
及びInGaAsエピタキシヤル層は曇りのない鏡面
結晶から得られ、良好な光学的電気的特性を示
し、ガス間の中間反応が充分抑制されているこを
示した。又、InPとInGaAsとの界面急岐性は、
本発明を適用する前は60Å以上の厚さの変成層が
存在したのに対して、本発明の適用により20Å以
下に低減された。従つて、結晶中の荷電担体のド
ブロイ波長オーダーの物理現象を利用する薄膜デ
バイスの開発にとつても本方法が極めて有効であ
ることが判明した。
Therefore, by this method, mixing between gases can always occur under reduced pressure. In the conventional method, gases were mixed at near normal pressure and then moved to a reduced pressure state by throttling, so mixing at normal pressure occurred before throttling, increasing the probability of gas intermediate reactions at this point and causing abnormalities. A decrease in crystallinity was observed due to the generation of reaction products. In this method, the raw material gases are mixed under reduced pressure to reduce intermediate reactions, and it is also possible to shorten the transient time when changing the gas composition, and to obtain a sharp epitaxial layer interface. In addition, the downstream side of the valves Ua to Ue joins at the downstream point 6 of the reaction tube, removes reaction products and a part of unreacted gas through a filter, and is led to a vacuum pump for depressurization, and then sent to an exhaust gas treatment device. will be introduced in The reaction tube pressure in the experimental example was 0.1 atm, and the pressure upstream of the throttle valve was 1 atm. At this time, InP
The InGaAs epitaxial layer was obtained from a mirror crystal without haze, showed good optical and electrical properties, and showed that intermediate reactions between gases were sufficiently suppressed. In addition, the abruptness of the interface between InP and InGaAs is
Before applying the present invention, there existed a metamorphic layer with a thickness of 60 Å or more, but by applying the present invention, the thickness was reduced to 20 Å or less. Therefore, it has been found that this method is extremely effective for the development of thin film devices that utilize physical phenomena on the de Broglie wavelength order of charge carriers in crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の減圧CVD装置の模式図である。
U1〜Unはバイパス回路へのストツプ弁、V1
Vnは反応管へのストツプ弁、NVoは反応管を減
圧状態にするための絞り弁である。又1……反応
管、2……サセプター、3……基板結晶、4……
基板加熱用高周波コイルを示す。 第2図は本発明の実施例を示すである。 第2図において、NVa〜NVe……圧力調節用
絞り弁、Ua〜Ue……バイパス回路へのストツプ
弁、Va〜Ve……反応管へのストツプ弁、1……
反応管、2……サセプター、3……基板、4……
基板加熱用高周波コイル、5……減圧ガス合流
部、6……減圧バイパスガスと反応管通過ガスの
合流部を示す。
FIG. 1 is a schematic diagram of a conventional reduced pressure CVD apparatus.
U 1 ~ Un is the stop valve to the bypass circuit, V 1 ~
Vn is a stop valve to the reaction tube, and NVo is a throttle valve to reduce the pressure in the reaction tube. Also, 1... reaction tube, 2... susceptor, 3... substrate crystal, 4...
A high-frequency coil for substrate heating is shown. FIG. 2 shows an embodiment of the invention. In FIG. 2, NBa to NVe...pressure regulating throttle valves, Ua to Ue...stop valves to the bypass circuit, Va to Ve...stop valves to the reaction tube, 1...
Reaction tube, 2...susceptor, 3...substrate, 4...
A high-frequency coil for substrate heating, 5...a reduced-pressure gas confluence section, 6...a confluence section of the reduced-pressure bypass gas and the reaction tube passing gas.

Claims (1)

【特許請求の範囲】[Claims] 1 反応管と、複数種の気体を反応管に導く配管
系と、反応管内で試料を保持する試料ホルダー
と、試料を加熱する加熱手段とを備えている
CVD装置において、前記配管系が、複数本の配
管を1つに合流して反応管に気体を導入する構造
を備え、さらに、該気体の合流部よりも上流にお
いて各気体の配管の途中に気体に対するコンダク
タンスを小さくする絞りをそれぞれ配置し、かつ
各絞りの下流側、合流部より上流側にそれぞれ第
1のストツプ弁を配し、又該ストツプ弁と絞りの
間の配管から分岐させた配管を各々第2のストツ
プ弁を配し、該第2のストツプ弁の先を反応管内
圧とほぼ等しい圧力を有する排気チエンバーに接
続した構造となつていることを特徴とする減圧
CVD装置。
1. Equipped with a reaction tube, a piping system that guides multiple types of gases to the reaction tube, a sample holder that holds the sample within the reaction tube, and a heating means that heats the sample.
In the CVD apparatus, the piping system has a structure for merging a plurality of piping into one and introducing gas into the reaction tube, and furthermore, the piping system has a structure for introducing gas into the reaction tube by merging a plurality of piping into one, and furthermore, gas is inserted in the middle of the piping for each gas upstream of the gas merging part. A first stop valve is arranged downstream of each throttle and upstream of the confluence, and a pipe branched from the pipe between the stop valve and the throttle is arranged. A pressure reduction characterized by having a structure in which a second stop valve is arranged in each case, and the tip of the second stop valve is connected to an exhaust chamber having a pressure substantially equal to the internal pressure of the reaction tube.
CVD equipment.
JP3801484A 1984-02-29 1984-02-29 Decompression cvd device Granted JPS60182722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3801484A JPS60182722A (en) 1984-02-29 1984-02-29 Decompression cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3801484A JPS60182722A (en) 1984-02-29 1984-02-29 Decompression cvd device

Publications (2)

Publication Number Publication Date
JPS60182722A JPS60182722A (en) 1985-09-18
JPH0572743B2 true JPH0572743B2 (en) 1993-10-12

Family

ID=12513716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3801484A Granted JPS60182722A (en) 1984-02-29 1984-02-29 Decompression cvd device

Country Status (1)

Country Link
JP (1) JPS60182722A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2599558B1 (en) * 1986-05-27 1988-09-02 Labo Electronique Physique METHOD FOR PRODUCING A SEMICONDUCTOR DEVICE, INCLUDING THE DEPOSITION IN VAPOR PHASE OF LAYERS ON A SUBSTRATE
JP2732833B2 (en) * 1986-08-29 1998-03-30 ソニー株式会社 Vapor growth method
US6924235B2 (en) 2002-08-16 2005-08-02 Unaxis Usa Inc. Sidewall smoothing in high aspect ratio/deep etching using a discrete gas switching method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898138A (en) * 1981-12-07 1983-06-10 Hitachi Metals Ltd Vacuum cvd apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898138A (en) * 1981-12-07 1983-06-10 Hitachi Metals Ltd Vacuum cvd apparatus

Also Published As

Publication number Publication date
JPS60182722A (en) 1985-09-18

Similar Documents

Publication Publication Date Title
JP2948414B2 (en) Method of depositing Ge on substrate and method of manufacturing semiconductor device
JPH0572743B2 (en)
JPH01130519A (en) Mocvd crystal growing apparatus
JP3536699B2 (en) Compound semiconductor vapor phase epitaxial growth method
JP2646647B2 (en) Low pressure vapor phase growth equipment
JPH04254490A (en) Vapor growth method
JPH01220821A (en) Gas controlling method for vapor growth equipment
JPS60131968A (en) Vapor growth deposition device
JP2555959B2 (en) Vapor phase growth apparatus and vapor phase growth method
JP2847198B2 (en) Compound semiconductor vapor phase growth method
JPS59170000A (en) Device for crystal growth
JPH03195016A (en) Thermal cleaning method of si substrate; epitaxial growth and heat treatment apparatus
JPH0620974A (en) Vapor phase growing method
JPH04354325A (en) Epitaxial growing method of compound semiconductor
JPH04324623A (en) Device and method for vapor phase growth
JPS5826656B2 (en) 3-5 Epitaxy method
JPS62219614A (en) Method for growth of compound semiconductor
JP2784384B2 (en) Vapor growth method
JPH04261016A (en) Vapor phase growing device and method thereof
JPH0594949A (en) Semiconductor vapor growth device
JPH04372120A (en) Iii-v group compound semiconductor vapor growth method
JPH0613323A (en) Vapor phase epitaxy method for compound semiconductor mixed crystal
JPS6394618A (en) Crystal growth method of ii-v compound semiconductor
JPH0350721A (en) Vapor phase epitaxy
JPS6390121A (en) Vapor phase crystal growth system