JPS60182722A - Decompression cvd device - Google Patents

Decompression cvd device

Info

Publication number
JPS60182722A
JPS60182722A JP3801484A JP3801484A JPS60182722A JP S60182722 A JPS60182722 A JP S60182722A JP 3801484 A JP3801484 A JP 3801484A JP 3801484 A JP3801484 A JP 3801484A JP S60182722 A JPS60182722 A JP S60182722A
Authority
JP
Japan
Prior art keywords
gases
reaction
gas
pipe
reaction tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3801484A
Other languages
Japanese (ja)
Other versions
JPH0572743B2 (en
Inventor
Toru Suzuki
徹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP3801484A priority Critical patent/JPS60182722A/en
Publication of JPS60182722A publication Critical patent/JPS60182722A/en
Publication of JPH0572743B2 publication Critical patent/JPH0572743B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02392Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

PURPOSE:To make the concentration gradient of impurities on the interface steep by mounting throttle valves for adjusting pressure at every introducing pipe for a plural kind of reaction gases and mixing each reaction gas under the state of decompression when a semiconductor substrate, on which an epitaxial layer must be grown, in a reaction pipe and the reaction gases are fed into the reaction pipe while being heated. CONSTITUTION:A compound semiconductor substrate 3 consisting of InP, etc. held by a susceptor 2 made of carbon is housed in a horizontal type reaction pipe 1 on which a high-frequency coil 4 for heating the substrate is wound, and predetermined gases of various raw material gases (a)-(e) are mixed and fed into the reaction pipe to grow a layer composed of InP, In1-xGaxAsyP1-y or the like on the surface of the substrate 3 in an epitaxial manner. (C2H5)2, Ga(C2H5)3, AsH3, PH3, a doping gas, etc. are each used as the raw material gases (a)-(e) at that time, and throttle valves NVa-NVe for adjusting pressure are connected independently to each introducing pipe. Accordingly, prescribed gases are mixed after decompressing, and joined at a joining point 5. Bypass valves Ua-Ue are fitted to several introducing pipe and joined at a joining point 6 in a downstream, and discharged to an exhaust gas treater.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気相結晶成長装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to a vapor phase crystal growth apparatus.

従来技術とその問題点 半導体工業ではエピタキシャル結晶成長法として減圧気
相結晶法をとる場合が少なくない。気相成長においては
、使用する原料気体同士が、混合されてから反応管内の
結晶基板へ到達するまでの間に副次的な中間反応をおこ
し、固体化して基板到達以前に落下して成長に有効に使
用されなかったり、又基板上に落下したときは結晶品質
を低下させる原因となる場合がある。
Prior art and its problems In the semiconductor industry, reduced pressure vapor phase crystallization is often used as an epitaxial crystal growth method. In vapor phase growth, the raw material gases used undergo a secondary intermediate reaction between the time they are mixed and the time they reach the crystal substrate in the reaction tube, solidifying and falling before they reach the substrate, causing growth. If it is not used effectively or if it falls onto the substrate, it may cause deterioration of crystal quality.

たとえば、InGaAsの単結晶を成長させるとき、I
nの原料としてトリエチルインジウムIn(CzHi)
s (以下TEIと略称する。)、Gaの原料としてト
リエチル又はトリメチルガリウム(Ga (C2H5)
 s又はGa (CHs ) s でそれぞれT E 
G又はTMGと略称する。)を使用し、Asの原料とし
てアルシンAsHsを使用するとき、TE工とA s 
H3の間に混合後重合反応をおこし、結晶成長上好まし
くない。又、TEGとA s H3との間にも同様の反
応が起きている可能性がある。これに対し原料ガス間の
反応の確率を下げるため、反応管内の圧力を常圧の数分
の1以下にし、原料ガス同士の衝突確率をさげると共に
、基板到達までの時間を短縮して反応の確率を下げるこ
とが試みられている。第1図に従来用いられてきた3種
の原料ガスを使用する気相結晶装置のうち、ガスバイパ
ス回路を含む部分を示す。原料ガス1が成る時点の成長
に用いられておらず、待機の状態にあるとき、ガスはU
、を通すポンプ (図示せず)下流の大気圧の点までバ
イパスさせられる。この間に原料ガス2と3は反応管1
に導かれ、結晶成長が進行している。圧力調節用の絞り
が図示された位置にあるとき、原料ガス2と原料ガス3
は絞りの上流側で混合されるが、ここは圧力が大気圧又
はそれ以上になっているため、原料ガス同士の衝突確率
が大きく、又ガス流速が減圧部分に比べ小さいため、原
料ガス同士の反応の確率が高くなり前述のような欠点が
生じる。
For example, when growing a single crystal of InGaAs, I
Triethylindium In (CzHi) as a raw material for n
(hereinafter abbreviated as TEI), triethyl or trimethylgallium (Ga (C2H5)) as a raw material for Ga.
s or Ga (CHs) s respectively T E
It is abbreviated as G or TMG. ) and when using arsine AsHs as a raw material for As, TE engineering and As
A polymerization reaction occurs after mixing during H3, which is unfavorable in terms of crystal growth. Furthermore, a similar reaction may occur between TEG and As H3. On the other hand, in order to reduce the probability of reactions between raw material gases, the pressure inside the reaction tube is reduced to a fraction of normal pressure or less, thereby reducing the probability of collision between raw material gases and shortening the time it takes for the raw material gases to reach the substrate. Attempts are being made to reduce the probability. FIG. 1 shows a part including a gas bypass circuit of a conventional gas phase crystallization apparatus using three types of raw material gases. When the raw material gas 1 is not used for growth and is in a standby state, the gas is
, a pump (not shown) is bypassed downstream to a point at atmospheric pressure. During this time, raw material gases 2 and 3 are transferred to the reaction tube 1.
Guided by this, crystal growth is progressing. When the pressure regulating throttle is in the position shown in the figure, raw material gas 2 and raw material gas 3
are mixed on the upstream side of the throttle, but since the pressure here is atmospheric pressure or higher, the probability of collision between the raw material gases is high, and the gas flow velocity is lower than in the depressurized part, so there is a possibility that the raw material gases will collide with each other. The probability of reaction increases, resulting in the drawbacks mentioned above.

発明の目的 本発明の目的は原料気体間で副次的な反応を起こし易い
原料気体を用いる気相結晶成長装置において、副次的な
反応を回避し、同時に、結晶成長用原料気体の組成切換
えに伴う、組成切換わりの時間の短いガス−バイパス回
路を有する気相成長装置を提供することにある。
Purpose of the Invention The purpose of the present invention is to avoid secondary reactions and at the same time change the composition of the raw material gas for crystal growth in a vapor phase crystal growth apparatus that uses raw material gases that tend to cause secondary reactions between raw material gases. Accordingly, it is an object of the present invention to provide a vapor phase growth apparatus having a gas bypass circuit with a short composition switching time.

発明の構成 本発明の装置は各原料カス種供給ライン毎に圧力調節用
絞りを設けている。すなわち反応管と、複数種の気体を
反応管に導く配管系と、反応管内で試料を保持する試料
ホルタ−と、試料を加熱する加熱手段とを備えているC
VD装置において前記配管系が、複数本の配管を1つに
合流して反応管に気体を導入する構造を備え、さらに該
気体の合流部よりも上流において各気体の配管の途中に
気体に対するコンダクタンスを小さくする絞りをそれぞ
れ配置し、かつ各絞りの下流側、合流部より上流側にそ
れぞれ第1のストップ弁を配し、又Σ 該ストップ弁を絞りの間の配管から分岐させた配管に各
々第2のストップ弁を配し、該第2のストップ弁の先を
反応管内圧とほぼ等しい圧力を有する排気チェンバーに
接続した構造となっていることに特徴がある。
Structure of the Invention The apparatus of the present invention is provided with a pressure regulating throttle for each raw material waste supply line. That is, C includes a reaction tube, a piping system for guiding multiple types of gases to the reaction tube, a sample holter for holding the sample in the reaction tube, and a heating means for heating the sample.
In the VD apparatus, the piping system has a structure in which a plurality of pipings are merged into one and gas is introduced into the reaction tube, and furthermore, a conductance for the gas is provided in the middle of the piping for each gas upstream of the gas merging part. A first stop valve is arranged downstream of each throttle and upstream of the confluence, respectively, and the stop valve is installed in each pipe branched from the pipe between the throttles. The structure is characterized in that a second stop valve is provided, and the tip of the second stop valve is connected to an exhaust chamber having a pressure approximately equal to the internal pressure of the reaction tube.

発明の作用・効果 本発明は各原料ガス種供給ライン毎に設けた圧力調節用
絞りにより各ガス圧が調節されるため、混合ガス間の衝
突確率を下げることができ、混合による原料ガス間の反
応という不都合を最小限に回避することができる。この
結果エピタキシャル結晶の成長速度を上昇させかつ、中
間反応生成物の基板結晶上の落下は着による結晶品質の
低下を防止せしめることが可能となる。
Functions and Effects of the Invention In the present invention, the pressure of each gas is regulated by a pressure regulating throttle provided for each raw material gas type supply line, so the probability of collision between mixed gases can be lowered, and the collision between raw material gases due to mixing can be reduced. The inconvenience of reaction can be avoided to a minimum. As a result, it is possible to increase the growth rate of the epitaxial crystal and to prevent deterioration in crystal quality due to deposition of intermediate reaction products on the substrate crystal.

実施例 以下本発明を実施例をつかって説明する。第2図は本発
明の一実施例である。横型反応管lの内部にはカーボン
製サセプター2がおかれており。
EXAMPLES The present invention will be explained below using examples. FIG. 2 shows an embodiment of the present invention. A carbon susceptor 2 is placed inside the horizontal reaction tube l.

板上にInP又はIn1−、Ga、、;AsyPl−y
を単層又は複数層エビタギシャル成長させるものである
InP or In1-, Ga, ; AsyPl-y on the plate
It is used to grow epitaxially in a single layer or in multiple layers.

基板結晶3は高周波コイル(4)により加熱される。The substrate crystal 3 is heated by a high frequency coil (4).

原料ガス(a)はTEI、(b)は’PEG、(C)は
A s Hs 、 (d)はPH3,(e)はドーピン
グガスである。ドーピングガスは複数種使用されること
もあり、その際はガス系統を更に付加すればよい。In
P基板(3)上にInP結晶を成長させる場合を説明す
る。
Raw material gas (a) is TEI, (b) is 'PEG, (C) is As Hs, (d) is PH3, and (e) is doping gas. Multiple types of doping gases may be used, in which case a gas system may be added. In
A case will be described in which an InP crystal is grown on a P substrate (3).

ガス(b)、(c)、(e)はUb、Uc、Ue開栓、
Vb、 VcVe閉栓ガス(a)、(d)についてはU
a、Ud開閉栓vaVd開栓の状態にそれぞれあり、T
 EIとPH3はvb、vdを通り合流点5を通り反応
管1に導かれる。NVa−NVeはコンダクタンス調節
用の絞りであり、これらの絞りの下流側(図面右側)で
は圧力は減圧状態である。従って、ガスは減圧状態で混
合されることlこなり、密度が希薄で、流速が大きい状
態で混じ合うこ走になる。このため、ガス間の中間反応
を軽減し良質のエピタキシャル膜を得ることが可能であ
る。InPエピタキシャル層上にI n G a A 
sの成長を行なうためには、(d)のPH,の系統のバ
ルブVdを閉栓し、Udを開栓しPH3をバイパスさせ
る。つぎに、Ub、Ucを閉栓し、Vb、Vcを開栓し
TTEG、AsH3を反応管に導く。絞りの前後のガス
の流量は標準状態換算では変わりないが圧力が絞りの後
では減圧状態になるために、ガス流速は大きくなる。流
速比は圧力比に反比例するからである。
Gases (b), (c), and (e) are Ub, Uc, and Ue opened;
For Vb, VcVe stopper gases (a) and (d), U
a, Ud is open/closed, vaVd is open, and T
EI and PH3 pass through vb and vd and are led to reaction tube 1 through confluence 5. NVa-NVe are throttles for adjusting conductance, and the pressure is in a reduced pressure state on the downstream side of these throttles (on the right side of the drawing). Therefore, the gases are mixed under reduced pressure, and the gases are mixed at a low density and a high flow rate. Therefore, it is possible to reduce intermediate reactions between gases and obtain a high-quality epitaxial film. I n Ga A on the InP epitaxial layer
In order to grow s, the valve Vd of the PH system in (d) is closed and the valve Ud is opened to bypass PH3. Next, Ub and Uc are capped, Vb and Vc are opened, and TTEG and AsH3 are introduced into the reaction tube. The flow rate of gas before and after the throttle remains the same in terms of standard conditions, but since the pressure becomes reduced after the throttle, the gas flow rate increases. This is because the flow rate ratio is inversely proportional to the pressure ratio.

従ってこの方式によってガス間の混合は常に減圧状態で
おこすことができる。従来の方法は常圧近傍でガスを混
合し、後に絞りによって減圧状態に移行していたため、
絞り以前の段階で常圧での混合がおこり、この部分でガ
ス中間反応の確率が高才り異常反応生成物の発生により
結晶性の低下が見られた。本方法においては、原料諸ガ
スは減圧状態で混合され中間反応が減少すると共に、ガ
ス組成切換え時の過渡時間を短縮することができ急峻な
エピタキシャル層界面を得ることが出来る。
Therefore, by this method, mixing between gases can always occur under reduced pressure. In the conventional method, gases were mixed at near normal pressure and then transferred to a reduced pressure state by throttling.
Mixing at normal pressure occurred at a stage before squeezing, and in this region the probability of gas intermediate reactions was high, and a decrease in crystallinity was observed due to the generation of abnormal reaction products. In this method, the raw material gases are mixed under reduced pressure to reduce intermediate reactions, and the transition time when changing the gas composition can be shortened, making it possible to obtain a steep epitaxial layer interface.

なお、バルブUa−Ueの下流側は、反応管の下流点6
にて合流しフィルターを通じて反応生成物、未反応ガス
の一部を除去し、減圧用真空ポンプlζ導かれたのち、
排ガス処理装置に導入される。実験例の反応管圧力は0
.1気圧、絞りバルブより上流側の圧力は1気圧である
。このときInP及びI n G a A sエピタキ
シャル層は曇りのない鏡面結晶が得られ、良好な光学的
電気的特性を示し、ガス間の中間反応が充分抑制されて
いることを示した。又、InPとInGaAs との界
面急峻性は、本発明を適用する前は60A以上の厚さの
変成層が存在したのに対して1本発明の適用屹より20
A以下に低減された。従って、結晶中の荷電担体のドブ
ロイ波長オーダーの物理現象を利用する薄膜デバイスの
開発にとっても本方法が極めて有効であることが判明し
た。
Note that the downstream side of the valves Ua-Ue is the downstream point 6 of the reaction tube.
The reaction products and a part of the unreacted gas are removed through a filter, and a vacuum pump lζ is introduced to reduce the pressure.
Introduced into exhaust gas treatment equipment. The reaction tube pressure in the experimental example is 0.
.. The pressure upstream of the throttle valve is 1 atm. At this time, the InP and InGaAs epitaxial layer had a mirror-like crystal without clouding, exhibited good optical and electrical properties, and showed that intermediate reactions between gases were sufficiently suppressed. Furthermore, the steepness of the interface between InP and InGaAs has decreased by 20 Å since the application of the present invention, whereas before the present invention there was a metamorphosed layer with a thickness of 60 Å or more.
It was reduced to below A. Therefore, it has been found that this method is extremely effective for the development of thin film devices that utilize physical phenomena on the de Broglie wavelength order of charge carriers in crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の減圧CVD装置の模式図である。 U、〜Unはバイパス回路へのストップ弁、■、〜Vn
は反応管へのストップ弁、NVo は反応管を減圧状態
にするための絞り弁である。又1・・・反応管、2・・
・サセプター、3・・・基板結晶、4・・・基板加熱用
高周波コイルを示す。 第2図は本発明の実施例を示す図である。 第2図において NVa−NVe ・・・・・・圧力調節用絞り弁U a
 −U e・・・・・・・・・・・・・・・・・・バイ
パス回路へのストップ弁Va−Ve・・・・・・・・・
・・・・・・・・反応管へのストップ弁1・・・・・・
・・・・・・・−・・・・・・・・・・・・・・・・・
反応管2・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・サセプター3・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・基 
板4・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・基板加熱用高周波コイル5・・・
・・・・・・・・・・・・・・・・・・・・・・・・・
・・・減圧ガス合流部6・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・減圧バイパス
ガスと反応管通過ガスの合流部 を示す。
FIG. 1 is a schematic diagram of a conventional low pressure CVD apparatus. U, ~Un are stop valves to the bypass circuit, ■, ~Vn
is a stop valve to the reaction tube, and NVo is a throttle valve for reducing the pressure in the reaction tube. Also 1... reaction tube, 2...
-Susceptor, 3...Substrate crystal, 4...Substrate heating high frequency coil. FIG. 2 is a diagram showing an embodiment of the present invention. In Fig. 2, NVa-NVe ...... Pressure regulating throttle valve U a
-U e・・・・・・・・・・・・・・・ Stop valve Va-Ve to bypass circuit
......Stop valve 1 to reaction tube...
・・・・・・・・・-・・・・・・・・・・・・・・・・・・
Reaction tube 2・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・Susceptor 3・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・・base
Board 4・・・・・・・・・・・・・・・・・・・・・
......High frequency coil for substrate heating 5...
・・・・・・・・・・・・・・・・・・・・・・・・
・・・Decompression gas confluence section 6・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・ Shows the confluence of the reduced pressure bypass gas and the reaction tube passing gas.

Claims (1)

【特許請求の範囲】[Claims] 反応管と、複数種の気体を反応管に導く配管系と、反応
管内で試料を保持する試料ホルダーと、試料を加熱する
加熱手段とを備えているCVD装置において、前記配管
系が、複数本の配管を1つに合流して反応管に気体を導
入する構造を備え、さらに、該気体の合流部よりも上流
において各気体の配管の途中に気体に対するコンダクタ
ンスを小さくする絞りをそれぞれ配置し、かつ各絞りの
下流側、合流部より上流側にそれぞれ第1のストップ弁
を配し、又該ストップ弁と絞りの間の配管から分岐させ
た配管に各々第2のストップ弁を配し、該第2のストッ
プ弁の先を反応管内圧とほぼ等しい圧力を有する排気チ
ェンバーに接続した構造となっていることを特徴とする
減圧CVD装置。
In a CVD apparatus comprising a reaction tube, a piping system for guiding multiple types of gases to the reaction tube, a sample holder for holding a sample in the reaction tube, and a heating means for heating the sample, the piping system may include a plurality of piping systems. A structure is provided in which the pipes of the gases are merged into one and gas is introduced into the reaction tube, and furthermore, a throttle for reducing the conductance to the gas is arranged in the middle of each gas pipe upstream of the gas merging part, A first stop valve is disposed downstream of each throttle and upstream of the confluence, and a second stop valve is disposed in each pipe branched from the pipe between the stop valve and the throttle, and A reduced pressure CVD apparatus characterized in that the tip of the second stop valve is connected to an exhaust chamber having a pressure approximately equal to the internal pressure of the reaction tube.
JP3801484A 1984-02-29 1984-02-29 Decompression cvd device Granted JPS60182722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3801484A JPS60182722A (en) 1984-02-29 1984-02-29 Decompression cvd device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3801484A JPS60182722A (en) 1984-02-29 1984-02-29 Decompression cvd device

Publications (2)

Publication Number Publication Date
JPS60182722A true JPS60182722A (en) 1985-09-18
JPH0572743B2 JPH0572743B2 (en) 1993-10-12

Family

ID=12513716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3801484A Granted JPS60182722A (en) 1984-02-29 1984-02-29 Decompression cvd device

Country Status (1)

Country Link
JP (1) JPS60182722A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358821A (en) * 1986-08-29 1988-03-14 Sony Corp Vapor growth method
US4748135A (en) * 1986-05-27 1988-05-31 U.S. Philips Corp. Method of manufacturing a semiconductor device by vapor phase deposition using multiple inlet flow control
US6924235B2 (en) 2002-08-16 2005-08-02 Unaxis Usa Inc. Sidewall smoothing in high aspect ratio/deep etching using a discrete gas switching method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898138A (en) * 1981-12-07 1983-06-10 Hitachi Metals Ltd Vacuum cvd apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898138A (en) * 1981-12-07 1983-06-10 Hitachi Metals Ltd Vacuum cvd apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4748135A (en) * 1986-05-27 1988-05-31 U.S. Philips Corp. Method of manufacturing a semiconductor device by vapor phase deposition using multiple inlet flow control
JPS6358821A (en) * 1986-08-29 1988-03-14 Sony Corp Vapor growth method
US6924235B2 (en) 2002-08-16 2005-08-02 Unaxis Usa Inc. Sidewall smoothing in high aspect ratio/deep etching using a discrete gas switching method

Also Published As

Publication number Publication date
JPH0572743B2 (en) 1993-10-12

Similar Documents

Publication Publication Date Title
JPH0429313A (en) Device for producing semiconductor crystal
JPH02211620A (en) Method of growing single crystal thin film of compound semiconductor
JPS60182722A (en) Decompression cvd device
JPS58151397A (en) Production of vapor phase epitaxial crystal
JP2646647B2 (en) Low pressure vapor phase growth equipment
JPH04254490A (en) Vapor growth method
JPS60131968A (en) Vapor growth deposition device
JPS5826657B2 (en) 3-5 Epitaxy and hand-wringing method
JPS59170000A (en) Device for crystal growth
JPS5984417A (en) Iii-v family mixed crystalline semiconductor device
JPH01220821A (en) Gas controlling method for vapor growth equipment
JPH03195016A (en) Thermal cleaning method of si substrate; epitaxial growth and heat treatment apparatus
JPS63124408A (en) Crystal growth method of iii-v compound semiconductor
JPH0620974A (en) Vapor phase growing method
JPH04254492A (en) Vapor growth method
JPS6394618A (en) Crystal growth method of ii-v compound semiconductor
JPH0351293B2 (en)
JPS5826656B2 (en) 3-5 Epitaxy method
JPS62229822A (en) Vapor growth method for gallium arsenide layer
JPH04372120A (en) Iii-v group compound semiconductor vapor growth method
JPH02239614A (en) Hetero-epitaxial growth method
JPH042138A (en) Vapor phase epitaxial growth system
JPH0222814A (en) Manufacture of compound semiconductor device
JPH09142983A (en) Horizontal vapor phase epitaxy method and apparatus therefor
JPH0684803A (en) Vapor phase epitaxial growth device