JPS6390121A - Vapor phase crystal growth system - Google Patents

Vapor phase crystal growth system

Info

Publication number
JPS6390121A
JPS6390121A JP23432486A JP23432486A JPS6390121A JP S6390121 A JPS6390121 A JP S6390121A JP 23432486 A JP23432486 A JP 23432486A JP 23432486 A JP23432486 A JP 23432486A JP S6390121 A JPS6390121 A JP S6390121A
Authority
JP
Japan
Prior art keywords
valves
gas
passage control
valve
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23432486A
Other languages
Japanese (ja)
Inventor
Motoi Suhara
須原 基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23432486A priority Critical patent/JPS6390121A/en
Publication of JPS6390121A publication Critical patent/JPS6390121A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To carry out the vapor growth uniformly with good reproducibility by a method wherein passage control parts for other fluids are installed in such a way that they are connected to a vessel for a reactive gas and a vessel for a carrier gas and that they compensate the change in the flow rate with a view to suppressing the fluctuation in the pressure inside a reaction furnace due to the changeover of a valve. CONSTITUTION:Passage control parts for other fluids 26 are installed in parallel with a passage control part for a fluid 25. Flowmeters 27, 28 and valves 29-32 are installed at the pipe arrangement which is branched away from a pipe for a carrier gas. The valves 31, 32 are connected to a bypass 24 together with valves 14, 16, 18, 20, 22, and the valves 29, 30 are connected to a reaction furnace 23 through a pipe together with valves 13, 15, 17, 19, 21. In order to keep the flow rate, e.g., at 6400 cc/min over the whole interval area ranging from the point before the start of a growth process to the point after the growth process, the flowmeter 28 is set to 1200 cc/min if the sum of 5000 cc/min for a carrier gas and 200 cc/min for arsine is 5200 cc/min at an interval before the growth process, and the total flow rate for a gas is kept at 6400 cc/min by closing the valve 23 and by opening the valve 31. During this process, each valve is opened in such a way that a source gas and the flowmeter 27 at the passage control part for other fluids are connected to the bypass 24. In this way, it is possible to obtain a uniformly grown film because the fluctuation in the pressure inside a furnace can be suppressed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、半導体結晶薄膜の形成に広く用いられる気相
結晶成長装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an improvement in a vapor phase crystal growth apparatus widely used for forming semiconductor crystal thin films.

(従来の技術) 気相成長法には成長させる結晶の原料気体を反応炉に導
入して、熱分解反応を起し、基板上に結晶を堆積するC
VD法が知られており、その一種であるMOCVD法で
は有機金属化合物の熱分解反応を利用している。
(Prior art) In the vapor phase growth method, a raw material gas for the crystal to be grown is introduced into a reactor, a thermal decomposition reaction is caused, and the crystal is deposited on the substrate.
The VD method is known, and one of them, the MOCVD method, utilizes a thermal decomposition reaction of an organometallic compound.

このMOCVD法ではすべての原料をガス状態で供給す
るので結晶組成の制御が容易であるほかに、原料の高純
度化と相まって■−■族半導体の結晶成長に使用して良
質な半導体レーザやFETなどが量産化されている。
In this MOCVD method, all raw materials are supplied in a gaseous state, making it easy to control the crystal composition. etc. are being mass-produced.

このMOCVD法によってGaAs/GaAQAsを製
造するのに通常使用する気相結晶成長装置の概略を第2
図により説明すると、アルシン50、トリメチルガリウ
ム(以後TMGと略記する)51. n型ドーピング用
セレン化水素52、P型ドーピング用ジエチル亜鉛(以
後DEZと略記する)53及びトリメチルアルミニウム
(以後T M Aと略記する)54を原料として用意し
、キャリアガス55として水素を使用する。
The outline of the vapor phase crystal growth apparatus normally used to produce GaAs/GaAQAs by this MOCVD method is shown in the second section.
To explain with the diagram, arsine 50, trimethyl gallium (hereinafter abbreviated as TMG) 51. Hydrogen selenide 52 for n-type doping, diethylzinc (hereinafter abbreviated as DEZ) 53 and trimethylaluminum (hereinafter abbreviated as TMA) 54 for p-type doping are prepared as raw materials, and hydrogen is used as a carrier gas 55. .

この原料のうちTMG51.DEG53、ならびにTM
A54は、常温で液状であるため、これらには。
Among these raw materials, TMG51. DEG53, as well as TM
A54 is liquid at room temperature, so these.

キャリアガスをバブリングして所要の気体量を確保する
ように配慮している。これらの原料気体をキャリアガス
である水素を使用して反応炉56に導入して図示しない
基板上に熱分解気体を堆積して所定の結晶成長を行うが
、その気体の流量制御は流量計57.58.59.60
.61.62により、これらの原料気体を反応炉56に
導入するかあるいは排気ガスライン(今後バイパスと記
載する)63に排出するかは、弁64−65.6ロー6
7、68−69.70−71.72−73によりマニュ
アルもしくは一自動化機器により行う。
Care is taken to ensure the required amount of gas by bubbling the carrier gas. These raw material gases are introduced into a reactor 56 using hydrogen as a carrier gas, and pyrolyzed gas is deposited on a substrate (not shown) to grow a predetermined crystal. The flow rate of the gas is controlled by a flowmeter 57. .58.59.60
.. According to 61.62, whether these raw material gases are introduced into the reactor 56 or discharged to the exhaust gas line (hereinafter referred to as bypass) 63 is determined by the valves 64-65.6.
7, 68-69.70-71.72-73 by manual or automated equipment.

尚前述のようにバイパス63には各原料気体の流路を接
続することは勿論であり、図中点線で囲んだ領域即ち各
原料、流量計反応炉ならびに弁はこの気相結晶成長装置
では重要な部分であり、二Nを今後流体通路制御部74
とする。
As mentioned above, it goes without saying that the flow paths for each raw material gas are connected to the bypass 63, and the areas surrounded by dotted lines in the figure, that is, each raw material, flowmeter reactor, and valve, are important in this vapor phase crystal growth apparatus. 2N will be used in the future in the fluid passage control section 74.
shall be.

(発明が解決しようとする問題点) この気相結晶成長装置を使用してn型GaAs基板にn
型AQ、 、4As(n=3 X 1017cn−3)
/Undope GaAs/P型A20,4Ga0.、
As (p=2X1017cm−3)のダブルへテロ構
造を形成するには、水素稀釈10%アルシン、水素稀釈
1ppmf12Se、 0℃: TMG、20’C: 
TMA、0”CDEZを使用し、キャリアガス水素50
000cc/min、アルシン200cc/m1n一定
、又V/III比、■族の總モル流量も成長速度が0.
1μs/akinになるように固定する。
(Problems to be Solved by the Invention) This vapor phase crystal growth apparatus is used to grow n-type GaAs substrates.
Type AQ, , 4As (n=3 x 1017cn-3)
/Undoped GaAs/P type A20,4Ga0. ,
To form a double heterostructure of As (p=2X1017cm-3), hydrogen dilution 10% arsine, hydrogen dilution 1ppm f12Se, 0°C: TMG, 20'C:
Using TMA, 0” CDEZ, carrier gas hydrogen 50
000 cc/min, arsine 200 cc/m1n constant, V/III ratio, and the total molar flow rate of group Ⅰ also have a growth rate of 0.
It is fixed at 1 μs/akin.

このような条件のもとで各層の成長時に反応炉へ導入す
る気体総流量は6400cc/1Iin、 5260c
c/min及び5320cc/l1inとなり、更に各
暦月の気体流量調節のために採用するインターバル中に
は、 Asの蒸発を防止するために流すアルシン及びキ
ャリアガスの和5200cc/minを反応炉に導入す
る。このいずれの場合にも弁64乃至73の切換前後に
反応炉内の圧力は数トール−数10トール変動する。
Under these conditions, the total flow rate of gas introduced into the reactor during growth of each layer was 6400cc/1Iin, 5260cc.
c/min and 5320 cc/l1in, and during the interval adopted for gas flow adjustment in each calendar month, a total of 5200 cc/min of arsine and carrier gas flowing to prevent As evaporation was introduced into the reactor. do. In either case, the pressure within the reactor fluctuates from several torr to several tens of torr before and after switching the valves 64 to 73.

この圧力変動を抑制する手段としては、キャリアガスの
流量を各層の成長に先立って調節して反応炉に導入する
ガスの總流量を一定にする方法があるが、流量計の応答
には限界があり圧力変動を完全に防止することはできな
いのが現状である。
One way to suppress this pressure fluctuation is to adjust the flow rate of the carrier gas prior to the growth of each layer to keep the total flow rate of the gas introduced into the reactor constant, but there is a limit to the response of the flow meter. Currently, it is not possible to completely prevent pressure fluctuations.

この結果、各層界面の結晶性1組成ならびにキャリア濃
度分布などに大きく影響するので、半導体レーザやFE
Tの特性異常及び再現性の悪化を招く基となる。
As a result, the crystallinity 1 composition and carrier concentration distribution at each layer interface are greatly affected.
This becomes the basis for causing abnormalities in T characteristics and deterioration of reproducibility.

本発明は上記難点を除去する新規な気相結晶成長装置を
提供するもので、特に弁の切換の前後に反応炉へ導入す
る気体総流量の変化によって起る圧力の変動を抑制し、
再現性のよい結晶成長層を得ることを目的とする。
The present invention provides a novel vapor phase crystal growth apparatus that eliminates the above-mentioned difficulties, and in particular suppresses pressure fluctuations caused by changes in the total flow rate of gas introduced into the reactor before and after switching the valve,
The purpose is to obtain a crystal growth layer with good reproducibility.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明では反応用の複数種類の気体とキャリアガスを反
応炉に導入するに当って、マスフローコントローラのよ
うに気体の流量に応じて調節する機構を備える流量計と
、気体の流出入を役目とする弁によって構成する流体通
路制御部を経て行い、この弁の開閉に伴って発生する流
体流量の変化を補償する他の流体通路制御部を前記流体
通路制御部に並列に設置する手法を採用する。又この反
応炉は排気用配管に連通させる6 (作  用) このように本発明に係る気相結晶成長装置では弁の切換
え前後にあっても反応炉に導入する気体の總流量を一定
にできるので、成長結晶を複数炉形成する際のインター
バル時更にこの結晶成長時のすべてにあって反応炉内の
圧力を一定にすることが可能となる。
(Means for Solving the Problems) In the present invention, when introducing multiple types of gases and carrier gas for reaction into a reactor, the flow rate is provided with a mechanism that adjusts according to the flow rate of the gases, such as a mass flow controller. The fluid passage control section is configured by a fluid passage control section consisting of a gas meter and a valve whose role is to control the inflow and outflow of gas. Adopt a method of installing the parts in parallel. In addition, this reactor is communicated with the exhaust pipe.6 (Function) As described above, in the vapor phase crystal growth apparatus according to the present invention, the total flow rate of gas introduced into the reactor can be kept constant even before and after switching the valve. Therefore, it is possible to keep the pressure in the reactor constant at intervals when a plurality of grown crystals are formed in the reactor, and also during all of the crystal growth.

(実 施 例) 本発明を第1図により詳述すると、反応用気体及びキャ
リアガスとして使用する水素用の容器1゜2.3,4,
5,6を準備し、反応用気体として水素稀釈10%アル
シンを容器1に、水素稀釈IPPmH,Seを容器2に
、O℃TMGを容器3に、20℃TMAを容器4に、0
℃DEZを容器5に、更に水素を容器6にそれぞれ充填
する。この容器1〜6に接続する配管にはMFC(マス
フロートコントローラ)等の流量計7.8.9.10.
11.12を設け、これにより反応用気体ならびにキャ
リアガスの流量を調節し、更に気体の切換えは空気駆動
弁13−14.15−16.17−18.19−20.
21−22により実施するのは、従来の技術と同様であ
る。この弁13〜22と流量計7〜12間には勿論配管
し、この弁の一方は反応炉23に配管によって接続し、
更に弁の他方は反応炉23に連通する減圧機構(図示せ
ず)への配管に連結する。この減圧機構への配管を今後
バイパス24と記載し、キャリアガス用流量計12は配
管を介して直接反応炉23に接続するほかに、流量計7
〜12ならびに弁13〜22及びバイパス24を含め点
線で囲んだ領域を流体通路制御部25とする。
(Example) To explain the present invention in detail with reference to FIG. 1, a hydrogen container 1゜2.3, 4,
5 and 6 were prepared, and as reaction gases, hydrogen diluted 10% arsine was placed in container 1, hydrogen diluted IPPmH,Se was placed in container 2, 0°C TMG was placed in container 3, 20°C TMA was placed in container 4, and 0°C TMG was placed in container 4.
The container 5 is filled with DEZ and the container 6 is filled with hydrogen. Flowmeters such as MFC (mass float controller) 7.8.9.10.
11.12 are provided to adjust the flow rates of reaction gas and carrier gas, and air-driven valves 13-14.15-16.17-18.19-20.
21-22 is similar to the conventional technique. Of course, piping is connected between the valves 13 to 22 and the flow meters 7 to 12, and one of the valves is connected to the reactor 23 by piping.
Furthermore, the other side of the valve is connected to a pipe to a pressure reduction mechanism (not shown) that communicates with the reactor 23. The piping to this pressure reduction mechanism will be referred to as a bypass 24 from now on, and the carrier gas flowmeter 12 will be connected directly to the reactor 23 via the piping, and the flowmeter 7
12, valves 13 to 22, and bypass 24, the area surrounded by dotted lines is defined as fluid passage control section 25.

又TMG、TMAならびにDEZは前述のように液体で
あるので、キャリアガス水素ガスを導入してバブリング
させて必要な気体の流量を確保するのは前述の通りであ
る。
Furthermore, since TMG, TMA, and DEZ are liquids as described above, carrier gas hydrogen gas is introduced and bubbled to ensure the necessary gas flow rate as described above.

ところで、この流体通路制御部25と並列して他の流体
通路制御部26を設置する。これはキャリアガス用配管
から分岐した配管に流量計27.28及び弁29.30
.31.32を設け、弁31.32は14.16.1g
By the way, another fluid passage control section 26 is installed in parallel with this fluid passage control section 25. This is a flowmeter 27.28 and a valve 29.30 on a pipe branched from the carrier gas pipe.
.. 31.32 is provided, and the valve 31.32 is 14.16.1g.
.

20、22と共にバイパス24に接続し、弁29.30
は13゜15、17.19.21と共に反応炉23へ配
管する。
Connected to bypass 24 with 20, 22 and valve 29.30
is piped to the reactor 23 along with 13°15, 17, 19, and 21.

このような気相結晶成長装置旦を使用してキャリアガス
5000cc/win、  アルシン200cc/wi
n、成長速度0.14/winの条件下で反応炉23内
に設置したn−GaAs基板(図示せず)にn −AQ
、、、Ga、、、As (n=3XIO”an−3)/
undope GaAs基板−AI2Ga0.GAs(
P= 2X10”am−3)のダブルへテロ構造を形成
する。この第1層であるn−Al2GaAs層の成長時
には反応炉に導入するガスの総流量が6400cc/w
inであるから、成長開始前のインターバルから成長終
了後のインターバル全範囲にわたって流量を6400c
c/+inに保持しなければならない。
Using such a vapor phase crystal growth apparatus, the carrier gas is 5000cc/win, arsine 200cc/wi
n-AQ on an n-GaAs substrate (not shown) installed in the reactor 23 under conditions of a growth rate of 0.14/win.
,,,Ga,,,As (n=3XIO”an-3)/
Undoped GaAs substrate-AI2Ga0. GAs (
A double heterostructure of P=2×10”am-3) is formed.When growing this first layer of n-Al2GaAs, the total flow rate of gas introduced into the reactor is 6400cc/w.
In, the flow rate is set to 6400c over the entire range from the interval before the start of growth to the interval after the end of growth.
Must be held at c/+in.

そのために、先ず成長前のインターバル時に反応炉23
へ導入するガスの総流量は、キャリアガス500cc/
winとAsの蒸発を抑えるアルシンガス200cc/
winの和5200cc/winであるから、他の流体
通路制御部の流量計28を1200cc/win (6
400cc/m1n−5200cc/ff1in)に設
定し弁32を閉じ弁31を開けて反応炉23に導入する
とガスの総流量が6400cc/lll1nになる。
For this purpose, first, during the interval before growth, the reactor 23
The total flow rate of gas introduced into the carrier gas is 500cc/
Arsine gas 200cc/ to suppress evaporation of win and As
Since the sum of wins is 5200cc/win, the flowmeter 28 of the other fluid passage control section is set to 1200cc/win (6
400cc/m1n-5200cc/ff1in), close the valve 32, open the valve 31, and introduce the gas into the reactor 23, the total flow rate of the gas becomes 6400cc/lll1n.

尚この時TMG、TMA、DEZ及び他の流体通路制御
部の流量計29は何れもバイパス24に接続するように
答弁を操作する。
At this time, the flowmeters 29 of the TMG, TMA, DEZ, and other fluid passage control units are all operated to connect to the bypass 24.

n−Al1GaAs層の形成に当っては、TMS3、T
MA4及びH,Se2の弁15.17.19を開け、弁
16,18゜20を閉じることにより成長が開始するが
、他の流体通路制御部26に設ける弁31.29は閉じ
弁32.30を開けてバイパス24と接続して反応炉2
3に導入する總流体量を6400cc/winに維持す
る。
In forming the n-Al1GaAs layer, TMS3, T
Growth starts by opening valves 15, 17, and 19 for MA4, H, and Se2 and closing valves 16, 18, and 20, but valves 31, 29, and 32, provided in other fluid passage control units 26 are closed. Open the reactor 2 and connect it to the bypass 24.
The amount of fluid introduced in Step 3 is maintained at 6400cc/win.

このn−AQGaAs層の結晶成長終了時のインターバ
ル時はTM01.TMA4ならびニH,5Q(7)弁1
5゜17、19をバイパス24に切換え他の流体通路制
御部26の弁31を同じくバイパス24に接続すること
により反応炉への總流体量は6400cc/minに保
持する。
The interval at the end of crystal growth of this n-AQGaAs layer is TM01. TMA4 and 2H, 5Q (7) valve 1
By switching the valves 17 and 19 to the bypass 24 and connecting the valve 31 of the other fluid passage control section 26 to the bypass 24, the total fluid flow rate to the reactor is maintained at 6400 cc/min.

以下同様な操作によりundope GaAs層及びP
−IGa−As層を成長させるがその詳細を第1表に示
す。
Thereafter, the undoped GaAs layer and P
-IGa-As layer is grown, details of which are shown in Table 1.

(以下余白) 第1表 各ステップにおける流量設定値とバルブ開閉状
態この表で括弧で示した値は弁の切換えにより反応炉(
23)へ流れずバイパス24に直接流すことを示す。
(Leaving space below) Table 1 Flow rate setting value and valve opening/closing status at each step The values shown in parentheses in this table are determined by switching the valve.
23) but directly to the bypass 24.

この本発明に係る気相結晶成長装置では、その開始から
終了まで反応炉に導入する気体の線流量を一定に維持で
きる。尚、単層を成長する場合には、他の流体通路制御
部を単一に設置しても十分対応可能なことは第1表から
明らかであり、ホール洞室用試料など結晶成長層の厚み
方向特に界面近傍での結晶の均一性が要求されるものに
対して有効である。
In the vapor phase crystal growth apparatus according to the present invention, the linear flow rate of gas introduced into the reactor can be maintained constant from the start to the end. In addition, when growing a single layer, it is clear from Table 1 that it is sufficient to install other fluid passage control parts alone, and the thickness of the crystal growth layer such as the hole cavity sample This method is effective for applications that require crystal uniformity in the direction, especially near the interface.

又、流体通路制御部を3台以上並列に接続しても差しつ
かえなく、又材料としても実施例以外の化合物半導体な
らびにSLの気相成長にも適用可能である。
Further, three or more fluid passage control units may be connected in parallel, and the present invention can also be applied to compound semiconductors other than those of the embodiments and vapor phase growth of SL.

〔発明の効果〕〔Effect of the invention〕

このように本発明に係る気相結晶成長装置の弁の切換え
によって反応炉内の圧力変動を抑制できるので、気相成
長層界面の異常がなく、均−性及び再現性に富んだ薄膜
が得られ量産上の効果は大きい。
In this way, pressure fluctuations in the reactor can be suppressed by switching the valves of the vapor phase crystal growth apparatus according to the present invention, so a thin film with high uniformity and reproducibility can be obtained without abnormalities at the interface of the vapor phase growth layer. The effect on mass production is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略図、第2図は従来
の装置を示す概略図である。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and FIG. 2 is a schematic diagram showing a conventional device.

Claims (1)

【特許請求の範囲】[Claims] 複数の容器に収納する反応用気体と、他の容器に収容す
るキャリア用気体と、反応炉と、これに連通する排気用
配管と、前記反応用気体及びキャリア用気体それぞれを
前記反応炉に導入する流体通路制御部と、この流体通路
制御部と並列に前記反応気体用容器に連結し、流量変化
分を補償する他の流体通路制御部とを具備することを特
徴とする気相結晶成長装置。
A reaction gas stored in a plurality of containers, a carrier gas stored in another container, a reactor, an exhaust pipe communicating therewith, and each of the reaction gas and carrier gas introduced into the reactor. A vapor phase crystal growth apparatus characterized by comprising: a fluid passage control section for controlling the reaction gas; and another fluid passage control section connected to the reaction gas container in parallel with the fluid passage control section for compensating for changes in flow rate. .
JP23432486A 1986-10-03 1986-10-03 Vapor phase crystal growth system Pending JPS6390121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23432486A JPS6390121A (en) 1986-10-03 1986-10-03 Vapor phase crystal growth system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23432486A JPS6390121A (en) 1986-10-03 1986-10-03 Vapor phase crystal growth system

Publications (1)

Publication Number Publication Date
JPS6390121A true JPS6390121A (en) 1988-04-21

Family

ID=16969219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23432486A Pending JPS6390121A (en) 1986-10-03 1986-10-03 Vapor phase crystal growth system

Country Status (1)

Country Link
JP (1) JPS6390121A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340992A (en) * 1989-07-10 1991-02-21 Fuji Electric Co Ltd Gas supply device
US5186120A (en) * 1989-03-22 1993-02-16 Mitsubishi Denki Kabushiki Kaisha Mixture thin film forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186120A (en) * 1989-03-22 1993-02-16 Mitsubishi Denki Kabushiki Kaisha Mixture thin film forming apparatus
JPH0340992A (en) * 1989-07-10 1991-02-21 Fuji Electric Co Ltd Gas supply device

Similar Documents

Publication Publication Date Title
US5496408A (en) Apparatus for producing compound semiconductor devices
KR920010690B1 (en) Metal organic chemical vapor deposition apparatus and its method
US4783343A (en) Method for supplying metal organic gas and an apparatus for realizing same
KR20070120462A (en) Metal-organic vaporizing and feeding apparatus, metal-organic chemical vapor deposition apparatus, metal-organic chemical vapor deposition method, gas flow rate regulator, semiconductor manufacturing apparatus, and semiconductor manufacturing method
EP0196170B1 (en) Organic metallic compound pyrolysis vapor growth apparatus
JPH01130519A (en) Mocvd crystal growing apparatus
JPH0963965A (en) Organic metal feeding device and organic metal vapor growth device
JPS6390121A (en) Vapor phase crystal growth system
JP2567309B2 (en) Metalorganic vapor phase growth equipment
JPH08288226A (en) Metal organic vapor growth apparatus
JP3052269B2 (en) Vapor phase growth apparatus and growth method thereof
JPH01220821A (en) Gas controlling method for vapor growth equipment
JPS60176992A (en) Device for gaseous phase epitaxial growth of organometallic compound
JPH0551559B2 (en)
JPS62187196A (en) Device for vapor phase crystal growth
JPH0594949A (en) Semiconductor vapor growth device
JPS61229321A (en) Vapor growth method
GB2298087A (en) Apparatus for producing compound semiconductor devices.
JPS59170000A (en) Device for crystal growth
JPS6167221A (en) Organometal vapor phase epitaxial growth device
JPS61136993A (en) Method for growing semiconductor crystal
JPH0620050B2 (en) Gas dilution device
JPH0594956A (en) Vapor growth device and vapor growth method therewith
JPH0243721A (en) Semiconductor manufacturing device
JPH0265124A (en) Crystal growth of compound semiconductor