JPH01110720A - Vapor growth method of iii-v compound semiconductor - Google Patents

Vapor growth method of iii-v compound semiconductor

Info

Publication number
JPH01110720A
JPH01110720A JP62247901A JP24790187A JPH01110720A JP H01110720 A JPH01110720 A JP H01110720A JP 62247901 A JP62247901 A JP 62247901A JP 24790187 A JP24790187 A JP 24790187A JP H01110720 A JPH01110720 A JP H01110720A
Authority
JP
Japan
Prior art keywords
piping
sub
main
iii
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62247901A
Other languages
Japanese (ja)
Inventor
Tokuji Tanaka
篤司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62247901A priority Critical patent/JPH01110720A/en
Publication of JPH01110720A publication Critical patent/JPH01110720A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to form the hetero junction having a sharp compositional change by a method wherein the pressure of the main piping is brought lower than that of the sub-piping when the flow passage of raw gas is switched from the sub- piping to the main piping, and when the raw gas flow passage is switched from the main piping to the sub-piping, the pressure of the main piping is made higher than that of the sub-piping in advance. CONSTITUTION:Two or more layers of different kinds of vapor growth layers can be formed continuously by the III-V compound semiconductor vapor growth device equipped with the main piping 107, in which the carrier gas of hydrogen or mainly composed of hydrogen and raw gas is mixed and introduced to a reaction chamber 106, and a sub-piping 110 with which the raw gas is introduced to an exhaust hole 109, not to the reaction chamber 106. In order to switch the raw gas flow passage from the sub-piping 110 to the main piping 107 in the abovementioned case, the pressure of the main piping 107 is brought lower than that of the sub-piping 110 in advance, and also in order to switch the raw gas flow passage from the main piping 107 to the sub-piping 110, the pressure of the main piping 107 is brought higher than that of the sub-piping 110 in advance. The above-mentioned raw gas is composed of organic compound consisting of a plurality of group III an elements and the hydrogen compound or organic compound consisting of one or more kinds of group V elements.

Description

【発明の詳細な説明】 【発明の目的〕 (産業上の利用分野) 本発明は■族元素からなる有機金属化合物と、■族元素
からなる水素化合物もしくは有機化合物の熱分解により
■−■族化合物半導体の気相成長法(Metal Or
ganic Chemical Vapour Dep
osition法:以下NO−CVD法と略称する)に
係り、特に異種の半導体接合(ペテロ接合)の界面にお
ける組成急峻性を高める気相成長法に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Field of Application) The present invention is directed to the production of organic compounds of the ■-■ group by thermal decomposition of an organometallic compound consisting of a group ■ element and a hydrogen compound or an organic compound consisting of a group ■ element. Vapor phase growth method for compound semiconductors (Metal Or
Ganic Chemical Vapor Dep
The present invention relates to the NO-CVD method (hereinafter abbreviated as NO-CVD method), and particularly to a vapor phase growth method for increasing the compositional steepness at the interface of different types of semiconductor junctions (Peter junctions).

(従来の技術) MO−CVD法は分子線結晶成長法(MBE法)に比べ
て量産性に富んだエピタキシャル結晶成長方法として注
目されている。特に最近は砒化ガリュウム(GaAs)
/アルミニュウム・ガリュウム・砒素(AjlGaAs
) 、りん化インジュウム(InP) /インジュラム
・ガリュウム・砒素(InGaAs)等へテロ接合を成
長して、従来の単層膜を用いた素子以上の機能を持たせ
た例えば多重量子井戸(MQIj)レーザ。
(Prior Art) The MO-CVD method is attracting attention as an epitaxial crystal growth method that is more easily mass-produced than the molecular beam crystal growth method (MBE method). Especially recently, gallium arsenide (GaAs)
/ Aluminum, gallium, arsenic (AjlGaAs
), multi-quantum well (MQIj) lasers, which grow heterojunctions such as indium phosphide (InP)/indulum gallium arsenic (InGaAs) and have functions greater than those using conventional single-layer films. .

高電子移動度トランジスタ(OEMT)等の素子用結晶
の成長が盛んであり、前述のへテロ接合を使用する結晶
では通常急峻な組成変化を持っヘテロ接合界面を形成す
ることが重要である。
The growth of crystals for devices such as high electron mobility transistors (OEMTs) is active, and in crystals using the above-mentioned heterojunction, it is usually important to form a heterojunction interface with a steep compositional change.

このMO−CVD法にあっては成長ガスの流速を大きく
できるのでクロライドVPE法等の他の気相成長法より
急峻な界面を形成することが比較的容易であるが、MB
E法により形成した界面の急峻性と比較するとまだ劣っ
ているのが実状であり、この界面急峻性を向上する方法
としては原理的にガスの切替えをす早く行えばよい。
In this MO-CVD method, the flow rate of the growth gas can be increased, so it is relatively easier to form a steep interface than other vapor phase growth methods such as the chloride VPE method.
The reality is that the steepness of the interface is still inferior to that formed by the E method, and in principle the only way to improve the steepness of the interface is to quickly switch the gas.

このために、イ、原料ガスを切替える開閉弁(バルブ)
をできるだけ反応容器に近づける 口。
For this purpose, (i) an on-off valve to switch the raw material gas;
Place the mouth as close to the reaction vessel as possible.

反応容器の形状を工夫してガスの滞留時間を極力短くす
る等の装置に関する改善 ハ、成長速度と比例関係にあ
る■族の原料ガス流量を極力小さくして成長速度を下げ
る等の成長条件に関する改善が行われている。
Improvements related to the equipment, such as devising the shape of the reaction vessel to shorten the residence time of the gas as much as possible.C. Regarding growth conditions, such as reducing the growth rate by minimizing the flow rate of the raw material gas of group ■, which is proportional to the growth rate. Improvements are being made.

更に近年−膜化しつつある方法としては反応容器に直接
原料ガスを導く主配管と、原料ガスを反応容器に導入せ
ずに排気口に直接導入する副配管の2本を設置してこの
原料ガスの流路を主副配管間で切替える方法があり、こ
の方法によればガス切替えによる反応容器内の圧力変動
は殆どなくなるので、ガスの乱れがなくなり速やかなガ
ス置換が行われる結果界面の急峻化が図られる。
Furthermore, in recent years, a method that is becoming more and more membrane-based is to install two pipes: a main pipe that directly introduces the raw material gas into the reaction vessel, and a sub-piping that directly introduces the raw material gas into the exhaust port without introducing it into the reaction vessel. There is a method of switching the flow path between the main and sub-pipes. With this method, there is almost no pressure fluctuation in the reaction vessel due to gas switching, so there is no gas turbulence and rapid gas replacement occurs, resulting in a steep interface. is planned.

以下本発明に適用する第1図を借用して従来装置を説明
すると、 GaAs基板にアンドープGaAs層。
The conventional device will be described below with reference to FIG. 1, which is applied to the present invention. An undoped GaAs layer is formed on a GaAs substrate.

n形AQGaAs層、n形GaAs層をこの順序で成長
する例について述べるが、以下の複数の反応容器102
゜103、104.105にはこの順番にGaの有機化
合物の一種であるトリメチルガリュウム(TMG) 、
アルミニュウムの有機化合物の一種であるトリメチルア
ルミニュウム(TMA)、砒化水素(AsH3)、n形
不純物である珪素(SL)の水素化物であるモノシラン
(SiH4)を夫々収納し、101はこの原料ガスを反
応容器へ輸送するのにキャリアガスとして使用する水素
用収納容器である。
An example will be described in which an n-type AQGaAs layer and an n-type GaAs layer are grown in this order.
゜103, 104.105 contains, in this order, trimethylgallium (TMG), which is a type of organic compound of Ga,
Trimethylaluminum (TMA), which is a type of organic compound of aluminum, hydrogen arsenide (AsH3), and monosilane (SiH4), which is a hydride of silicon (SL), which is an n-type impurity, are respectively stored, and 101 reacts this raw material gas. This is a storage container for hydrogen used as a carrier gas for transportation to a container.

この第1図に示す装置では前記原料ガス及びキャリアガ
スを反応容器10へ輸送する役割を果たす主配管107
と、前記原料ガス及びキャリアガスを反応容器106へ
導かずに排気口109へ導く副配管110を設置し、こ
の反応容器106に配置する支持台111にはGaAs
基板112を載置する。
In the apparatus shown in FIG. 1, a main pipe 107 serves to transport the raw material gas and carrier gas to the reaction vessel 10.
A sub-piping 110 is installed to guide the raw material gas and carrier gas to the exhaust port 109 instead of to the reaction vessel 106.
A substrate 112 is placed.

このようにこの装置の特徴はガス配管として主配管10
7と副配管110を設置し、バルブ113〜120を開
閉することにより原料ガスの流路を自在に選択可能とし
た構造としたことである。更に主配管107から分岐す
る副配管110に流れこむ水素の流量と、 副配管11
0の排出口近くに設ける圧力調整弁121の開閉度を適
切に選定することにより主配管107と副配管110内
の圧力を極力等しくかつ一定に保持できるようにした。
In this way, the feature of this device is that the main pipe 10 is used as a gas pipe.
7 and a sub-piping 110 are installed, and the flow path of the source gas can be freely selected by opening and closing the valves 113 to 120. Furthermore, the flow rate of hydrogen flowing into the sub pipe 110 branched from the main pipe 107, and the sub pipe 11
By appropriately selecting the opening/closing degree of the pressure regulating valve 121 provided near the zero outlet, the pressures in the main pipe 107 and the sub pipe 110 can be maintained as equal and constant as possible.

このような配管の配置を工夫することにより例えばTM
Aの流路をバルブ115.116の開閉により主配管1
07から副配管110に変更する際には反応容器106
における両配管の流れが乱される現象が減少する。更に
この装置を使用して前述のアンドープGaAs/n形A
l2GaAs/ n形GaAsからなる3層へテロ接合
を形成する成長手順は以下の通りである。
By devising such piping arrangement, for example, TM
A flow path is connected to main pipe 1 by opening and closing valves 115 and 116.
When changing from 07 to sub piping 110, the reaction vessel 106
This reduces the phenomenon in which the flow of both pipes is disturbed. Furthermore, using this device, the above-mentioned undoped GaAs/n-type A
The growth procedure for forming a three-layer heterojunction made of 12GaAs/n-type GaAs is as follows.

先ずバルブ113.117を開いてTMG、 AsH3
を反応容器106に送ってGaAs層の成長を行うが、
 この時TMA= SxH,はバルブ116.120を
開いて副配管110側に流して主配管107の極く近く
まで一定量のTMA 。
First, open valves 113 and 117, TMG, AsH3
is sent to the reaction vessel 106 to grow the GaAs layer.
At this time, TMA = SxH, opens the valves 116 and 120 to flow a constant amount of TMA to the sub pipe 110 side until it reaches the vicinity of the main pipe 107.

SiH4を満たしておく。そしてn形Al2GaAs層
の成長時にはバルブ116.120を閉じ゛、バルブ1
15.119を開いて主配管107にす速(TMA、 
SiH,を送りこんでn形A12GaAs層を成長する
Fill with SiH4. Then, when growing the n-type Al2GaAs layer, valves 116 and 120 are closed, and valve 1
15. Open 119 and connect to main pipe 107 (TMA,
An n-type A12GaAs layer is grown by introducing SiH.

このn形AQGaAsJaにn形GaAs層を積層する
には前述の手法とは逆にTMAのバルブ115を閉じ1
16を開けてTMAを副配管110に流してn形GaA
s層を堆積成長する。
To stack an n-type GaAs layer on this n-type AQGaAsJa, contrary to the method described above, the TMA valve 115 is closed.
16 and allow TMA to flow into the sub-piping 110 to produce n-type GaA.
The s-layer is deposited and grown.

(発明が解決しようとする問題点) 前述の成長手順により形成した半導体基板に堆積成長し
たGaAs/n形1GaAs/ n形GaAs界面の組
成急峻性をオージェ電子分光分析(AES)を使用する
AQ原子の深さ方向分布測定により調査したところ第3
図に明らかなように、GaAs層 n形Al2GaAs
界面で約105人、n形AQGaAs/アンドープn形
Ga−As界面で100人程度であり、界面にダレは2
5原子層にも及ぶことが判明した。このダレの原因につ
いて種々検討したところ前述の配管構造を備えた装置で
は主配管と副配管の圧力を等しくしてバルブ切替えを行
うと、反応容器内の圧力変動は防止できるがTMA配管
内のバルブ115の出口と主配管の接続部間に生ずる隙
間に入る原料ガスの置換が十分速くできないとの結果を
得た。
(Problem to be Solved by the Invention) The compositional steepness of the GaAs/n-type 1GaAs/n-type GaAs interface deposited on the semiconductor substrate formed by the above-described growth procedure was measured using Auger electron spectroscopy (AES). When investigated by measuring the depth distribution of
As is clear from the figure, the GaAs layer is n-type Al2GaAs
About 105 people at the interface, about 100 people at the n-type AQGaAs/undoped n-type Ga-As interface, and the sag at the interface is 2.
It was found that this amount extends to as much as 5 atomic layers. After various studies on the causes of this sag, we found that in equipment with the above-mentioned piping structure, pressure fluctuations in the reaction vessel can be prevented by equalizing the pressure in the main piping and sub-piping and switching the valves, but the valve in the TMA piping The result was that the raw material gas entering the gap between the outlet of No. 115 and the connection part of the main pipe could not be replaced quickly enough.

本発明は上記足点を除去する新規な■−■族化合物半導
体の気相成長法を提供することを目的とする。
It is an object of the present invention to provide a novel method for vapor phase growth of a ■-■ group compound semiconductor that eliminates the above-mentioned drawbacks.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) この目的を達成するのに本発明ではキャリアガスと原料
ガスを混合して反応容器内に導く主配管と、前記反応容
器内でなく排気口に導く副配管を備えるm−v族化合物
半導体の気相成長装置により種類の異なる2層以上の気
相成長層を連続的に形成するに当たって、原料ガス流路
を副配管から主配管に切替えるには予め主配管内の圧力
を副配管のそれより低く、逆に原料ガス流路を主配管か
ら副配管に切替えるには予め主配管内の圧力を副配管の
それより高くする手法を採用する。
(Means for solving the problem) In order to achieve this object, the present invention includes a main pipe that mixes the carrier gas and raw material gas and leads them into the reaction vessel, and a sub pipe that leads not into the reaction vessel but to the exhaust port. When continuously forming two or more vapor-phase growth layers of different types using a vapor-phase growth apparatus for m-v group compound semiconductors equipped with In order to switch the source gas flow path from the main pipe to the sub pipe, a method is adopted in which the pressure inside the main pipe is made higher than that of the sub pipe in advance.

(作 用) このように本発明では半導体基板に複数のへテロ接合を
形成するに際して、m−v族化合物からなる異なる組成
の複合元素層の界面の組成急峻性を得るために気相成長
装置に設置する主配管と副舵管間にはむしろ圧力差を設
け、これらに付設するバルブの切替えに伴って生じる多
少のガス流の乱れはこの主配管と副舵管間の隙間に入る
原料ガスの置換を速やかに実施する方が前記界面の組成
急峻性を得るのには有効であるとの知見を基に本発明は
完成したものである。
(Function) In this way, in the present invention, when forming a plurality of heterojunctions on a semiconductor substrate, a vapor phase growth apparatus is used to obtain compositional steepness at the interface of composite element layers of different compositions made of m-v group compounds. Rather, a pressure difference is created between the main piping and the auxiliary rudder pipe installed in the main piping, and the slight disturbance in the gas flow that occurs when the valves attached to these pipes are switched is due to raw material gas entering the gap between the main piping and the auxiliary rudder pipe. The present invention was completed on the basis of the knowledge that it is more effective to quickly carry out the substitution of the above for obtaining the compositional steepness of the interface.

即ち本発明に係る■−v族化合物半導体の気相成長法で
は先ず主配管にTMGとAsHを流してm −■族化合
物半導体基板にGaAs層を気相成長法で堆積し引続き
TMAの流路を副配管側から主配管に切替えてAQGa
As層を形成するのに当たって予め主配管内の圧力を副
配管内のそれより低く調整しておく。この工程によりT
MAの流路を副配管側から主配管側に切替える時にこの
面舵管間に圧力差を生じ、この結果TMA配管における
主配管側バルブ出口から主配管との接続部までの間をT
MAで置換する時間が短縮される。更にAQGaAs層
に引続きGaAs層を堆積するには前述とは逆に主配管
内の圧力を副配管内のそれよりも高く予め調整しておく
That is, in the vapor phase growth method of the ■-v group compound semiconductor according to the present invention, TMG and AsH are first flowed through the main pipe to deposit a GaAs layer on the m-■ group compound semiconductor substrate by the vapor phase growth method, and then the TMA flow path is Switch from the sub piping side to the main piping and
Before forming the As layer, the pressure in the main pipe is adjusted to be lower than that in the sub pipe. Through this process, T
When switching the flow path of the MA from the sub-piping side to the main piping side, a pressure difference is created between the surface rudder pipes, and as a result, the TMA piping between the valve outlet on the main piping side and the connection with the main piping is
The time required for MA replacement is shortened. Further, in order to deposit a GaAs layer subsequent to the AQGaAs layer, contrary to the above, the pressure in the main pipe is adjusted in advance to be higher than that in the sub pipe.

このような操作を経てTMA配管の副配管側のバルブを
開き続けて主配管のバルブを閉じると極く短時間の間に
この主副配管間に発生する圧力差により原料ガスを引込
み、前記バルブ出口と接続部間でのTMAの置換が速ま
り、AaGaAs層とGaAs層の界面におけるAQ原
子のダレはきわめて小さくなった。
Through these operations, when the valve on the sub-piping side of the TMA piping continues to be opened and the valve on the main piping is closed, the raw material gas is drawn in due to the pressure difference generated between the main and sub-pipes in a very short period of time, and the valve The replacement of TMA between the outlet and the connection part was accelerated, and the sagging of AQ atoms at the interface between the AaGaAs layer and the GaAs layer became extremely small.

(実施例) 第1図及び第2図により本発明を詳述するが。(Example) The present invention will be explained in detail with reference to FIGS. 1 and 2.

従来技術と多少重複する記載が都合によりでてくるもの
の改めて説明する。
Although some descriptions overlap with those of the prior art due to convenience, they will be explained again.

一実施例としてアンドープGaAs/n形AQGaAs
/n形GaAsの3層構造を気相成長する例を第1図の
気相成長装置により説明する。7MG102とAsH3
103夫々の所定量を主配管107に流し込み反応容器
106内に導いて支持台111に設置する半絶縁性Ga
As基板112に不純物を添加していないGaAs層を
堆積して成長させる。 このGaAs層成長工程でTM
A103゜5iH4105はバルブ116.120を開
、115.119を閉として副配管110に所定量を流
しておく。
As an example, undoped GaAs/n-type AQGaAs
An example of vapor phase growth of a three-layer structure of n-type GaAs will be explained using the vapor phase growth apparatus shown in FIG. 7MG102 and AsH3
A predetermined amount of each of 103 is poured into the main pipe 107, guided into the reaction vessel 106, and placed on the support stand 111.
A GaAs layer to which no impurities are added is deposited and grown on an As substrate 112. In this GaAs layer growth process, TM
A103°5iH4105 opens valves 116 and 120, closes valves 115 and 119, and allows a predetermined amount to flow into sub-piping 110.

ところでこの気相成長装置は反応容器106とTMG。By the way, this vapor phase growth apparatus includes a reaction vessel 106 and a TMG.

TMA 、 AsH3,SiH,を夫々充填する容器1
02.103゜10/I、 105間を主配管107と
副配管110で接続し、これらの面舵管間にはバルブ1
13.114.115.116゜117、118.11
9.120を設置するが、これらのバルブは1容器につ
き開閉用として2個ずつ形成する。
Container 1 filled with TMA, AsH3, and SiH, respectively
02.103゜10/I, 105 are connected by main pipe 107 and sub pipe 110, and valve 1 is installed between these surface rudder pipes.
13.114.115.116゜117, 118.11
9.120 will be installed, and two of these valves will be formed for each container for opening and closing.

(この若いバルブ番号は順に若い反応容器に対応する) 文語は前後するが反応容器106には半絶縁性GaAs
基板112を載置する支持台111を、更に反応容器1
06端部に排気口109ならびに圧力調整弁121を設
置し、更に又101は前記原料ガスを反応容器106に
輸送するキャリアガス用の容器である。
(The younger valve numbers correspond to the younger reaction vessels in order.) Although the wording is different, the reaction vessel 106 is made of semi-insulating GaAs.
The support table 111 on which the substrate 112 is placed is further mounted on the reaction vessel 1.
An exhaust port 109 and a pressure regulating valve 121 are installed at the end of 06, and 101 is a carrier gas container for transporting the raw material gas to the reaction container 106.

前記副舵管110には7MA103. SiH,105
の所定量が流れているのは前述の通りであるが、この場
合この副舵管110に流す水素の流量と、排気口接続部
付近に設置する圧力調整弁121の開閉度を調整して主
配管107内の圧力を副舵管110内のそれよりも例え
ば0.05kg/cd低くしておくのが本発明の特色で
ある。
The auxiliary rudder pipe 110 has a 7MA103. SiH, 105
As mentioned above, a predetermined amount of hydrogen is flowing into the auxiliary rudder pipe 110, and in this case, the flow rate of hydrogen flowing into the auxiliary rudder pipe 110 and the opening/closing degree of the pressure regulating valve 121 installed near the exhaust port connection are adjusted. A feature of the present invention is that the pressure in the pipe 107 is kept lower than that in the auxiliary rudder pipe 110 by, for example, 0.05 kg/cd.

GaAs層の形成に引続きバルブ116.120を閉じ
ると同時にバルブ115.119を開いて7MA103
.5iH4105を主配管107に流込んでn形AQG
aAs層を形成する。この7MA103.5iH410
5を主配管107に流込むに際しては予め主副配管間に
圧力差を設け、バルブ115、119を開くことにより
TMA、 SiH4が速やかに流入するのでガス切替え
時間が従来方法に比べて短縮される。
Following the formation of the GaAs layer, valves 116 and 120 are closed and at the same time valves 115 and 119 are opened.
.. 5iH4105 is poured into the main pipe 107 to form an n-type AQG.
Form an aAs layer. This 7MA103.5iH410
5 into the main pipe 107, by creating a pressure difference between the main and sub pipes in advance and opening the valves 115 and 119, TMA and SiH4 flow quickly, so the gas switching time is shortened compared to the conventional method. .

次にn形Aj2GaAsljの形成時に主配管107内
の圧力を副舵管110内のそれよりも例えば0.05k
g/a#高くなるように副舵管110内を流れる水素の
流量と圧力調整弁121の開閉度により調整する。 こ
のn形1GaAsiの形成に続いてTMA用配管のバル
ブ116を開としバルブ115を閉じてn形AQGaA
s層を成長させる。
Next, when forming the n-type Aj2GaAslj, the pressure in the main pipe 107 is lowered, for example, by 0.05 k than that in the auxiliary rudder pipe 110.
The g/a# is adjusted by adjusting the flow rate of hydrogen flowing in the auxiliary rudder pipe 110 and the degree of opening/closing of the pressure regulating valve 121. Following the formation of this n-type 1GaAsi, the valve 116 of the TMA piping is opened, the valve 115 is closed, and the n-type AQGaA
Grow the s-layer.

この工程では前述とは逆に予め主副配管間に設ける圧力
差により TMA容器103への供給は速やかに停止す
る。このような工程により■−■族化合物からなる半絶
縁性半導体基板に設置するAQGaAslQaAs層の
界面におけるA2原子の組成急峻性をAESで測定した
結果を第2図に示したが、 この図から明らかなように
AQGaAs/ GaAs層の接合界面におけるAQ原
子のダレ幅は夫々40人、37人とAESの測定限界に
近い値を得た。
In this step, contrary to the above, the supply to the TMA container 103 is immediately stopped due to the pressure difference established in advance between the main and sub-pipes. Figure 2 shows the results of AES measurement of the steepness of the composition of A2 atoms at the interface of the AQGaAslQaAs layer, which is placed on a semi-insulating semiconductor substrate made of a ■-■ group compound by such a process. Thus, the sag width of AQ atoms at the junction interface of the AQGaAs/GaAs layer was 40 and 37, respectively, close to the measurement limit of AES.

このように本発明に係る■−v族化合物半導体気相成長
法を適用すると優れた界面急峻性を持つヘテロ接合を形
成可能にすることが判明した。
As described above, it has been found that by applying the 1-V group compound semiconductor vapor phase growth method according to the present invention, it is possible to form a heterojunction with excellent interface steepness.

前記実施例では1GaAs/ GaAsによるヘテロ接
合の形成について説明したが、この成長材料に拘束され
るものでなく、他の■−■族化合物半導体例えばInP
/ InGaAs等の成長に適用できるのは勿論、ヘテ
ロ接合界面の急峻化に止まらず、不純物を添 4加する
場合急峻に添加することも可能になる。
In the above embodiments, the formation of a heterojunction using 1GaAs/GaAs has been described, but the growth material is not limited to this, and may be formed using other ■-■ group compound semiconductors, such as InP.
Of course, this method can be applied to the growth of InGaAs, etc., and is not limited to making the heterojunction interface steeper, but also enables steep addition when adding impurities.

更に前記実施例では主・副舵管間の圧力差を0.05k
g/(dとしたが、本発明はこの数値に限定されるもの
でなく、各成長工程間に実質的な圧力差を設定すれば期
待した効果は得られる。
Furthermore, in the above embodiment, the pressure difference between the main and auxiliary rudder pipes was set to 0.05k.
Although g/(d is used, the present invention is not limited to this value, and the expected effect can be obtained by setting a substantial pressure difference between each growth step.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明で適用する特殊な気相成長装置
は、原料ガスを反応容器内に導く主配管とこの原料ガス
を反応容器内でなく排気口に導く副舵管を設置し、しか
も■−■族化合物からなる複数層の気相成長を実施する
際には原料ガス流路。
As described above, the special vapor phase growth apparatus applied in the present invention is equipped with a main pipe that guides the raw material gas into the reaction vessel and an auxiliary rudder pipe that guides the raw material gas not into the reaction vessel but into the exhaust port. When carrying out vapor phase growth of multiple layers consisting of ■-■ group compounds, the raw material gas flow path.

を主配管から副舵管に切替える方式が必要となり、本発
明方法ではこの切替え方向により前記主副配管の圧力に
高低差を設置する方法を採用しているのは前述の通りで
ある。
It is necessary to switch the main piping to the auxiliary rudder pipe, and as described above, the method of the present invention adopts a method of creating a height difference in the pressure of the main and auxiliary piping depending on the switching direction.

しかしこの流路の切替方式により急峻な組成変化を持つ
ヘテロ接合の形成が可能になりひいてはこのへテロ接合
を利用する半導体装置の特性や信頼性の向上をもたらす
大きな利点がある。
However, this flow path switching method makes it possible to form a heterojunction with a steep compositional change, which has the great advantage of improving the characteristics and reliability of a semiconductor device that uses this heterojunction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に必要な気相成長装置の概要を示す図、
第2図はその特性を表わす図、第3図は従来の気相成長
層の特性図である。 101〜105:容器    107:主配管113〜
120:バルブ   111:支持台106二反応容器
    109:排気口110:副舵管     11
2:半導体基板代理人 弁理士  井 上 −男 隻誇J@ら  −
FIG. 1 is a diagram showing an outline of the vapor phase growth apparatus necessary for the present invention;
FIG. 2 is a diagram showing its characteristics, and FIG. 3 is a diagram showing the characteristics of a conventional vapor phase growth layer. 101~105: Container 107: Main piping 113~
120: Valve 111: Support stand 106 two reaction vessels 109: Exhaust port 110: Sub-rudder pipe 11
2: Semiconductor substrate agent Patent attorney Inoue - Dansenbo J@et al. -

Claims (3)

【特許請求の範囲】[Claims] (1)水素又は水素を主成分とするキャリアガスと原料
ガスを混合して反応容器内に導く主配管と、原料ガスを
この反応容器内でなく排気口に導く副配管を備えるIII
−V族化合物半導体の気相成長装置により種類の異なる
2層以上の気相成長層を連続的に形成する際に、原料ガ
ス流路を副配管から主配管に切替えるには予め主配管内
の圧力を副配管のそれより低く、原料ガス流路を主配管
から副配管に切替えるには予め主配管内の圧力を副配管
のそれより高くすることを特徴とするIII−V族化合物
半導体の気相成長法。
(1) A main pipe that mixes hydrogen or a carrier gas containing hydrogen as a main component and a raw material gas and leads it into the reaction vessel, and a sub-piping that leads the raw material gas not into the reaction vessel but to the exhaust port III
- When continuously forming two or more different types of vapor-phase growth layers using a V-group compound semiconductor vapor-phase growth apparatus, before switching the source gas flow path from the sub-piping to the main piping, A method for manufacturing a semiconductor gas of a III-V compound semiconductor characterized in that the pressure in the main piping is lower than that in the sub-piping, and the pressure in the main piping is made higher than that in the sub-piping before switching the source gas flow path from the main piping to the sub-piping. Phase growth method.
(2)原料ガスは複数のIII族元素からなる有機化合物
と、一種類以上のV族元素からなる水素化合物もしくは
有機化合物で構成することを特徴とする特許請求の範囲
第1項記載のIII−V族化合物半導体の気相成長法。
(2) The source gas is composed of an organic compound consisting of a plurality of Group III elements and a hydrogen compound or organic compound consisting of one or more Group V elements. Vapor phase growth method for group V compound semiconductors.
(3)前記特許請求の範囲第2項記載の原料はIII−V
族化合物半導体にn形もしくはp形領域を形成する添加
材で構成することを特徴とするIII−V族化合物半導体
の気相成長法。
(3) The raw material described in claim 2 is III-V.
A method for vapor phase growth of a III-V compound semiconductor, characterized in that the compound semiconductor is composed of an additive that forms an n-type or p-type region.
JP62247901A 1987-10-02 1987-10-02 Vapor growth method of iii-v compound semiconductor Pending JPH01110720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62247901A JPH01110720A (en) 1987-10-02 1987-10-02 Vapor growth method of iii-v compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62247901A JPH01110720A (en) 1987-10-02 1987-10-02 Vapor growth method of iii-v compound semiconductor

Publications (1)

Publication Number Publication Date
JPH01110720A true JPH01110720A (en) 1989-04-27

Family

ID=17170247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62247901A Pending JPH01110720A (en) 1987-10-02 1987-10-02 Vapor growth method of iii-v compound semiconductor

Country Status (1)

Country Link
JP (1) JPH01110720A (en)

Similar Documents

Publication Publication Date Title
US5168077A (en) Method of manufacturing a p-type compound semiconductor thin film containing a iii-group element and a v-group element by metal organics chemical vapor deposition
Miller et al. Metalorganic chemical vapor deposition
JPH07321041A (en) Iii-v compound semiconductor crystal growth method
JPH01110720A (en) Vapor growth method of iii-v compound semiconductor
JPH0529218A (en) Organic metal molecular beam epitaxial growth method
JP2581117B2 (en) Vapor phase growth equipment
JP3472976B2 (en) Method and apparatus for forming group III nitride semiconductor
US20050112281A1 (en) Growth of dilute nitride compounds
JPH02203520A (en) Growth of compound semiconductor crystal
EP0525297A2 (en) Method of growing doped crystal
JPS6237000B2 (en)
Maurel et al. Metal-organic molecular beam epitaxy of GaAs and Ga0. 5In0. 5P
JPH0265124A (en) Crystal growth of compound semiconductor
Maurel et al. MOMBE growth of high-quality InP and GaInAs bulk, heterojunction and quantum well layers
JPH08130187A (en) Semiconductor vapor phase growth apparatus and semiconductor vapor phase growth method
JPS6148917A (en) Forming method of selective pope-hetero structure of group iii-v compound semiconductor
JP2924072B2 (en) Organometallic molecular beam epitaxial growth method and apparatus
JPH01266715A (en) Thin film growth apparatus
JPH04324623A (en) Device and method for vapor phase growth
JPH0590161A (en) Organic metal vapor growth apparatus
JPH03241731A (en) Vapor growth method for compound semiconductor crystal
Pelosi et al. In-depth analysis of the interfaces in InGaP/GaAs heterosystems
JPH0626187B2 (en) Semiconductor crystal manufacturing equipment
McCrary et al. Low pressure MOCVD in a vertical reactor: growth and characterization of InGaAsP on (100) InP for 1.3 μm lasers
JPH03297129A (en) Organometallic molecular-beam epitaxial growth apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20120131

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20150131