JPH042138A - Vapor phase epitaxial growth system - Google Patents

Vapor phase epitaxial growth system

Info

Publication number
JPH042138A
JPH042138A JP10407090A JP10407090A JPH042138A JP H042138 A JPH042138 A JP H042138A JP 10407090 A JP10407090 A JP 10407090A JP 10407090 A JP10407090 A JP 10407090A JP H042138 A JPH042138 A JP H042138A
Authority
JP
Japan
Prior art keywords
gas
reaction tube
epitaxial growth
flow control
control plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10407090A
Other languages
Japanese (ja)
Inventor
Kenji Maruyama
研二 丸山
Satoshi Murakami
聡 村上
Koji Ebe
広治 江部
Akira Sawada
亮 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10407090A priority Critical patent/JPH042138A/en
Publication of JPH042138A publication Critical patent/JPH042138A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain high-quality epitaxial crystals free from variation in composition and thickness through supply of a material gas in a laminar state onto an epitaxial growth substrate by fitting a gas introduction tube that is the reaction tube with a gas flow control plate having a paraboloid and by constituting them so that the cross section of a gas passage formed between this gas flow control plate and the inner wall of the reaction tube may become gradually larger. CONSTITUTION:A gas flow control plate 12 having such a paraboloid that a position corresponding to the tube axis 11 of a reaction tube 1 is maximum is so provided as to have a specified interval to the gas introduction side inner wall 1A of the reaction tube, so that the material gas introduced into the reaction tube may be introduced into the reaction tube on the gas outlet side while passing between the inner wall 1A of the reaction tube and the gas flow control plate 12. This design makes the cross section of the gas passage gradually larger and therefore allows gas to be supplied onto an epitaxial growth substrate 3 in a laminar state of its flow. As a result, high-quality Hg1-xCdxTe epitaxial crystals free from variations in composition and thickness can be obtained.

Description

【発明の詳細な説明】 〔概 要〕 気相エピタキシャル成長装置に関し、 エピタキシャル成長用基板上に原料ガスが層流の状態で
流れるような装置を目的とし、反応管内に原料ガスを導
入し、前記反応管内のサセプタ上に載置されたエピタキ
シャル成長用基板を加熱して前記原料ガスを熱分解し、
基板上にエピタキシャル結晶を成長する装置に於いて、
前記反応管の管軸に対応する位置が極大となるような略
放物面を有するガス流制御板を、該反応管のガス導入側
の内壁に対して所定の間隔を有するように設けてガス通
路の断面積を徐々に大きくし、 前記反応管内に導入される原料ガスを前記反応管の内壁
とガス流制御板との間に通過させながら、該反応管のガ
ス出口側に導くようにして構成する。
[Detailed Description of the Invention] [Summary] Regarding a vapor phase epitaxial growth apparatus, the purpose is an apparatus in which a source gas flows in a laminar flow state over a substrate for epitaxial growth. thermally decomposing the source gas by heating an epitaxial growth substrate placed on a susceptor;
In an apparatus for growing epitaxial crystals on a substrate,
A gas flow control plate having a substantially parabolic surface with a maximum position corresponding to the tube axis of the reaction tube is provided at a predetermined distance from the inner wall of the reaction tube on the gas introduction side. The cross-sectional area of the passage is gradually increased, and the raw material gas introduced into the reaction tube is guided to the gas outlet side of the reaction tube while passing between the inner wall of the reaction tube and the gas flow control plate. Configure.

〔産業上の利用分野〕[Industrial application field]

本発明は気相エピタキシャル成長装置に関する。 The present invention relates to a vapor phase epitaxial growth apparatus.

赤外線検知素子の形成材料としてエネルギーバンドギャ
ップの狭い水銀・カドミウム・テルル(HgI−x C
dXTe)のような化合物半導体結晶が用いられている
Mercury, cadmium, tellurium (HgI-x C
A compound semiconductor crystal such as dXTe) is used.

このようなHgI−x Cdx Te結晶を素子形成材
料として都合が良いように大面積で、かつ薄層状態に形
成する場合、カドミウムテルル(CdTe)基板上にH
g1−XCdXTe結晶を気相成長方法等を用いて形成
している。
When such a HgI-x Cdx Te crystal is conveniently formed as a device forming material in a large area and in a thin layer, HgI-x Cdx Te crystal is formed on a cadmium telluride (CdTe) substrate.
The g1-XCdXTe crystal is formed using a vapor phase growth method or the like.

〔従来の技術〕[Conventional technology]

このような気相成長方法を用いてHgI−x CdXT
e結晶をCdTe基板上にエピタキシャル成長する場合
、キャリアガスとしての水素ガスを、ジメチルカドミウ
ム、ジエチルテルル、水銀等の原料液体を収容した蒸発
器内に導入し、該原料液体の成分を□担持した水素ガス
を反応管内に導入して、反応管内のサセプタ上のCdT
e基板を加熱し、前記原料ガスを熱分解してCdTe基
板上にHgI−x CdXTe結晶を気相エピタキシャ
ル成長している。
Using such a vapor phase growth method, HgI-x CdXT
When an e-crystal is epitaxially grown on a CdTe substrate, hydrogen gas as a carrier gas is introduced into an evaporator containing a raw material liquid such as dimethyl cadmium, diethyl tellurium, or mercury, and hydrogen supporting the components of the raw material liquid is introduced. A gas is introduced into the reaction tube to remove CdT on the susceptor inside the reaction tube.
The e-substrate is heated and the source gas is thermally decomposed to grow HgI-x CdXTe crystals on the CdTe substrate by vapor phase epitaxial growth.

ところでこれらの原料液体の成分を担持したキャリアガ
スは、基板上に乱流のように渦を巻いた流れの状態で供
給せずに、層流の状態で供給しないと、均一な厚さ、均
一な組成のエピタキシャル結晶が得られないとされてい
る。
By the way, the carrier gas carrying the components of these raw material liquids needs to be supplied in a laminar flow state rather than in a turbulent swirling flow onto the substrate. It is said that an epitaxial crystal with a certain composition cannot be obtained.

この原料ガスの流れが層流になるか、乱流になるかは、
原料ガスが通過する反応管の断面積が急激に変化する箇
所があると、その部分でガスの流れが渦を生じるので、
このような箇所を設けないことが必要とされている。
Whether the flow of this raw material gas is laminar or turbulent is
If there is a point where the cross-sectional area of the reaction tube through which the raw material gas passes suddenly changes, the gas flow will create a vortex at that point.
It is necessary not to provide such a location.

上記した観点より、従来、このような原料ガスの流れを
層流状態にしてエピタキシャル成長用基板に供給する装
置として、第4図に示すように、エピタキシャル成長用
の反応管1の断面積をガス導入管2より、サセプタ4上
に設置されているエピタキシャル成長用基板3に到達す
る迄、順次拡大する構造を採って基板上で原料ガスが層
流状態で供給されるようにしている。
From the above-mentioned viewpoint, conventionally, as shown in FIG. 4, as a device for supplying such raw material gas to a laminar flow state to a substrate for epitaxial growth, the cross-sectional area of the reaction tube 1 for epitaxial growth is changed to a gas introduction tube. 2, a structure is adopted in which the source gas is gradually expanded until it reaches the epitaxial growth substrate 3 placed on the susceptor 4, so that the raw material gas is supplied in a laminar flow state over the substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然し、上記した従来構造では、反応管の断面積が変化す
る箇所のテーパー角度θを適当な値に制御しないと、こ
の反応管の断面積が変化する箇所でガスの流れが渦を巻
いて乱流になり、このガスが基板上に供給されるので、
基板上に形成されるエピタキシャル結晶が所定の組成、
或いは所定の厚さに形成されない問題がある。
However, in the conventional structure described above, if the taper angle θ at the point where the cross-sectional area of the reaction tube changes is not controlled to an appropriate value, the gas flow will swirl and become turbulent at the point where the cross-sectional area of the reaction tube changes. This gas is supplied onto the substrate, so
The epitaxial crystal formed on the substrate has a predetermined composition,
Alternatively, there is a problem that the film is not formed to a predetermined thickness.

また上記構造で前記θを小さくして、ガスの流れが急激
に変化しないようにすると、反応管全体の長さが長くな
り、そのためHgI−x Cdy Te結晶の組成を変
動させて多層構造に積層形成する場合、反応管内の原料
ガスの切り換えが素早〈実施できず、このような多層構
造の結晶が形成されない問題がある。
Furthermore, in the above structure, if θ is made small to prevent sudden changes in the gas flow, the overall length of the reaction tube becomes longer, and therefore the composition of the HgI-x Cdy Te crystals is varied and stacked into a multilayer structure. When forming such a multilayer crystal, there is a problem that switching of the raw material gas in the reaction tube cannot be carried out quickly, and such a multilayer crystal structure is not formed.

本発明は上記した問題点を除去し、反応管の長さを増大
させずに基板上にエピタキシャル成長用の原料ガスが層
流状態で供給されるようにした装置の提供を目的とする
It is an object of the present invention to provide an apparatus which eliminates the above-mentioned problems and allows source gas for epitaxial growth to be supplied onto a substrate in a laminar flow state without increasing the length of the reaction tube.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明の気相エピタキシャル成長装
置は、第1図に示すように反応管1内に原料ガスを導入
し、前記反応管内のサセプタ4上に載置されたエピタキ
シャル成長用基板3を加熱して前記原料ガスを熱分解し
、基板上にエピタキシャル結晶を成長する装置に於いて
、 前記反応管1の管軸11に対応する位置が極大となるよ
うな略放物面を有するガス流制御板12を、該反応管の
ガス導入側の内壁1Aに対して所定の間隔を有するよう
に設けてガス通路の断面積を徐々に太き(し、前記反応
管l内に導入される原料ガスを前記反応管の内壁1^と
ガス流制御板12との間に通過させながら、該反応管の
ガス出口側に導入するようにしたことを特徴としている
The vapor phase epitaxial growth apparatus of the present invention which achieves the above object introduces a raw material gas into a reaction tube 1 and heats an epitaxial growth substrate 3 placed on a susceptor 4 in the reaction tube, as shown in FIG. In an apparatus for thermally decomposing the raw material gas and growing epitaxial crystals on a substrate, the gas flow control has a substantially parabolic surface such that the position corresponding to the tube axis 11 of the reaction tube 1 is the maximum. The plate 12 is provided at a predetermined distance from the inner wall 1A on the gas introduction side of the reaction tube, so that the cross-sectional area of the gas passage is gradually increased (and the raw material gas introduced into the reaction tube 1 is is introduced into the gas outlet side of the reaction tube while passing between the inner wall 1^ of the reaction tube and the gas flow control plate 12.

また上記した反応管は横型、或いは縦型構造いずれでも
良い。
Further, the reaction tube described above may have either a horizontal or vertical structure.

〔作 用〕[For production]

本発明の装置は、第1図に示すように反応管1の管軸1
1に対応する位置が極大となるような放物面を有するガ
ス流制御板12を、該反応管のガス導入側の内壁1八に
対して所定の間隔を有するように設け、前記反応管内に
導入される原料ガスを前記反応管の内壁1八とガス流制
御板12との間に通過させながら、該反応管内のガス出
口側に導入するようにする。
The apparatus of the present invention has a tube axis 1 of a reaction tube 1 as shown in FIG.
A gas flow control plate 12 having a parabolic surface such that the position corresponding to 1 is maximum is provided at a predetermined distance from the inner wall 18 on the gas introduction side of the reaction tube, and The raw material gas to be introduced is introduced into the gas outlet side of the reaction tube while passing between the inner wall 18 of the reaction tube and the gas flow control plate 12.

このようにすると、ガス導入管13より反応管1に導入
された原料ガスが、反応管の内壁1Aとガス流制御板1
2との間を通過すると、このガスの通路の断面積が徐々
に順次大きくなるので、ガスの流れが層流状態に成って
基板上に供給される。
In this way, the raw material gas introduced into the reaction tube 1 from the gas introduction tube 13 is transferred to the inner wall 1A of the reaction tube and the gas flow control plate 1.
2, the cross-sectional area of the gas passage gradually increases, so that the gas flows in a laminar flow state and is supplied onto the substrate.

またこのようにすると反応管lのガス導入管13よりエ
ピタキシャル成長用基板に到達する迄の長さが短くて済
み、Hgt−x CdXTe結晶を組成を変えて多層構
造に形成する場合、反応管内に於ける原料ガスの切り換
えを確実に行い得る。
In addition, by doing this, the length from the gas introduction tube 13 of the reaction tube 1 to reach the epitaxial growth substrate can be shortened, and when forming the Hgt-x CdXTe crystal into a multilayer structure by changing the composition, it is possible to It is possible to reliably switch the raw material gas used.

〔実 施 例〕〔Example〕

以下、図面を用いて本発明の一実施例につき詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の装置の第1実施例の側面図、第2図は
第1図の要部の平面図である。
FIG. 1 is a side view of a first embodiment of the apparatus of the present invention, and FIG. 2 is a plan view of the main part of FIG. 1.

第1図、および第2図に図示するように、本発明の装置
は反応管1の管軸11に対応する位置が極大となるよう
な放物面を有する石英ガラス製のガス流制御板12を、
該反応管1のガス導入側の内壁1Aに対して所定の間隔
を有するように設ける。
As shown in FIGS. 1 and 2, the apparatus of the present invention includes a gas flow control plate 12 made of quartz glass and having a parabolic surface such that the position corresponding to the tube axis 11 of the reaction tube 1 is the maximum. of,
It is provided at a predetermined distance from the inner wall 1A of the reaction tube 1 on the gas introduction side.

そして前記反応管1内に原料ガスを導入するガス導入管
13を前記ガス流制御板12を貫通した後、再び貫通す
るように折り曲げて形成し、前記ガス導入管13より反
応管に導入される原料ガスを、前記反応管の内壁1Aと
ガス流制御板12の間にil遇させながら、該反応管1
のガス出口側に導く。
Then, after passing through the gas flow control plate 12, a gas introduction pipe 13 for introducing the raw material gas into the reaction tube 1 is bent so as to pass through it again. While supplying the raw material gas between the inner wall 1A of the reaction tube and the gas flow control plate 12,
lead to the gas outlet side.

このガス流制御板12と反応管1との内壁の間の間隔は
、管軸11に対応する箇所で最小となり、反応管の側面
方向に到る程、大となり、前記ガス流制御板が曲面構造
を呈しているために、ガス導入管より導入された原料ガ
スの通路の断面積は急激に拡がらず、徐々に拡がるため
に流れの渦が発生する箇所が無(なり、原料ガスが層流
状態に基板上に供給される。
The distance between the gas flow control plate 12 and the inner wall of the reaction tube 1 is minimum at a location corresponding to the tube axis 11, and increases toward the side of the reaction tube, so that the gas flow control plate has a curved surface. Because of this structure, the cross-sectional area of the passage of the raw material gas introduced from the gas introduction pipe does not expand rapidly, but gradually expands, so there are no places where flow vortices occur, and the raw material gas is layered. is supplied onto the substrate in a flowing state.

このような本発明の装置を用いてCdTe基板上にHg
t−x CdXTe結晶を気相エピタキシャル成長する
場合について説明する。
Using such a device of the present invention, Hg is deposited on a CdTe substrate.
A case in which a t-x CdXTe crystal is grown by vapor phase epitaxial growth will be described.

第1図に示すようにサセプタ4上にCdTeのエピタキ
シャル成長用基板3を設置し、反応管1内を排気管14
に連なる排気ポンプにて10− ’ torr程度の真
空度に成る迄排気した後、ガス導入管13よりジメチル
カドミウムを担持した水素ガスを5.0 Xl0−’気
圧の分圧、ジエチルテルルを担持した水素ガスを2.4
 Xl0−’気圧の分圧、水銀を担持した水素ガスの分
圧を6.0 Xl0−’気圧の分圧とし、水素ガスの総
流量を54!/minとした流量で反応管1内に導入す
る。
As shown in FIG. 1, a CdTe epitaxial growth substrate 3 is placed on a susceptor 4, and an exhaust pipe 14
After evacuating to a vacuum level of about 10-' torr using an exhaust pump connected to the tank, hydrogen gas carrying dimethyl cadmium was introduced from the gas introduction pipe 13 at a partial pressure of 5.0 Xl0-' atm, and diethyl tellurium was carried therein. 2.4 hydrogen gas
Assuming that the partial pressure of Xl0-'atmosphere and the partial pressure of hydrogen gas supporting mercury are 6.0 Xl0-'atmosphere, the total flow rate of hydrogen gas is 54! It is introduced into the reaction tube 1 at a flow rate of /min.

するとこのガス導入管13より反応管1内に導入された
原料ガスは、反応管の内壁1^に衝突して均一に混合さ
れ、ガス流制御板12と反応管の内壁1Aとの間を通過
する。そしてこのガス流制御板12と反応管の内壁1八
との間隔は徐々に大きくなっているので、ガス通路の急
激な断面積の変動がないために層流となって反応管1の
ガス排気管側に導かれる。
Then, the raw material gas introduced into the reaction tube 1 from this gas introduction tube 13 collides with the inner wall 1^ of the reaction tube, is mixed uniformly, and passes between the gas flow control plate 12 and the inner wall 1A of the reaction tube. do. Since the distance between the gas flow control plate 12 and the inner wall 18 of the reaction tube gradually increases, the gas flow from the reaction tube 1 becomes laminar because there is no sudden change in the cross-sectional area of the gas passage. guided to the tube side.

この状態で高周波誘導コイル15に通電し、サセプタ4
を加熱して原料ガスを熱分解してエピタキシャル成長用
基板上にHg1−x Cdx Te結晶をエピタキシャ
ル成長する。
In this state, the high frequency induction coil 15 is energized and the susceptor 4
is heated to thermally decompose the source gas to epitaxially grow Hg1-x Cdx Te crystals on the epitaxial growth substrate.

するとエピタキシャル成長用基板上に原料ガスが層流状
態で安定して供給されるので、組成、および厚さに変動
を住じない高品質のHgt −X Cdx Teのエピ
タキシャル結晶が得られる。
Then, the raw material gas is stably supplied in a laminar flow onto the epitaxial growth substrate, so that a high-quality Hgt -X Cdx Te epitaxial crystal with no fluctuation in composition and thickness can be obtained.

また本実施例によれば、反応管の長さを増大させないで
層流状態の原料ガスをエピタキシャル成長用基板上に供
給できるので、Hgt−XCdXTe結晶を、組成を変
化させて多層構造に積層する場合に於いても、反応管内
の原料ガスの切り換えが素早く行えるので、高品質の多
層構造のlIg+−x Cdx Te結晶が得られる。
Furthermore, according to this example, since the raw material gas in a laminar flow state can be supplied onto the epitaxial growth substrate without increasing the length of the reaction tube, when Hgt-XCdXTe crystals are stacked in a multilayer structure with varying compositions, Even in this case, since the raw material gas in the reaction tube can be quickly switched, a high quality IIg+-x Cdx Te crystal with a multilayer structure can be obtained.

また本実施例の他の実施例として第3図に示すように反
応管1を縦型構造として、管軸11に対応する箇所が極
大となるような放物曲面を有するガス流制御板12を設
けても第1実施例と同様な効果がある。
As another example of this embodiment, as shown in FIG. 3, the reaction tube 1 has a vertical structure, and the gas flow control plate 12 has a parabolic curved surface such that the portion corresponding to the tube axis 11 is maximum. Even if it is provided, the same effect as in the first embodiment can be obtained.

制御板、13はガス導入管、 波誘導コイルを示す。control board, 13 is a gas introduction pipe; A wave induction coil is shown.

14は排気管、 15は高岡 〔発明の効果〕 以上の説明から明らかなように本発明によれば、エピタ
キシャル成長用基板上に原料ガスが層流状態で供給され
るため、組成、および厚さの変動しない高品質のエピタ
キシャル結晶が得られる効果がある。
14 is an exhaust pipe, and 15 is Takaoka. [Effects of the Invention] As is clear from the above description, according to the present invention, the raw material gas is supplied onto the epitaxial growth substrate in a laminar flow state, so that the composition and thickness can be adjusted. This has the effect of obtaining high quality epitaxial crystals that do not fluctuate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の装置の第1実施例の側面図、第2図は
第1図の要部を示す平面図、 第3図は本発明の第2実施例の説明図、第4図は従来の
装置の説明図である。 図において、
FIG. 1 is a side view of the first embodiment of the apparatus of the present invention, FIG. 2 is a plan view showing the main parts of FIG. 1, FIG. 3 is an explanatory diagram of the second embodiment of the present invention, and FIG. 4 is an explanatory diagram of a conventional device. In the figure,

Claims (1)

【特許請求の範囲】  反応管(1)内に原料ガスを導入し、前記反応管(1
)内のサセプタ(4)上に載置されたエピタキシャル成
長用基板(3)を加熱して前記原料ガスを熱分解し、該
エピタキシャル成長用基板上にエピタキシャル結晶を成
長する装置に於いて、 前記反応管(1)の管軸(11)に対応する位置が極大
となるような略放物面を有するガス流制御板(12を、
該反応管のガス導入側の内壁(1A)に対して所定の間
隔を有するように設けてガス通路の断面積を徐々に大き
くし、 前記反応管(1)内に導入される原料ガスを前記反応管
の内壁(1A)とガス流制御板(12)との間に通過さ
せながら、該反応管のガス出口側に導くようにしたこと
を特徴とする気相エピタキシャル成長装置。
[Scope of Claims] A raw material gas is introduced into the reaction tube (1), and the reaction tube (1) is
) in which the epitaxial growth substrate (3) placed on the susceptor (4) is heated to thermally decompose the source gas and grow an epitaxial crystal on the epitaxial growth substrate, the reaction tube A gas flow control plate (12) having a substantially parabolic surface such that the position corresponding to the tube axis (11) of (1) is the maximum,
The gas passage is provided at a predetermined distance from the inner wall (1A) on the gas introduction side of the reaction tube, and the cross-sectional area of the gas passage is gradually increased, so that the raw material gas introduced into the reaction tube (1) is A vapor phase epitaxial growth apparatus characterized in that the gas is guided to the gas outlet side of the reaction tube while passing between the inner wall (1A) of the reaction tube and the gas flow control plate (12).
JP10407090A 1990-04-18 1990-04-18 Vapor phase epitaxial growth system Pending JPH042138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10407090A JPH042138A (en) 1990-04-18 1990-04-18 Vapor phase epitaxial growth system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10407090A JPH042138A (en) 1990-04-18 1990-04-18 Vapor phase epitaxial growth system

Publications (1)

Publication Number Publication Date
JPH042138A true JPH042138A (en) 1992-01-07

Family

ID=14370902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10407090A Pending JPH042138A (en) 1990-04-18 1990-04-18 Vapor phase epitaxial growth system

Country Status (1)

Country Link
JP (1) JPH042138A (en)

Similar Documents

Publication Publication Date Title
US20180209043A1 (en) Epitaxial chamber with customizable flow injection
JPH04287312A (en) Device and method for vapor phase epitaxial growth
JPH042138A (en) Vapor phase epitaxial growth system
JP3757698B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing system
JPH0547669A (en) Vapor growth apparatus
JPS59159980A (en) Vapor growth device
JP3702403B2 (en) Vapor growth method
JPH04187594A (en) Device of vapor-phase epitaxial growth
JPS60182722A (en) Decompression cvd device
JP3047969B2 (en) Gas expansion rectifier
JPH02181938A (en) Vapor phase epitaxial growth apparatus
JPS60131968A (en) Vapor growth deposition device
JPH0366121A (en) Vapor growth device and vapor growth
JPS61174624A (en) Semiconductor growing apparatus
JPH046840A (en) Vapor growth apparatus
JPH07193003A (en) Vapor growth device and vapor growth method
JPH05190454A (en) Vapor phase epitaxial growth device
JPH01222438A (en) Vapor growth device
JPH0376219A (en) Vapor crystal growth device
JPS62291021A (en) Vapor growth device
JPS6050919A (en) Vapor growth device
JPS61117826A (en) Vapor growth apparatus
JPS63313825A (en) Vapor phase epitaxy method
JPH01239086A (en) Organometallic chemical vapor-phase reaction apparatus
JPS6328031A (en) Vapor growth apparatus