JP2581117B2 - Vapor phase growth equipment - Google Patents
Vapor phase growth equipmentInfo
- Publication number
- JP2581117B2 JP2581117B2 JP62336059A JP33605987A JP2581117B2 JP 2581117 B2 JP2581117 B2 JP 2581117B2 JP 62336059 A JP62336059 A JP 62336059A JP 33605987 A JP33605987 A JP 33605987A JP 2581117 B2 JP2581117 B2 JP 2581117B2
- Authority
- JP
- Japan
- Prior art keywords
- source gas
- vapor phase
- phase growth
- pipe
- supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/448—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化合物半導体等の気相成長装置に関する。Description: TECHNICAL FIELD The present invention relates to an apparatus for vapor-phase growth of a compound semiconductor or the like.
本発明は化合物半導体等の気相成長装置において、互
いに反応性を有する異種の原料ガスを夫々異なる供給ラ
インを通じて反応管に供給すると共に、原料ガスを排出
ライン側に切換えたときに異種の原料ガスを夫々異なる
ラインで分離してオイルトラップ内で合流させることに
より、ラインの配管の目詰まりを防ぐようにしたもので
ある。The present invention relates to a vapor-phase growth apparatus for compound semiconductors or the like, in which different source gases having reactivity with each other are supplied to a reaction tube through different supply lines, and the different source gases are switched when the source gas is switched to the discharge line side. Are separated in different lines and merged in an oil trap to prevent clogging of the line piping.
近年、InP或いはInAsを含む化合物半導体多元混晶の
成長は、MOCVD法(有機金属を用いた気相成長法)が多
く用いられ、種々の半導体デバイス作製の手段として応
用研究が活発に行なわれている。例えば、AlGaInP系はA
lGaAsに替わる短波長半導体レーザ用材料として期待さ
れ、またAlGaInAs系は高速素子用材料として期待されて
いる。これらをMOCVD法で成長させる場合に、III族のIn
原料として常温で液体のTEIn(トリエチルインジウム)
が従来使用されて来た。一方、V族原料にはPH3、AsH3
等の水素化物が使用される。In recent years, MOCVD (organic vapor phase epitaxy) has been widely used for the growth of compound semiconductors containing InP or InAs, and applied research has been actively conducted as a means of fabricating various semiconductor devices. I have. For example, AlGaInP system is A
It is expected as a material for short wavelength semiconductor lasers replacing lGaAs, and AlGaInAs is expected as a material for high-speed devices. When these are grown by MOCVD, the group III In
TEIn (triethylindium) liquid at room temperature as a raw material
Has traditionally been used. On the other hand, PH 3 and AsH 3
And the like.
第2図は従来の気相成長装置即ちMOCVD装置の概略的
構成図を示す。同図中、(1)は反応管、(2)は有機
金属化合物例えば常温で液体のTEIn(トリエチルインジ
ウム)、(3)はTEIn(2)を収容したバブラー容器、
(4)は例えばPH3又はAsH3を収容した原料ガスボン
ベ、(5)及び(6)はオイルトラップを示す。TEIn
(2)は水素ガス(H2)によりバブリングされ原料ガス
としてIII族の原料ガス供給ラインである配管(7)を
通じて反応管(1)内に供給され、また、ガスボンベ
(4)よりの例えばPH3又はAsH3の原料ガスはV族の原
料ガス供給ラインである配管(8)を通じて反応管
(1)内に供給される。また、結晶成長時以外にも原料
ガスを定常的に供給するために、一方の配管(7)から
分岐してIII族の原料ガス排出ラインである配管(9)
が設けられると共に、他方の配管(8)から分岐したV
族の原料ガス排出ラインである配管(10)がIII族の排
出ラインの配管(9)に接続され、この配管(9)がオ
イルトラップ(5)を通じて排気系(11)に接続され
る。(12)〔(12A)(12B)〕は各配管(7),
(8),(9)及び(10)に設けた空気操作バルブであ
り、このバルブ(12)を切換えることにより夫々の原料
ガスが反応管(1)又は排出ライン(9),(10)に切
換わって供給されるようになされる。FIG. 2 is a schematic configuration diagram of a conventional vapor phase growth apparatus, that is, a MOCVD apparatus. In the figure, (1) is a reaction tube, (2) is an organometallic compound such as TEIn (triethylindium) which is liquid at room temperature, (3) is a bubbler container containing TEIn (2),
(4) shows example source-gas cylinder containing a PH 3 or AsH 3, (5) and (6) the oil trap. TEIn
(2) is bubbled with hydrogen gas (H 2 ) and supplied as a source gas into the reaction tube (1) through a pipe (7), which is a group III source gas supply line. The source gas of 3 or AsH 3 is supplied into the reaction tube (1) through a pipe (8) which is a group V source gas supply line. In addition, in order to supply the source gas constantly also during the time other than during the crystal growth, a pipe (9) branched from one pipe (7) and serving as a group III source gas discharge line.
And V branched from the other pipe (8).
A pipe (10), which is a group raw material gas discharge line, is connected to a pipe (9) of a group III discharge line, and this pipe (9) is connected to an exhaust system (11) through an oil trap (5). (12) [(12A) (12B)] is for each pipe (7),
(8) Air operated valves provided in (9) and (10). By switching this valve (12), each source gas is supplied to the reaction tube (1) or the discharge lines (9) and (10). It is made to be switched and supplied.
ところで、原料ガスとして使用するTEInとPH3又はAsH
3とが室温の気相中で互に反応し、不揮発性の重合体を
形成するため、この反応生成物が配管の合流部に堆積
し、原料ガスの供給が制御出来ないとか、配管の目詰ま
りを起す等の問題があった。この問題は上述の第2図に
示すように両原料ガスを互に分離して配管(7)及び
(8)を通じて反応管(1)に供給する事で原理的に解
決することができる。しかし、第2図に示すようにMOCV
D装置においては、結晶成長時以外にも原料ガスの定常
的供給を計るため、一般に排出ラインの配管(9)(1
0)に原料ガスを流して待機する手法が取られている。
この場合、TEInの排出ラインの配管(9)とPH3又はAsH
3の排出ラインの配管(10)の合流部(13)において不
揮発性の生成物が堆積し、この部分(13)の目詰まりを
起すか、或は排出ライン側と供給ライン側との間で著し
い配管抵抗の差による圧力バランスの変動が生じ、制御
性、再現性の良い結晶成長を阻害していた。排出ライン
側と供給ライン側の配管内の圧力が互に等しくないと、
切換えたときに原料ガスの供給量が変わり、多元混晶成
長において結晶性が乱れ、鏡面が得られない。By the way, TEIn and PH 3 or AsH
3 and are mutually react in the gas phase at room temperature, to form a non-volatile polymer, the reaction product is deposited on the merging portion of the pipe, Toka supply of the source gas can not be controlled, the eyes of the pipe There were problems such as clogging. This problem can be solved in principle by separating the two source gases from each other and supplying them to the reaction tube (1) through the pipes (7) and (8) as shown in FIG. However, as shown in FIG.
In the D apparatus, in order to measure the steady supply of the source gas other than during the crystal growth, generally, the piping of the discharge line (9) (1)
There is a method in which the raw material gas is flown to 0) to wait.
In this case, the TEIn discharge line piping (9) and PH 3 or AsH
Non-volatile products accumulate at the junction (13) of the discharge line piping (10) of 3 and cause clogging of this part (13) or between the discharge line side and the supply line side. The pressure balance fluctuated due to a remarkable difference in pipe resistance, which hindered crystal growth with good controllability and reproducibility. If the pressures in the piping on the discharge line side and the supply line side are not equal to each other,
At the time of switching, the supply amount of the source gas changes, and the crystallinity is disturbed in multi-element mixed crystal growth, so that a mirror surface cannot be obtained.
本発明は、上述の点に鑑み、供給ライン側と排出ライ
ン側との圧力バランスを良好に維持し再現性よく結晶成
長を行うことができる気相成長装置を提供するものであ
る。The present invention has been made in view of the above circumstances, and provides a vapor phase growth apparatus capable of maintaining a good pressure balance between a supply line side and a discharge line side and performing crystal growth with good reproducibility.
本発明は、気相成長装置において、互いに反応性を有
する異種の原料ガスを夫々分離して反応管内に供給する
複数の供給ラインと、この複数の供給ラインより夫々分
岐した複数の排出ラインとを設け、複数の排出ラインを
オイルトラップ内で合流せしめるようになす。オイルト
ラップ以後は共通ラインを通じて排気系に接続される。The present invention provides, in a vapor phase growth apparatus, a plurality of supply lines that separate different source gases having reactivity from each other and supply them into a reaction tube, and a plurality of discharge lines branched from the plurality of supply lines, respectively. A plurality of discharge lines are merged in the oil trap. After the oil trap, it is connected to the exhaust system through a common line.
反応管への異種の原料ガス、例えばTEInによるIII族
原料ガスとPH3又はAsH3によるV族原料ガスの供給は夫
々の供給ラインを通じて分離して行れるので、両原料ガ
スがライン内で反応して配管を目詰まりさせることがな
い。Source gas heterologous to the reaction tube, for example, the supply of the group V material gas by the group III material gas and the PH 3 or AsH 3 by TEIn are rows separated through respective supply lines of both the raw material gas is reacted in a line No clogging of piping.
また、排出ライン側においても夫々例えばIII族原料
ガス排出ラインとV族原料ガス排出ラインに分離して両
原料ガスをオイルトラップ内に導き、オイル内で両原料
ガスを接触させている。これにより、両原料ガスの反応
による不揮発性生成物はオイル内に捕集され、排出ライ
ン内に堆積することがない。即ち原料ガスの流れに対し
て何ら障害は生じない。従って、供給ラインと排出ライ
ン間での圧力バランスの変動は生ぜず制御性、再現性の
良い結晶成長が行われる。Also, on the discharge line side, for example, each is separated into a group III source gas discharge line and a group V source gas discharge line, and both the source gases are led into an oil trap, and the source gases are brought into contact in the oil. As a result, the non-volatile products resulting from the reaction between the source gases are collected in the oil and do not accumulate in the discharge line. That is, there is no obstacle to the flow of the source gas. Therefore, the crystal growth with good controllability and reproducibility is performed without causing the fluctuation of the pressure balance between the supply line and the discharge line.
以下、第1図を用いて本発明による気相成長装置の実
施例を説明する。なお、第1図において第2図と対応す
る部分には同一符号を付して示す。Hereinafter, an embodiment of a vapor phase growth apparatus according to the present invention will be described with reference to FIG. In FIG. 1, parts corresponding to those in FIG. 2 are denoted by the same reference numerals.
本例においても、バブラー容器(3)に収容されたTE
In(2)を水素ガス(H2)によりバブリングし原料ガス
としてIII族の原料ガス供給ラインの配管(7)を通じ
て反応管(1)内に供給し、また原料ガスボンベ(4)
よりの例えばPH3又はAsH3の原料ガスはV族の原料ガス
供給ラインの配管(8)を通じて反応管(1)内に供給
する。Also in this example, the TE housed in the bubbler container (3)
In (2) is bubbled with hydrogen gas (H 2 ) and supplied as a source gas into the reaction tube (1) through the piping (7) of the group III source gas supply line, and the source gas cylinder (4)
Further source gas of, for example, PH 3 or AsH 3 is supplied into the reaction tube (1) through a pipe (8) of a group V source gas supply line.
一方、III族原料ガス供給ラインの配管(7)から分
岐したIII族の原料ガス排出ラインの配管(9)を設け
ると共に、V族原料ガス供給ラインの配管(8)から分
岐したV族の原料ガス排出ラインの配管(10)を設け
る。そして、この両排出ラインの配管(9)及び(10)
の遊端を夫々オイルトラップ(5)のオイル(5a)内に
導入する。オイルトラップ(5)以後は共通ラインを通
じて排気系(11)に接続する。排気系(11)と反応管
(1)の排気ライン間にはオイルトラップ(6)が設け
られ、装置停止時のO2,H2O等の不純物が排気系(11)よ
り逆拡散するを阻止している。On the other hand, a group III source gas discharge line pipe (9) branched from a group III source gas supply line pipe (7) is provided, and a group V source gas branched from a group V source gas supply line pipe (8). Provide gas exhaust line piping (10). And the pipes (9) and (10) of both discharge lines
Are introduced into the oil (5a) of the oil trap (5). After the oil trap (5), it is connected to the exhaust system (11) through a common line. An oil trap (6) is provided between the exhaust system (11) and the exhaust line of the reaction tube (1) to prevent impurities such as O 2 and H 2 O from being diffused from the exhaust system (11) when the apparatus is stopped. It is blocking.
かかる構成において、結晶成長時には空気操作バルブ
(12A)を開き、空気操作バルブ(12B)を閉じてバブラ
ー容器(3)よりのIII族原料ガス(TEIn)とボンベ
(4)よりのV族原料ガス(PH3又はAsH3)を夫々配管
(7)及び(8)を通じて反応管(1)に供給し、気相
成長を行う。結晶成長時以外は、バルブ(12A)及び(1
2B)を切換え各原料ガスを排出ラインの各配管(9)及
び(10)を通して流し、オイルトラップ(5)のオイル
(5a)内で合流させて後、排気系(11)に流す。In this configuration, during crystal growth, the air operation valve (12A) is opened, the air operation valve (12B) is closed, and the group III source gas (TEIn) from the bubbler vessel (3) and the group V source gas from the cylinder (4). (PH 3 or AsH 3 ) is supplied to the reaction tube (1) through the pipes (7) and (8), respectively, to perform vapor phase growth. Except during crystal growth, valves (12A) and (1
2B), the source gases are passed through the pipes (9) and (10) of the discharge line, merged in the oil (5a) of the oil trap (5), and then flowed to the exhaust system (11).
斯る構成によれば、特に排出ライン側に原料ガス(TE
In)及び原料ガス(PH3又はAsH3)を流す際、両原料ガ
スは夫々分離された配管(9)及び(10)内を流れてオ
イルトラップ(5)に導かれ、オイルトラップ(5)の
オイル(5a)内で合流なされる。このため両原料ガスの
反応による不揮発性生成物はオイル(5a)内に捕集さ
れ、配管内での不揮発性生成物の堆積が全くなくなる。
従って、配管内の目詰まりを防止することができ、供給
ライン(7)(8)と排出ライン(9)(10)の圧力を
等しく維持することができる。よって装置の制御性、再
現性を高めることができ、良好な気相成長を行うことが
できる。According to such a configuration, the raw material gas (TE
In) and the source gas (PH 3 or AsH 3 ), both source gases flow through the separated pipes (9) and (10), respectively, and are led to the oil trap (5), where the oil trap (5) In the oil (5a). For this reason, the non-volatile products resulting from the reaction between the two source gases are trapped in the oil (5a), and no non-volatile products are deposited in the pipe.
Therefore, clogging in the piping can be prevented, and the pressures of the supply lines (7) and (8) and the discharge lines (9) and (10) can be maintained equal. Therefore, controllability and reproducibility of the apparatus can be improved, and good vapor phase growth can be performed.
本発明による気相成長装置を使用した場合、実際にAl
GaInP,AlGaInAs等の良好な結晶が制御性、再現性よく成
長出来るようになり、AlGaInP短波長レーザや、AlGaInA
sの高移動度電界効果トランジスタ(HIFET)の作製が可
能となった。When the vapor phase growth apparatus according to the present invention is used, Al
Good crystals such as GaInP and AlGaInAs can be grown with controllability and reproducibility, and AlGaInP short wavelength lasers and AlGaInA
s high mobility field effect transistor (HIFET).
本発明の気相成長装置によれば、従来問題とされた配
管内での異種原料ガス間の反応生成物の堆積が全く無く
なり、反応生成物はオイルトラップ中に捕集されること
になる。従って、配管内の目詰まりが防止され、制御
性、再現性の良い結晶成長を行うことができる。従っ
て、特にIn系化合物半導体多元混晶の成長に適用して好
適ならしめるものである。According to the vapor phase growth apparatus of the present invention, the deposition of the reaction product between the different source gases in the piping, which has conventionally been regarded as a problem, is completely eliminated, and the reaction product is collected in the oil trap. Therefore, clogging in the piping is prevented, and crystal growth with good controllability and reproducibility can be performed. Therefore, it is particularly suitable for application to the growth of In-based compound semiconductor multi-element mixed crystals.
第1図は本発明による気相成長装置の実施例を示す構成
図、第2図は従来の気相成長装置の例を示す構成図であ
る。 (1)は反応管、(2)は有機金属化合物、(3)はバ
ブラー容器、(4)は原料ガスボンベ、(5)(6)は
オイルトラップ、(7)(8)は供給ラインの配管、
(9)(10)は排出ラインの配管、(11)は排気系であ
る。FIG. 1 is a block diagram showing an embodiment of a vapor phase growth apparatus according to the present invention, and FIG. 2 is a block diagram showing an example of a conventional vapor phase growth apparatus. (1) is a reaction tube, (2) is an organometallic compound, (3) is a bubbler vessel, (4) is a raw material gas cylinder, (5) and (6) are oil traps, and (7) and (8) are supply line piping. ,
(9) and (10) are the discharge line piping, and (11) is the exhaust system.
Claims (1)
々分離して反応管内に供給する複数の供給ラインと、 上記複数の供給ラインの夫々より分岐した複数の排出ラ
インを有し、 上記複数の排出ラインがオイルトラップ内で合流されて
成る気相成長装置。A plurality of supply lines that separate and supply different kinds of source gases having reactivity to each other into a reaction tube; and a plurality of discharge lines branched from each of the plurality of supply lines. Vapor growth apparatus in which the discharge lines are combined in an oil trap.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62336059A JP2581117B2 (en) | 1987-12-28 | 1987-12-28 | Vapor phase growth equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62336059A JP2581117B2 (en) | 1987-12-28 | 1987-12-28 | Vapor phase growth equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01175227A JPH01175227A (en) | 1989-07-11 |
JP2581117B2 true JP2581117B2 (en) | 1997-02-12 |
Family
ID=18295272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62336059A Expired - Lifetime JP2581117B2 (en) | 1987-12-28 | 1987-12-28 | Vapor phase growth equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2581117B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09139350A (en) * | 1995-11-10 | 1997-05-27 | Sony Corp | Oil trap |
JP2003159645A (en) * | 2001-11-22 | 2003-06-03 | Sumitomo Mitsubishi Silicon Corp | Grinding device |
KR20130087354A (en) * | 2012-01-27 | 2013-08-06 | 주식회사 유피케미칼 | Indium-containing oxide film and producing method thereof |
-
1987
- 1987-12-28 JP JP62336059A patent/JP2581117B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01175227A (en) | 1989-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2581117B2 (en) | Vapor phase growth equipment | |
JPS59188118A (en) | Manufacture of vapor phase epitaxial crystal | |
JPS61264722A (en) | Manufacture of semiconductor device | |
JP2743443B2 (en) | Compound semiconductor vapor growth method and apparatus | |
JP2743444B2 (en) | (III)-Vapor phase growth apparatus for Group V compound semiconductor | |
JPH01110720A (en) | Vapor growth method of iii-v compound semiconductor | |
JP2646647B2 (en) | Low pressure vapor phase growth equipment | |
JPH0499312A (en) | Organometallic vapor growth apparatus | |
JP2743431B2 (en) | Compound semiconductor vapor growth method and apparatus | |
JPS6237000B2 (en) | ||
JPH0613323A (en) | Vapor phase epitaxy method for compound semiconductor mixed crystal | |
JPH0351293B2 (en) | ||
JPS6251209A (en) | Vapor growth apparatus | |
JP2002016002A (en) | Vapor phase growth system | |
JPH01115119A (en) | Device for supplying raw material in form of liquid vapor | |
JPH10223541A (en) | Chemical vapor deposition device | |
JPS63159296A (en) | Vapor phase epitaxy | |
JPH0645264A (en) | Vapor growing method | |
JP2784384B2 (en) | Vapor growth method | |
JPS6054429A (en) | Raw material boat for vapor phase epitaxial growth device | |
JPH0471993B2 (en) | ||
JPH11214316A (en) | Manufacture of semiconductor | |
JPS63151017A (en) | Semiconductor thin film manufacturing apparatus | |
JPH07122507A (en) | Semiconductor manufacturing device | |
JPS63205911A (en) | Vapor growth equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071121 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081121 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081121 Year of fee payment: 12 |