JPS6119120A - Manufacture of compound semiconductor substrate - Google Patents

Manufacture of compound semiconductor substrate

Info

Publication number
JPS6119120A
JPS6119120A JP13998584A JP13998584A JPS6119120A JP S6119120 A JPS6119120 A JP S6119120A JP 13998584 A JP13998584 A JP 13998584A JP 13998584 A JP13998584 A JP 13998584A JP S6119120 A JPS6119120 A JP S6119120A
Authority
JP
Japan
Prior art keywords
gas
flow rate
compound semiconductor
layer
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13998584A
Other languages
Japanese (ja)
Inventor
Hideaki Kinoshita
木之下 秀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13998584A priority Critical patent/JPS6119120A/en
Publication of JPS6119120A publication Critical patent/JPS6119120A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds

Abstract

PURPOSE:To provide the interfaces between growing layers comprising different compositions with excellent steepness by a method wherein the growing speed is controlled by means of changing flow rate of organic and metallic gas while keeping the overall gas flow rate in a reactor constant. CONSTITUTION:An n type GaAs substrate 31 is placed on a susceptor to produce a compound semiconductor substrate by means of heating the susceptor using high frequency coils 3. In such a production process, layer growing speed may be controlled by means of reducing the flow rate of organic and metallic gas and AsH3 gas to decelerate the epitaxial growing speed while keeping the overall gas flow rate constant near the interfaces between growing layers comprising different compositions i.e. between an n type GaAs buffer layer 32 and an n type Ga1-xAlxAs clad layer 33 as well as between a p type Ga1-xAlxAs clad layer 35 and a p type GaAs cap layer 36 etc. Through these procedures, the interfaces between growing layers may be provided with excellent steepness. Besides as for the substrate 31, II-VI group compound semiconductor substrates may be applicable in addition to GaAs substrates (III-V groups).

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は化合物半導体基体の製造方法に関し、特に■−
v族あるいは■−■族化合物半導体基板にエピタキシャ
ル薄膜成長法を行なって化合物半導体基体を製造する方
法に係わる。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a compound semiconductor substrate, and in particular -
The present invention relates to a method of manufacturing a compound semiconductor substrate by performing an epitaxial thin film growth method on a V group or ■-■ group compound semiconductor substrate.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

周知の如(、GaAsのようなIII−V族あるいは■
−■族化合物半導体基板のエピタキシャル成長法には、
液相成長(LPE)法、ハイドライド気相成長(VPE
)法、有機金属熱分解(MOCVD)法及び分子線エピ
タキシャル(MI3E)法等種々の方法が挙げられる。
As is well known (III-V group such as GaAs or ■
-The epitaxial growth method for group compound semiconductor substrates includes:
Liquid phase epitaxy (LPE) method, hydride vapor phase epitaxy (VPE)
) method, metal organic pyrolysis (MOCVD) method, and molecular beam epitaxial (MI3E) method.

このうち、MOCVD法は、面内の膜厚均一性の良さ、
薄膜制御性の良さ、多層成長の容易さ、量産化のしやす
さ等の点で今後量も期待される方法である。
Among these, MOCVD method has good in-plane film thickness uniformity,
This method is expected to be widely used in the future due to its good thin film controllability, ease of multilayer growth, and ease of mass production.

従来、MOCVD法を行なう成長装置としては、例えば
第2図に示すものが知られている。図中の1は、円筒状
のベルジャである。このベルジャ1の内部には例えばG
aAs基板を設置するためのサセプタ2が設けられ、同
ベルジャ1の周囲には高周波コイル3が巻回されている
。このコイル3によってサセプタ2が数百度に加熱され
る。前記ベルジャ1には、トリメチルガリウム(TMG
 )を収容した第1の容器4、トリメチルアルミニウム
(TMA)、を収容した第、2の容器5、ジエチル亜鉛
(DEZ)を収容した第3の容器6が夫夫各パルプを介
して連通されている。なお、図中の7はA II Hz
7H2ガス、8はa2se、12ガス、9はH2ガスを
夫々示す。また、図中の10〜16は、各ガスの流量を
制御するマスフロー・コントローラを、17〜27はエ
ア操作パルプを夫夫示す。
Conventionally, as a growth apparatus for performing the MOCVD method, for example, the one shown in FIG. 2 is known. 1 in the figure is a cylindrical bell jar. Inside this bell jar 1, for example, G.
A susceptor 2 for installing an aAs substrate is provided, and a high frequency coil 3 is wound around the bell jar 1. This coil 3 heats the susceptor 2 to several hundred degrees. The bell jar 1 contains trimethyl gallium (TMG).
), a first container 4 containing trimethylaluminum (TMA), a second container 5 containing trimethylaluminum (TMA), and a third container 6 containing diethylzinc (DEZ) are communicated through each pulp. There is. In addition, 7 in the figure is A II Hz
7H2 gas, 8 a2se, 12 gas, and 9 H2 gas, respectively. Further, 10 to 16 in the figure indicate mass flow controllers that control the flow rates of each gas, and 17 to 27 indicate air-operated pulps.

こうした構造の装置を用いて第3図に示すGaAtAs
/GaAsエピタキシャル結晶膜を有したダブルへテロ
構造の化合物半導体基体を製造するには、次のように行
なう。まず、サセプタ2上にGaAs基板3ノを置き、
高周波コイル3によってサセプタ2を数百度に加熱する
。ここで、ベルジャ1内には、最初一定量の数%のAf
iH,/′H2ガス7とH2ガス9を流しておきながら
、サセプタ温度が設定値に達したところで第1の容器4
からTMGをH2ガスでバブルして、その気化ガスをベ
ルジャ1内へ引き込み、n型のGaAsバッファ層32
を成長する。なお、最初のH2ガス9の経路は、コント
ローラ13、パルプ2ノを順に通る。また、気化ガスを
給供する際は、H2ガス9はコントローラ14、バルブ
23を経て第1の容器4に入シ、気化ガスはバルブ22
、バルブ20を経る。
Using a device with such a structure, GaAtAs shown in FIG.
A double heterostructure compound semiconductor substrate having a /GaAs epitaxial crystal film is manufactured as follows. First, place 3 GaAs substrates on the susceptor 2,
The susceptor 2 is heated to several hundred degrees by the high frequency coil 3. Here, in the bell jar 1, initially a certain amount of several percent of Af
iH,/' While flowing H2 gas 7 and H2 gas 9, when the susceptor temperature reaches the set value, the first container 4 is
Then, TMG is bubbled with H2 gas, the vaporized gas is drawn into the bell jar 1, and an n-type GaAs buffer layer 32 is formed.
grow. Note that the initial path of the H2 gas 9 passes through the controller 13 and the pulp 2 in this order. Furthermore, when supplying vaporized gas, the H2 gas 9 enters the first container 4 via the controller 14 and the valve 23;
, through valve 20.

次に、H2ガス及びAmHsガスのラインをそのままの
状態でTMGのラインを閉じる。そして、TMGとTM
Aの流量をその組成比に対応した流量に設定して再びT
MGとTMAをH2ガスでバルブしてベルジャ1内に引
き込み、n型のGa、−XA−1XAIIクラ、ド層3
3を成長する。この際、H2ガス9の一方の経路はコン
トローラ14、バルブ23を経て第1の容器4に入シ、
気化ガスはバルブ22.20を経る。また、H2ガス9
の他の経路はコントローラ15、バルブ25を経て第2
の容器5に入シ、ここでバルブされた気化ガスはバルブ
24.20を経る。ひきつづき、以上の操作を繰シ返す
ことによって、アンドープGmA+s活性層34、p型
のGm 、−xAZ、cAsクラッド層35、p型のG
aAsキャ、プ層36を順に成長して5層のダブルへテ
ロ構造の化合物半導体基体を製造する。
Next, the TMG line is closed while leaving the H2 gas and AmHs gas lines as they are. And TMG and TM
Set the flow rate of A to a flow rate corresponding to the composition ratio and then turn T again.
MG and TMA are drawn into the bell jar 1 with a valve of H2 gas, and the n-type Ga, -XA-1XAII, and Do layers 3
Grow 3. At this time, one path of the H2 gas 9 enters the first container 4 via the controller 14 and the valve 23.
The vaporized gas passes through valve 22.20. Also, H2 gas 9
The other route is through the controller 15 and the valve 25, and then the second
The vaporized gas enters the container 5, where it is valved, and passes through the valves 24 and 20. By continuing to repeat the above operations, the undoped GmA+s active layer 34, p-type Gm, -xAZ, cAs cladding layer 35, and p-type G
The aAs cap layer 36 is grown in sequence to produce a five-layer double heterostructure compound semiconductor substrate.

なお、上記の各成長層の伝導型は、n型の場合は10 
ppmのH2S eガス/H2ガス8、及びp型の場合
は第3の容器6中のDEZを夫々の所定のドーピング量
に従って流すことによ多制御する。
Note that the conductivity type of each growth layer above is 10 in the case of n-type.
It is highly controlled by flowing ppm H2Se gas/H2 gas 8 and DEZ in the third container 6 in the case of p-type according to respective predetermined doping amounts.

ところで、従来技術においては、化合物半導体基体の各
成長層はガスの全体の流量、及びAsH3ガス等の水素
化物ガスの流量を変えることなく、一定の成長速度を保
って形成されている。
By the way, in the prior art, each growth layer of a compound semiconductor substrate is formed while maintaining a constant growth rate without changing the overall flow rate of gas and the flow rate of hydride gas such as AsH3 gas.

しかしながら、この方法では、各成長層の界面、具体的
にはn型のGaAs /ぐツファ層31とn型のGa 
1−エAtXAsクラッド層32の界面、及びp型のG
a 1□htx”クラッド層34とp型のGaAaキャ
ップ層35層外5での不連続性が良好でなく、急峻性の
良い界面が得られない。従って、上記化合物半導体基体
から半導体レーザ等の素子製作時に界面の光の閉じ込め
が不十分になるという欠点を有する。
However, in this method, the interface between each growth layer, specifically the n-type GaAs/Gtuff layer 31 and the n-type Ga
1-Air AtXAs cladding layer 32 interface and p-type G
a 1□htx" The discontinuity between the cladding layer 34 and the p-type GaAa cap layer 35 outside the layer 5 is not good, and an interface with good steepness cannot be obtained. This has the disadvantage that light confinement at the interface becomes insufficient during device fabrication.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、化合物半導
体基板上の組成の異なる成長層間に急峻性の良好な界面
を得ることのできる化合物半導体基体の製造方法を提供
することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a compound semiconductor substrate that can obtain an interface with good steepness between growth layers of different compositions on a compound semiconductor substrate.

〔発明の概要〕[Summary of the invention]

本発明は、組成の異なる成長層間の界面付近で反応炉内
に流す全体のガス流量は一定のままで、有機金属ガスの
流量を変化させて成長層の成長速度を制御することを特
徴とするもので、これによって組成の異なる成長層間に
急峻性の良好な界面を得、もって素子特性の向上を図っ
たものである。
The present invention is characterized in that the overall gas flow rate flowing into the reactor near the interface between growth layers of different compositions remains constant, and the flow rate of the organometallic gas is changed to control the growth rate of the growth layer. As a result, a well-steep interface can be obtained between the grown layers having different compositions, thereby improving device characteristics.

〔発明の実施例〕 以下、本発明の一実施例を第1図を参照して説明する。[Embodiments of the invention] An embodiment of the present invention will be described below with reference to FIG.

なお、成長層の形成の際用いられる成長装置は既述した
第2図のものであシ、同部材のものは同符号を付して説
明を省略する。
The growth apparatus used in forming the growth layer is the one shown in FIG. 2 described above, and the same members are given the same reference numerals and the explanation thereof will be omitted.

本発明の特徴とすべき点は、全体のガス流量は一定で%
 nmのGaAsバッファ層32とn型のGa、−xA
txAIIクラッド層33の界面付近、このクラッド層
33とアンド−1GmAg活性層34の界面付近、この
活性層34とp型のGa 1−XAZXAZクラ、ド層
35の界面付近、及びこのクラッド層35とp型のGa
Asキャ、f層36の界面付近で有機金属ガス及びAs
Hsガスの流量を減少させ、第1図に示す如くエピタキ
シャル成長速度を0.3から0.05μ:m7’m 1
 nまで低下させる点にある。
The feature of the present invention is that the overall gas flow rate is constant and %
nm GaAs buffer layer 32 and n-type Ga, -xA
Near the interface of the txAII cladding layer 33, near the interface between this cladding layer 33 and the AND-1GmAg active layer 34, near the interface between this active layer 34 and the p-type Ga 1-XAZXAZ layer 35, and near the interface between this cladding layer 35 and the p-type Ga
Organometallic gas and As
By decreasing the flow rate of Hs gas, the epitaxial growth rate was increased from 0.3 to 0.05μ: m7'm1 as shown in Figure 1.
The point is to reduce it to n.

この際、有機金属ガスやAsHsガスの流量の変化に対
応して、キャリアガスとしてのH2ガスの流量を調節し
、ベルジャl内を流れる全体のガス流量を一定にする。
At this time, the flow rate of H2 gas as a carrier gas is adjusted in response to the change in the flow rate of the organometallic gas or AsHs gas, so that the overall gas flow rate flowing through the bell jar I is kept constant.

次に、本発明方法によって化合物半導体基体を製造する
場合の具体例について説明する。まず、サセプタ2上に
n型のGaAs+基板31を置き、高周波コイル3によ
って700〜800℃にサセプタ2を加熱する。その際
、ベルジャ1内には、GaAaのAI+蒸気圧以上の1
0%A@HノH2ガス及びキャリアガスとしてのH2ガ
スを約10を流しておく。サセプタ温度が設定値に達し
たら、A sH3の流量を■族のTMG −? TMA
に対してモル比が約10〜30となるようにし、TMG
をH2ガスでバブルしてその気化ガスをベルジャ1内へ
引き込み、n型のGaAsバッファ層32の成長を開始
する。なお、H2ガス9はコン)o−514、パルプ2
3を経て第1の容器4に入シ、気化ガスはパルプ22、
パルプ2oを経る。ここで、エピタキシャル成長速度は
TMGの流量によって決められるが、約0.3μVm1
 nとする。バッファ層32の厚さは1μm程度である
が、0.5〜0.9μm成長した所でノ々ルプ22を閉
シ、パkf21を開けて一旦バッ7ア層32の成長を止
める。そして、TMGの流量を絞シ、成長速度を0.0
5μm1rth i nとした所で再びベルジャ1内へ
ガスを入れ成長を開始する。バッファ層32が1μmの
厚さに成長したら再びガスを切換えて成長を止める。
Next, a specific example of manufacturing a compound semiconductor substrate by the method of the present invention will be described. First, an n-type GaAs+ substrate 31 is placed on the susceptor 2, and the susceptor 2 is heated to 700 to 800° C. by the high frequency coil 3. At that time, inside the belljar 1, there is a 1
About 10% of H2 gas and carrier gas of 0% A@H are flowed. When the susceptor temperature reaches the set value, the flow rate of AsH3 is changed to TMG -? TMA
The molar ratio of TMG to TMG is about 10 to 30.
is bubbled with H2 gas, the vaporized gas is drawn into the bell jar 1, and the growth of the n-type GaAs buffer layer 32 is started. In addition, H2 gas 9 is Con) o-514, pulp 2
3 and enters the first container 4, the vaporized gas is pulp 22,
Pass through pulp 2o. Here, the epitaxial growth rate is determined by the flow rate of TMG, and is approximately 0.3μVm1
Let it be n. The thickness of the buffer layer 32 is about 1 .mu.m, but when it has grown to 0.5 to 0.9 .mu.m, the nozzle 22 is closed and the cap 21 is opened to temporarily stop the growth of the buffer layer 32. Then, the flow rate of TMG was reduced and the growth rate was reduced to 0.0.
At 5 μm1rth in, gas is again introduced into the bell jar 1 to start growth. When the buffer layer 32 grows to a thickness of 1 μm, the gas is switched again to stop the growth.

つづいて、n型のGa、−XAtXAsクラッド層33
の成長を行なう。ここで、AtA3混晶比Xは第4図に
実線で示す如く0.1〜0.5程度とする。そして、T
MGと同時にTMAのガスを流し、その組成が0.1〜
0.5となるように流量を調節し、更に成長速度がバッ
ファ層32の場合と同様0.05μm/ml nとなる
ようにして成長を開始する。
Next, an n-type Ga, -XAtXAs cladding layer 33
growth. Here, the AtA3 mixed crystal ratio X is about 0.1 to 0.5 as shown by the solid line in FIG. And T
TMA gas is flowed at the same time as MG, and its composition is 0.1~
Growth is started by adjusting the flow rate so that the flow rate is 0.5 and the growth rate is 0.05 μm/ml n as in the case of the buffer layer 32.

クラッド層33が0.5〜0.9μm成長したら、ガス
を切シ換え、成長速度を再び0.3μ$i nに戻す。
When the cladding layer 33 has grown to 0.5 to 0.9 μm, the gas is switched and the growth rate is returned to 0.3 μ$in.

以下、このように組成の異なる界面付近の層では成長速
度を下げ、それ以外のバルク領域では成長速度を大きく
する動作を繰シ返えせばよい。但し、アンドープGaA
s活性層34領域では一般に成長層の厚さが50.1μ
mと非常に薄いので、成長速度は低い値の方で行なう。
Thereafter, the operation of decreasing the growth rate in layers near the interface with different compositions and increasing the growth rate in other bulk regions may be repeated. However, undoped GaA
s In the active layer 34 region, the thickness of the growth layer is generally 50.1μ.
Since the film is very thin (m), the growth rate is set to a low value.

しかして、本発明によれば、組成の異なる成長層間の界
面付近、即ちn型のGaAsバッファ層32とn型のG
a 1□AtxAsクラッド層33の界面付近、p型の
Ga 、−XAtXAsクラッド層35とp型のGaA
sキャップ層36の界面付近等で全体のガス流量は一定
のままで、有機金属ガス及びAs H5ガスの流量を減
少させ、エピタキシャル成長速度を0.05μVmi 
nまで低下させて成長速度を制御するため、各成長層間
に急峻性の良好な界面を得ることができる。従って、こ
のようにして得られた化合物半導体基体から半導体レー
デや発光ダイオードを製作したところ、元込じ込め効果
が向上し、特性の良い素子が得られる。なお、参考まで
に述べると、従来の場合のAt混晶比は第4図の一点鎖
線に示す通シである。
Therefore, according to the present invention, near the interface between growth layers having different compositions, that is, the n-type GaAs buffer layer 32 and the n-type G
a 1□ Near the interface of AtxAs cladding layer 33, p-type Ga, -XAtXAs cladding layer 35 and p-type GaA
While the overall gas flow rate remained constant near the interface of the s-cap layer 36, the flow rates of the organometallic gas and the As H5 gas were decreased to reduce the epitaxial growth rate to 0.05 μVmi.
Since the growth rate is controlled by reducing the growth rate to n, it is possible to obtain an interface with good steepness between each growth layer. Therefore, when a semiconductor radar or a light emitting diode is manufactured from the compound semiconductor substrate obtained in this manner, the element loading effect is improved and an element with good characteristics can be obtained. For reference, the At mixed crystal ratio in the conventional case is as shown by the dashed line in FIG.

なお、上記実施例では、マスフロー・コントローラ及び
エア操作パルプがマニュアル動作の場合について述べた
が、これに限らず、例えばこれら’i CUP制御など
によるオート動作で行なう場合には、第5図に示すよう
に異なる成長層間の界面付近でTMG −? TMAの
マスフロー流量を漸次変えて成長速度を変化させてもよ
い。
In the above embodiment, the mass flow controller and the air-operated pulp are operated manually, but this is not limited to this. For example, when these are operated automatically by 'i CUP control, etc., the mass flow controller and the air operated pulp are operated manually as shown in FIG. TMG −? near the interface between different growth layers like this? The growth rate may be changed by gradually changing the mass flow rate of TMA.

また、上記実施例では、化合物半導体基板としてGaA
s基板(III−V族)を用いた場合について述べたが
、これに限らず、n−M族化合物半導体基板を用いても
よ−い。
Further, in the above embodiment, GaA is used as the compound semiconductor substrate.
Although the case has been described in which an s-substrate (III-V group) is used, the present invention is not limited to this, and an n-M group compound semiconductor substrate may also be used.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、組成の異なる成長層
間に急峻性の良好な界面を得、もって素子特性を向上で
きる化合物半導体基体の製造方法を提供できるものであ
る。
As described in detail above, according to the present invention, it is possible to provide a method for manufacturing a compound semiconductor substrate that can obtain a steep interface between growth layers having different compositions, thereby improving device characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るGaAs基体の各成長
層の二−タキシャル成長速度を示す特性図、第2図は従
来及び本発明において化合物半導体基体の製造の際に用
いられる成長装置の説明図、第3図はGaAs基体の断
面図、第4図は本発明方法に係るGaAs基体の各成長
層のAtAa混晶比を示す特性図、第5図は本発明の他
の実施例に係るGaAs基体の各成長層のエピタキシャ
ル成長速度を示す特性図である。 1・・・ベルジャ、2・・・サセプタ、3・・・高周波
コイル、4 、5.、6 ・・・容器、7・・・AsH
3/H3ガス、8・・・H2S@ガス/H2ガス、9・
・・H2ガス、10〜16・・・マス70−・コントロ
ー5.17〜27・・・エア操作バルブ、31・・・n
型のGaAs基板、32・・・n型のGaAsバッファ
層、33・・・n型のGa、−xAJLxAsクラッド
層、34−・・アンドープGmAm活性層、35 ・・
・p mのGa 1− xAtxAaクラ、ド層、36
・・・p型のGaA1キャ、デ層。 出願人代理人  弁理士 鈴 江 武 彦第3図 第4図 第5図 特許庁長官  志 賀    学  殿1.事件の表示 特願昭59−139985号 2、発明の名称 化合物半導体基体の製造方法 3、補正をする者 事件との関係 特許出願人 (307)株式会社 乗芝 4、代理人 7、補正の内容 別紙に未配する通り、図面第1葉中に図番号「第2図」
を加入する。
FIG. 1 is a characteristic diagram showing the bi-taxial growth rate of each growth layer of a GaAs substrate according to an embodiment of the present invention, and FIG. 2 is a growth apparatus used in the conventional and present invention for manufacturing compound semiconductor substrates. 3 is a cross-sectional view of the GaAs substrate, FIG. 4 is a characteristic diagram showing the AtAa mixed crystal ratio of each growth layer of the GaAs substrate according to the method of the present invention, and FIG. 5 is another example of the present invention. FIG. 3 is a characteristic diagram showing the epitaxial growth rate of each growth layer of the GaAs substrate according to the invention. 1... Bell jar, 2... Susceptor, 3... High frequency coil, 4, 5. , 6... Container, 7... AsH
3/H3 gas, 8...H2S@gas/H2 gas, 9.
...H2 gas, 10-16...mass 70--control 5.17-27...air operation valve, 31...n
type GaAs substrate, 32... n-type GaAs buffer layer, 33... n-type Ga, -xAJLxAs cladding layer, 34-... undoped GmAm active layer, 35...
・PM Ga 1-xAtxAa layer, 36
...p-type GaA1 layer. Applicant's representative Patent attorney Takehiko Suzue Figure 3 Figure 4 Figure 5 Commissioner of the Patent Office Manabu Shiga 1. Display of the case Japanese Patent Application No. 139985/1985 2, Name of the invention Method for manufacturing compound semiconductor substrate 3, Person making the amendment Relationship to the case Patent applicant (307) Norishi Co., Ltd. 4, Agent 7, Contents of the amendment As not included in the attached sheet, the figure number "Figure 2" is on the first page of the drawing.
join.

Claims (2)

【特許請求の範囲】[Claims] (1)III−V族もしくはII−VI族化合物半導体基板上
に有機金属熱分解法により複数の成長層を成長する化合
物半導体基体の製造方法において、組成の異なる成長層
間の界面近付で反応炉内に流す全体のガス流量は一定の
ままで、有機金属ガスの流量を変化させて成長層の成長
速度を制御することを特徴とする化合物半導体基体の製
造方法。
(1) In a method for manufacturing a compound semiconductor substrate in which a plurality of growth layers are grown on a III-V or II-VI compound semiconductor substrate by organometallic pyrolysis, a reactor is placed near the interface between the growth layers with different compositions. A method for manufacturing a compound semiconductor substrate, characterized in that the growth rate of a growth layer is controlled by changing the flow rate of an organometallic gas while keeping the overall gas flow rate constant.
(2)有機金属ガスとともに成長層の原料となる他のガ
スの流量も変化させることを特徴とする特許請求の範囲
第1項記載の化合物半導体基体の製造方法。
(2) The method for manufacturing a compound semiconductor substrate according to claim 1, characterized in that the flow rate of another gas serving as a raw material for the growth layer is also changed together with the organometallic gas.
JP13998584A 1984-07-06 1984-07-06 Manufacture of compound semiconductor substrate Pending JPS6119120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13998584A JPS6119120A (en) 1984-07-06 1984-07-06 Manufacture of compound semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13998584A JPS6119120A (en) 1984-07-06 1984-07-06 Manufacture of compound semiconductor substrate

Publications (1)

Publication Number Publication Date
JPS6119120A true JPS6119120A (en) 1986-01-28

Family

ID=15258252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13998584A Pending JPS6119120A (en) 1984-07-06 1984-07-06 Manufacture of compound semiconductor substrate

Country Status (1)

Country Link
JP (1) JPS6119120A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158137A (en) * 1984-12-29 1986-07-17 Sony Corp Gas flow rate controlling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158137A (en) * 1984-12-29 1986-07-17 Sony Corp Gas flow rate controlling device

Similar Documents

Publication Publication Date Title
US4980204A (en) Metal organic chemical vapor deposition method with controlled gas flow rate
US4404265A (en) Epitaxial composite and method of making
JP3468866B2 (en) Semiconductor device using three-dimensional quantum confinement
JPH02260629A (en) Zn diffusion onto compound semiconductor
JPS6065798A (en) Growing of gallium nitride single crystal
JPH02170413A (en) Compound semiconductor device
JPS6119120A (en) Manufacture of compound semiconductor substrate
US4722911A (en) Vapor phase epitaxy using complex premixing system
EP0555614A1 (en) Metal-organic gas supply for MOVPE and MOMBE
US6245144B1 (en) Doping control in selective area growth (SAG) of InP epitaxy in the fabrication of solid state semiconductor lasers
JPS6016898A (en) Gaseous-phase growth device
JP3242571B2 (en) Vapor growth method
JPS63129609A (en) Method of adding impurity for iii-v compound semiconductor single crystal thin film
JPS60136308A (en) Vapor growth of compound semiconductor
JP4894862B2 (en) Method for growing a III-V compound semiconductor
JPH03135015A (en) Manufacture of iii-v compound p-type semiconductor
JPS5984417A (en) Iii-v family mixed crystalline semiconductor device
JPH03224215A (en) Organic metal vapor phase deposition device
JPH0265124A (en) Crystal growth of compound semiconductor
JPS6390121A (en) Vapor phase crystal growth system
JPH08288226A (en) Metal organic vapor growth apparatus
JPH0360800B2 (en)
JPH0964476A (en) Manufacture of semiconductor device using three-dimensional quantum confinement
JPH0594956A (en) Vapor growth device and vapor growth method therewith
JPH0243721A (en) Semiconductor manufacturing device