JPH02230720A - Vapor growth method and apparatus for compound semiconductor - Google Patents

Vapor growth method and apparatus for compound semiconductor

Info

Publication number
JPH02230720A
JPH02230720A JP4990289A JP4990289A JPH02230720A JP H02230720 A JPH02230720 A JP H02230720A JP 4990289 A JP4990289 A JP 4990289A JP 4990289 A JP4990289 A JP 4990289A JP H02230720 A JPH02230720 A JP H02230720A
Authority
JP
Japan
Prior art keywords
gas
group iii
group
chamber
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4990289A
Other languages
Japanese (ja)
Other versions
JP2743443B2 (en
Inventor
Yoshitake Katou
芳健 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4990289A priority Critical patent/JP2743443B2/en
Publication of JPH02230720A publication Critical patent/JPH02230720A/en
Application granted granted Critical
Publication of JP2743443B2 publication Critical patent/JP2743443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To shorten the growing time of a single molecule layer by accumulating a group III raw material gas which is formed by the reaction of a group III metal and halogen gas at high temperature in a group-III gas accumulating chamber in the state of high temperature and high pressure, and feeding the gas on the surface of a substrate crystal instantaneously. CONSTITUTION:In a group-III gas generating chamber 204, a group III metal (Ga) 205 and HCl being diluted with H2 are made to react, and GaCl that is group III halogen gas is generated. The GaCl gas is introduced into a group III gas accumulating chamber 207 through a thin pipe 206 and accumulated. At this time, the group-III gas generating chamber 204 and the group-III gas accumulating chamber 207 are heated with a heating furnace 208. At the same time, a valve 203 is closed and a valve 201 is opened, and H2 which is a carrier gas is stored into a preparatory chamber 204 to a pressure that is slightly higher than that in the accumulating chamber 207. Then the valve 201 is closed. When the feeding time of the group III raw material is reached, the valve 203 is opened, and the H2 is introduced into the accumulating chamber 207. As a result, the accumulated GaCl is jetted on the surface of the substrate through the narrow output port of the accumulating chamber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は化合物半導体の気相成長方法およびそれを行う
ための装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for vapor phase growth of compound semiconductors and an apparatus for performing the method.

[従来の技術] 化合物半導体の気相成長方法には様々な方法があるが、
ハロゲンガスと金属とを反応させ、その反応によって生
じた金属ハロゲンガスを半導体の成長ガスに用いる方法
は、ハライド輸送気相成長方法と呼ばれている。このハ
ライド輸送気相成長方法は以下に挙げる特徴があるため
、化合物半導体、特に■−■族化合物半導体の成長方法
として多く用いられている。その特徴とは、成長した半
導体が高純度であること、3i02か形成された半導体
基板を用いればSiO2が形成されていない表面のみに
半導体を成長できるといった選択成長か容易にできるこ
と、更に混晶組成比が制御された多元混晶化合物半導体
を容易に成長できることなどが挙げられる。
[Prior art] There are various methods for vapor phase growth of compound semiconductors.
A method of reacting a halogen gas with a metal and using the metal halogen gas produced by the reaction as a semiconductor growth gas is called a halide transport vapor phase growth method. This halide transport vapor phase growth method has the following characteristics and is therefore widely used as a method for growing compound semiconductors, particularly group 1-2 compound semiconductors. Its characteristics are that the grown semiconductor is of high purity, that it is easy to selectively grow semiconductors by using a semiconductor substrate on which 3i02 is formed, allowing the semiconductor to grow only on the surface where SiO2 is not formed, and that it has a mixed crystal composition. Examples include the ability to easily grow multi-component mixed crystal compound semiconductors with controlled ratios.

近年、この方法を発展させた成長方法として原子層エピ
タキシャル法(ALE法)が知られるようになった。こ
の方法は基板上に化合物半導体の単分子層の膜厚で1層
ずつ半導体を成長するものであり、膜厚が原子層オーダ
ーで制御されたヘテロMA造や、異種の半導体を1分子
闇ずつ交互に積層させた分子層超格子構造を形成できる
方法として注目されている。
In recent years, the atomic layer epitaxial method (ALE method) has become known as a growth method that is an advanced version of this method. This method involves growing semiconductors one layer at a time on a substrate with a thickness of a monomolecular layer of compound semiconductors, and using a hetero-MA structure in which the film thickness is controlled on the order of atomic layers, different types of semiconductors are grown one molecule at a time. This method is attracting attention as a method that can form a superlattice structure of alternatingly laminated molecular layers.

上記説明した気相成長方法およびそれに用いられる気相
成長装置は、例えばシτlパニーズ・ジャーナル・オブ
・アブライド・フイシックス( Japanese J
ournal of Applied Physics
) , 25巻, 1986年,  L212頁〜L2
14頁に詳述されている。
The above-described vapor phase growth method and the vapor phase growth apparatus used therein are described in, for example, the Japanese Journal of Abrid Physics (Japanese J
Internal of Applied Physics
), vol. 25, 1986, pages L212-L2
Details are given on page 14.

従来用いられてきた成長装置は複数の独立な成長至か反
応管内に設置され、基板結晶を各成長室間で移動可能な
機構部が設けられていた。この装置を用いた従来の成長
方法を以下に説明する。
Conventionally used growth apparatuses are installed in a plurality of independent growth chambers and are equipped with a mechanism that allows the substrate crystal to be moved between the growth chambers. A conventional growth method using this apparatus will be explained below.

第1の成長室には、■族金屈とハロゲンガスの反応によ
って■族ハロゲンガス(例えば、GaC!やIn(,j
!)を発生させ、常時供給しておく。
In the first growth chamber, a group-■ halogen gas (e.g., GaC! or In(, j
! ) and keep it constantly supplied.

第2の成長室は、V族ガスの供給、および基板結晶表面
のパージのために用いる。先ず、第2の成長至に挿入ざ
れている基板結晶を第1の成長室に移動させる。ここで
基板結晶表面は■族ハロゲンガスに晒され、表面に1分
子層の■族ハロゲンガスが吸着する。次に、基板結晶を
第2の成長室に移動し、キャリアガスで結晶表面をパー
ジする。
The second growth chamber is used for supplying group V gas and purging the substrate crystal surface. First, the substrate crystal inserted into the second growth chamber is moved to the first growth chamber. Here, the surface of the substrate crystal is exposed to group II halogen gas, and one molecular layer of group II halogen gas is adsorbed on the surface. Next, the substrate crystal is moved to a second growth chamber, and the crystal surface is purged with a carrier gas.

続いて、第2の成長室にV族ガスを導入する。ここで、
基板結晶表面はV族ガスに晒され、表面に1分子層の化
合物半導体が形成ざれる。その後、V族ガスの供給を停
止し、基板結晶表面のパージを行う。以上の工程を繰り
返すことによって単分子層単位の成長が行われる。
Subsequently, group V gas is introduced into the second growth chamber. here,
The substrate crystal surface is exposed to group V gas, and a single molecular layer of compound semiconductor is formed on the surface. Thereafter, the supply of group V gas is stopped, and the substrate crystal surface is purged. By repeating the above steps, growth is performed in monolayer units.

し発明が解決しようとする課題コ 一般に、■族金属とハロゲンガスとの反応は安定または
停止するまでに長い時間が必要であることが知られてお
り、このため■族ハロゲンガスの供給開始や停止を速や
かに行うことが極めて難しい。そこで、従来の成長方法
では■族ガスの切り換えを行わず、基板移動機構によっ
てガスの交互供給を実現している。
Problems to be Solved by the Invention Generally, it is known that the reaction between a group III metal and a halogen gas requires a long time to stabilize or stop. It is extremely difficult to stop the system quickly. Therefore, in the conventional growth method, the group (1) gas is not switched, and the gases are alternately supplied using a substrate moving mechanism.

従って、従来法では基板移動時間が必要なこと、更に基
板移動中の成長を抑制するため非常に長いパージ時間が
必要であり、そのためデバイスを作製する程度の膜厚を
成長するのに{へめで長い時間が必要であるという問題
点があった。
Therefore, the conventional method requires time to move the substrate, and also requires a very long purge time to suppress growth during substrate movement, making it difficult to grow a film thick enough to fabricate a device. There was a problem in that it required a long time.

更に、従来の装置では反応管内が複数の成長室に分割さ
れているため、基板結晶サイズが必然的に小さなものと
なり、大面積成長等の早産性に不向きであった。
Furthermore, in the conventional apparatus, the interior of the reaction tube is divided into a plurality of growth chambers, so the substrate crystal size is inevitably small, making it unsuitable for premature production such as large-area growth.

また、成長装置に関しても位置決め精度が要求された基
板移動機構部が必要であり、成長装置が複雑で高価であ
るという問題がめった。
Furthermore, the growth apparatus also requires a substrate moving mechanism that requires high positioning accuracy, which often leads to the problem that the growth apparatus is complicated and expensive.

本発明の目的は化合物半導体結晶の原子層エビタキシャ
ル成長において、従来のかかる欠点を除去し、単分子層
成長するのに必要な時間を短縮することによって短時間
で目的とする成長層を得ることができる成長方法および
装置を提供することにある。
The purpose of the present invention is to eliminate such drawbacks of the conventional atomic layer epitaxial growth of compound semiconductor crystals and to obtain a desired growth layer in a short time by shortening the time required to grow a monomolecular layer. Our goal is to provide growth methods and equipment that allow for growth.

[課題を解決するための手段] 本発明は、成長させるべき■−V族化合物半導体の■族
原料ガスとして■族元素のハロゲン化物を用い、該■族
原料ガスと■族原科ガスとを反応管内の結晶成長領域内
に設置された基板結晶表面に交互に供給して結晶成長を
行う化合物半導体の気相成長方法において、■族原料ガ
スの供給工程が、■族金属とハロゲンガスとを高温で反
応させて■族原料ガスを生成する工程と、高温に保持さ
れた■族原料ガスを反応管内または反応管に導通して設
置されたm族ガス蓄積室に導入・蓄積する工程と、前記
■族原料ガスを基板結晶表面に搬送するキャリアガスを
、前記■族原料ガスよりも高い圧力で前記■族ガス蓄積
室に接続した予備室に蓄積する工程と、前記■族ガス蓄
積室と前記予備室とを導通させて、前記キャリアガスを
前記■族ガス蓄積室に導入すると共に、前記■族原料ガ
スを基板結晶表面に瞬時に供給する工程とを備えてなる
ことを特徴とする化合物半導体の気相成長方法である。
[Means for Solving the Problems] The present invention uses a halide of a group (III) element as a group (III) source gas for a ■-V group compound semiconductor to be grown, and combines the group (III) source gas and a group (III) source gas. In a compound semiconductor vapor phase growth method in which crystal growth is performed by alternately supplying to the surface of a substrate crystal set in a crystal growth region in a reaction tube, the step of supplying a group III raw material gas involves mixing a group III metal and a halogen gas. A step of reacting at a high temperature to generate a group III source gas; a step of introducing and accumulating the group III source gas maintained at a high temperature in a reaction tube or in a group m gas storage chamber installed by communicating with the reaction tube; a step of accumulating a carrier gas for transporting the group (III) raw material gas to the substrate crystal surface in a preparatory chamber connected to the group (III) gas storage chamber at a pressure higher than that of the group (III) source gas; A compound characterized by comprising the step of introducing the carrier gas into the group (1) gas storage chamber by establishing electrical continuity with the preliminary chamber and instantaneously supplying the group (1) raw material gas to the substrate crystal surface. This is a method of vapor phase growth of semiconductors.

また、上記方法を実現するための装置は、成長させるへ
き■一V族化合物半導体の■族原料ガスとしてIII族
元素のハロゲン化物を用い、該■族原料ガスと■族原料
ガスとを結晶成長領域内に設置された基板結晶表面に交
互に供給して結晶成長を行う反応管を備えた化合物半導
体の気相成長装置において、反応管内または反応管に導
通して設置された前記反応管への供給用■族原料ガスを
蓄積する■族ガス蓄積室と、該■族ガス蓄積室に付設さ
れた■族原料ガスを発生させる■族ガス発生室と、前記
■族ガス蓄積室よりも高い圧力でキャリアガスを蓄積す
る前記■族ガス蓄積室に接続した予備室とからなる■族
ガス供給系と、前記■族ガス蓄積室および■族ガス発生
至と前記反応管内の成長領域とをそれぞれ独立に温度制
御する手段を備えてなることを特徴とする化合物半導体
の気相成長装置である。
Further, an apparatus for realizing the above method uses a halide of a group III element as a group III source gas for a group V compound semiconductor to be grown, and uses the group III source gas and group III source gas for crystal growth. In a compound semiconductor vapor phase growth apparatus equipped with a reaction tube that performs crystal growth by alternately supplying to the substrate crystal surface installed in a region, A group ■ gas storage chamber for accumulating group ■ raw material gas for supply, a group ■ gas generation chamber attached to the group ■ gas storage chamber for generating group ■ raw material gas, and a pressure higher than that of the group ■ gas storage chamber. A group (2) gas supply system consisting of a preparatory chamber connected to the group (1) gas accumulation chamber for accumulating carrier gas; This is a compound semiconductor vapor phase growth apparatus characterized in that it is equipped with means for temperature control.

[作用] 本発明による気相成長装置の■族ガス供給系の基本的構
成を第2図に示す。この例では■族金属としてはGa1
ハロゲンガスとしてはHCfを用いて以下説明する。
[Operation] FIG. 2 shows the basic configuration of the Group Ⅰ gas supply system of the vapor phase growth apparatus according to the present invention. In this example, the group III metal is Ga1
The following explanation uses HCf as the halogen gas.

■族ガス発生室204内では■族金属(Ga)205と
H2で希釈されたH(1!とが反応して■族ハロゲンガ
スで必るGaCj?が発生する。GaC!ガスは細管2
06を通って■族ガス蓄積室207に導かれ、蓄積され
る。この時、■族ガス発生至204および■族ガス蓄積
室207は加熱炉208によって加熱ざれる。同時に、
予備室202には弁203を閉、弁201を開にするこ
とによって、キャリアガスで必るH2を蓄積室207よ
り僅かに高い圧力まで蓄え、弁201を閉める。■族原
料の供給時間になったところで弁203を開け、蓄積室
207にト12を導入する。その結果、口の狭い蓄槓室
出口より所定場蓄積されたGaCfが噴則され、予備室
の圧力が蓄積室の圧力と等しくなった時点でGaCff
iの供給は停止する。
In the ■ group gas generation chamber 204, the ■ group metal (Ga) 205 and H(1! diluted with H2) react to generate GaCj?, which is necessary for the ■ group halogen gas.
06, the gas is guided to the group Ⅰ gas storage chamber 207, and is stored therein. At this time, the group Ⅰ gas generation chamber 204 and the group Ⅰ gas storage chamber 207 are heated by the heating furnace 208 . at the same time,
By closing the valve 203 and opening the valve 201 in the preparatory chamber 202, H2 necessary as a carrier gas is stored to a pressure slightly higher than that in the storage chamber 207, and the valve 201 is closed. When the time for supplying the Group (2) raw material comes, the valve 203 is opened and the To 12 is introduced into the storage chamber 207. As a result, GaCff accumulated in a predetermined area is injected from the outlet of the storage chamber with a narrow opening, and when the pressure in the preliminary chamber becomes equal to the pressure in the accumulation chamber, GaCff is released.
The supply of i is stopped.

以上のことより、本発明の方法ではGaCでの供給およ
び停止を極めて急峻に行うことができる。
As described above, in the method of the present invention, supply and stop of GaC can be performed extremely sharply.

また、基板結晶(こ1回供給されるGaCI Iは阻族
ガス発生室に供給するHCR流量(SCCm/SeC 
)と蓄積時間(sec)の積によって任意に、かつ精密
に制御することができる。
In addition, the substrate crystal (GaCI I supplied once is the HCR flow rate (SCCm/SeC
) and the accumulation time (sec) can be arbitrarily and precisely controlled.

[実施例] 次に本発明の実施例について図面を参照して詳細に説明
する。
[Example] Next, an example of the present invention will be described in detail with reference to the drawings.

なお、本実施例では■族原料ガスとしてGaとHCNの
反応によって生じるGaCβを用い、GaAS基板結晶
にGaAS層を成長させる例について述べる。
In this embodiment, an example will be described in which a GaAS layer is grown on a GaAS substrate crystal using GaCβ produced by the reaction of Ga and HCN as the group (III) source gas.

第1図は、本実施例に用いられる気相成長装置の概略構
成図である。同図にあいて、反応管110内には■族原
料ガスを蓄積する■族ガス蓄積室106が備えられ、該
■族ガス蓄積室106には、H2ガス配管を有する■族
ガス発生室104が付設されている。発生室104内に
は■族金属105か設置され、発生室104で発生した
■族原料ガスは蓄積室106に蓄積ざれるようになって
いる。蓄積室106はキャリアガスを蓄積する予備室1
02に弁103を介して接続され、上記予備室102 
、I族ガス発生室104および■族ガス蓄積室106を
もって■族ガス供給系が構成ざれている。
FIG. 1 is a schematic diagram of a vapor phase growth apparatus used in this example. In the figure, a reaction tube 110 is provided with a group-Ⅰ gas accumulation chamber 106 for accumulating a group-Ⅰ raw material gas, and the group-Ⅰ gas generation chamber 104 has a H2 gas pipe. is attached. A Group 1 metal 105 is installed in the generation chamber 104, and the Group 1 raw material gas generated in the generation chamber 104 is stored in an accumulation chamber 106. The storage chamber 106 is a preliminary chamber 1 that stores carrier gas.
02 via a valve 103, and the preliminary chamber 102
, the group I gas generation chamber 104 and the group II gas storage chamber 106 constitute a group II gas supply system.

反応管110には、さらにV族ガスを基板結晶108上
に供給するためのバイパス管109が設置されている。
A bypass pipe 109 for supplying group V gas onto the substrate crystal 108 is further installed in the reaction tube 110 .

また、加熱炉107は■族ガス発生至104と■族ガス
蓄積室106、および基板結晶108を戟置された成長
領域を独立に温度制御できるようになっている。
Further, the heating furnace 107 is capable of independently controlling the temperature of the group 1 gas generation chamber 104, the group 1 gas storage chamber 106, and the growth region in which the substrate crystal 108 is placed.

以上のように構成された気相成長装置を用いて、次のよ
うにして気相成長を行った。
Using the vapor phase growth apparatus configured as described above, vapor phase growth was performed in the following manner.

加熱炉107により、■族ガス発生室104と■族ガス
蓄積室106は800゜C1基板結晶108が置かれた
成長領賊は400゜Cに設定した。
Using the heating furnace 107, the temperature of the group II gas generation chamber 104 and the group II gas storage chamber 106 was set at 800°C, and the temperature of the growth zone where the substrate crystal 108 was placed was set at 400°C.

反応管上流部よりキャリアH2を流tiloj2/mi
ロで供給し、■族ガス発生室104にはヒ12で10%
に希釈されたHC2を300cc/min流し、予備至
102には圧力が■族ガス蓄積室106より100 T
orr高くなるようにヒ12を蓄積した。
Flow carrier H2 from the upstream part of the reaction tube tiloj2/mi
12 is supplied to the group ■ gas generation chamber 104 at a rate of 10%.
HC2 diluted to
Hi12 was accumulated so that the orr became high.

成長方法を以下詳細に説明する。まず、弁103を開け
、蓄積室106内のGaCffiガスを基板結晶表面に
噴射した。予備至の圧力は約0.5秒で反応管圧力と同
じになり、GaCf!の供給は停止した。
The growth method will be explained in detail below. First, the valve 103 was opened and the GaCffi gas in the storage chamber 106 was injected onto the substrate crystal surface. The preliminary pressure becomes the same as the reaction tube pressure in about 0.5 seconds, and GaCf! supply has stopped.

その後、1秒間のH2パージを行い、続いてバイパス管
109ヨリV族jJステアルA S H3 ヲ360c
c/minの流量で0.5秒間基板結晶108表面に供
給した。供給停止後1秒間のH2パージを行った。
After that, perform H2 purge for 1 second, then bypass pipe 109 to V group jJ steering wheel A S H3 wo 360c
It was supplied to the surface of the substrate crystal 108 for 0.5 seconds at a flow rate of c/min. After stopping the supply, H2 purge was performed for 1 second.

以上の工程を3000回繰り返し、成長を終了した。The above steps were repeated 3000 times to complete the growth.

この結果、鏡面性に優れたエビタキシャル層か得られ、
全成長層厚より単分子層成長( 2. 83A /サイ
クル)が実現されていることが確認された。
As a result, an epitaxial layer with excellent specularity is obtained,
It was confirmed that monomolecular layer growth (2.83 A/cycle) was achieved based on the total growth layer thickness.

本実施例における成長条件ではGaAS単分子層が成長
するのに要する時間は4秒であり、この成長速度は分子
線エビタキシー法(MBE法)や有機金属気相成長法(
MOCVD法)とほぼ同じであり、実用上なんら問題な
い水準でおる。
Under the growth conditions in this example, the time required to grow a GaAS monolayer is 4 seconds, and this growth rate is different from molecular beam epitaxy (MBE) or metal-organic vapor phase epitaxy (
It is almost the same as the MOCVD method) and is at a level that causes no practical problems.

上記実施例では、反応管に■族ハライドガス供給系か1
組であり、V族ガスを供給するバイパス管も1つであっ
たが、本発明は複数の■族ハライドガス供給系、複数の
V族ガス供給系で構成しても差支えなく、また、成長せ
しめようとした半導体としてGaASを用いたか、本発
明はこれに限定されず、InPやGaP等の他の化合物
半導体でもよく、更に(InAS>+  (GaAS)
+ といった分子層超格子構造半導体でもよい。
In the above embodiment, the reaction tube is equipped with a group Ⅰ halide gas supply system or one
Although the bypass pipe for supplying group V gas is one, the present invention may be configured with a plurality of group I halide gas supply systems and a plurality of group V gas supply systems. Although GaAS was used as the semiconductor to be developed, the present invention is not limited thereto, and other compound semiconductors such as InP and GaP may also be used.
A molecular layer superlattice structure semiconductor such as + may be used.

さらに、上記実施例では、ハロゲンガスとしてHCf!
を用いたか、本発明はこれに限定ざれず、12 ,13
r,CI22等の他のハロゲンガスでもよく、また、V
族ガスとしてAS’H3を用いたが、他のV族原料ガス
でもよい。
Furthermore, in the above embodiment, HCf! is used as the halogen gas!
The present invention is not limited to this, but 12,13
Other halogen gases such as r, CI22, etc. may be used, and V
Although AS'H3 was used as the group gas, other group V raw material gases may be used.

[発明の効果] 以上説明したように、本発明によれば、従来技術で問題
となっていた■族ハロゲンガスの供給および停止を極め
て速やかに行うことができ、その結果、単分子層単位の
成長を高速で行うことが可能となる。また、基板を移動
する工程を必要としないため、大面積基板を用いた成長
か可能となり、量産性に優れた方法である。また、本発
明の気相成長装置によれば基板移動機構部を必要としな
いので、安価な成長装置が得られる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to extremely quickly supply and stop the group halogen gas, which has been a problem in the prior art, and as a result, the It becomes possible to grow at high speed. Furthermore, since the process of moving the substrate is not required, growth using a large-area substrate is possible, and the method is excellent in mass production. Furthermore, since the vapor phase growth apparatus of the present invention does not require a substrate moving mechanism, an inexpensive growth apparatus can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による気相成長装置の一例の概略構成図
、第2図は本発明の■族ガス供給系の基本的構成を示す
概W8構成図である。 101 , 103 , 201 , 203・・・弁
102 , 202・・・予備至 104 , 204・・・■族ガス発生室105 , 
205・・・■族金属 06 , 20?・・・■族ガス蓄積室07 , 20
8・・・加熱炉 08・・・基板結晶 09・・・バイパス管 10・・・反応管 206・・・細管
FIG. 1 is a schematic configuration diagram of an example of a vapor phase growth apparatus according to the present invention, and FIG. 2 is a general W8 configuration diagram showing the basic configuration of a group Ⅰ gas supply system of the present invention. 101, 103, 201, 203... Valve 102, 202... Reserve to 104, 204... Group ■ gas generation chamber 105,
205... ■Group metal 06, 20? ... ■Group gas storage chamber 07, 20
8... Heating furnace 08... Substrate crystal 09... Bypass tube 10... Reaction tube 206... Thin tube

Claims (2)

【特許請求の範囲】[Claims] (1)成長させるべきIII−V族化合物半導体のIII族原
料ガスとしてIII族元素のハロゲン化物を用い、該III族
原料ガスとV族原料ガスとを反応管内の結晶成長領域内
に設置された基板結晶表面に交互に供給して結晶成長を
行う化合物半導体の気相成長方法において、III族原料
ガスの供給工程が、III族金属とハロゲンガスとを高温
で反応させてIII族原料ガスを生成する工程と、高温に
保持されたIII族原料ガスを反応管内または反応管に導
通して設置されたIII族ガス蓄積室に導入III蓄積する工
程と、前記III族原料ガスを基板結晶表面に搬送するキ
ャリアガスを、前記III族原料ガスよりも高い圧力で前
記III族ガス蓄積室に接続した予備室に蓄積する工程と
、前記III族ガス蓄積室と前記予備室とを導通させて、
前記キャリアガスを前記III族ガス蓄積室に導入すると
共に、前記III族原料ガスを基板結晶表面に瞬時に供給
する工程とを備えてなることを特徴とする化合物半導体
の気相成長方法。
(1) A halide of a group III element is used as a group III source gas for a group III-V compound semiconductor to be grown, and the group III source gas and group V source gas are placed in a crystal growth region in a reaction tube. In a compound semiconductor vapor phase growth method in which crystal growth is performed by alternately supplying to the substrate crystal surface, the supplying process of group III raw material gas generates group III raw material gas by causing a group III metal and halogen gas to react at high temperature. a step of introducing a group III raw material gas maintained at a high temperature into a group III gas storage chamber installed in or through the reaction tube and accumulating it; and a step of transporting the group III raw material gas to the substrate crystal surface. accumulating a carrier gas in a preliminary chamber connected to the group III gas storage chamber at a pressure higher than that of the group III raw material gas; and bringing the group III gas storage chamber and the preliminary chamber into communication;
A method for vapor phase growth of a compound semiconductor, comprising the steps of introducing the carrier gas into the group III gas storage chamber and instantaneously supplying the group III raw material gas to the substrate crystal surface.
(2)成長させるべきIII−V族化合物半導体のIII族原
料ガスとしてIII族元素のハロゲン化物を用い、該III族
原料ガスとV族原料ガスとを結晶成長領域内に設置され
た基板結晶表面に交互に供給して結晶成長を行う反応管
を備えた化合物半導体の気相成長装置において、反応管
内または反応管に導通して設置された前記反応管への供
給用III族原料ガスを蓄積するIII族ガス蓄積室と、該I
II族ガス蓄積室に付設されたIII族原料ガスを発生させ
るIII族ガス発生室と、前記III族ガス蓄積室よりも高い
圧力でキャリアガスを蓄積する前記III族ガス蓄積室に
接続した予備室とからなるIII族ガス供給系と、前記II
I族ガス蓄積室およびIII族ガス発生室と前記反応管内の
成長領域とをそれぞれ独立に温度制御する手段を備えて
なることを特徴とする化合物半導体の気相成長装置。
(2) A halide of a group III element is used as a group III source gas for a group III-V compound semiconductor to be grown, and the group III source gas and group V source gas are applied to a substrate crystal surface installed in a crystal growth region. In a compound semiconductor vapor phase growth apparatus equipped with a reaction tube that performs crystal growth by alternately supplying gas to the reaction tube, a group III source gas for supply to the reaction tube installed in or in communication with the reaction tube is accumulated. A group III gas storage chamber and a group I
A group III gas generation chamber attached to the group II gas accumulation chamber that generates a group III raw material gas, and a preliminary chamber connected to the group III gas accumulation chamber that accumulates a carrier gas at a higher pressure than the group III gas accumulation chamber. a group III gas supply system consisting of the above-mentioned II gas supply system;
1. A compound semiconductor vapor phase growth apparatus comprising means for independently controlling the temperature of a group I gas accumulation chamber, a group III gas generation chamber, and a growth region in the reaction tube.
JP4990289A 1989-03-03 1989-03-03 Compound semiconductor vapor growth method and apparatus Expired - Lifetime JP2743443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4990289A JP2743443B2 (en) 1989-03-03 1989-03-03 Compound semiconductor vapor growth method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4990289A JP2743443B2 (en) 1989-03-03 1989-03-03 Compound semiconductor vapor growth method and apparatus

Publications (2)

Publication Number Publication Date
JPH02230720A true JPH02230720A (en) 1990-09-13
JP2743443B2 JP2743443B2 (en) 1998-04-22

Family

ID=12843949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4990289A Expired - Lifetime JP2743443B2 (en) 1989-03-03 1989-03-03 Compound semiconductor vapor growth method and apparatus

Country Status (1)

Country Link
JP (1) JP2743443B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051937A1 (en) * 1999-03-04 2000-09-08 Surface Technology Systems Limited Gas generation system
WO2004079042A1 (en) * 2003-03-04 2004-09-16 Tokyo Electron Limited Method of forming thin film, thin film forming apparatus, program and computer-readable information recording medium
JP2012248803A (en) * 2011-05-31 2012-12-13 Hitachi Cable Ltd Metal chloride gas generator and metal chloride gas generation method, and hydride vapor phase epitaxial growth apparatus, nitride semiconductor wafer, nitride semiconductor device, wafer for nitride semiconductor light-emitting diode, manufacturing method of nitride semiconductor self-supporting substrate, and nitride semiconductor crystal
JP2013060340A (en) * 2011-09-14 2013-04-04 Tokuyama Corp Apparatus for hydride vapor phase epitaxy, and method of producing aluminum-based group-iii nitride single crystal
JP2014051410A (en) * 2012-09-07 2014-03-20 Tokuyama Corp Method for producing aluminum halide gas

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000051937A1 (en) * 1999-03-04 2000-09-08 Surface Technology Systems Limited Gas generation system
EP1089937A1 (en) * 1999-03-04 2001-04-11 Surface Technology Systems Limited Gas generation system
JP2002538067A (en) * 1999-03-04 2002-11-12 サーフィス テクノロジー システムズ ピーエルシー Gas generator
US6926871B1 (en) * 1999-03-04 2005-08-09 Surface Technology Systems Plc Gas generation system
KR100746384B1 (en) * 1999-03-04 2007-08-03 서페이스 테크놀로지 시스템스 피엘씨 Gas generation system
JP4805460B2 (en) * 1999-03-04 2011-11-02 サーフィス テクノロジー システムズ ピーエルシー Reaction process gas generation method and system
WO2004079042A1 (en) * 2003-03-04 2004-09-16 Tokyo Electron Limited Method of forming thin film, thin film forming apparatus, program and computer-readable information recording medium
JP2012248803A (en) * 2011-05-31 2012-12-13 Hitachi Cable Ltd Metal chloride gas generator and metal chloride gas generation method, and hydride vapor phase epitaxial growth apparatus, nitride semiconductor wafer, nitride semiconductor device, wafer for nitride semiconductor light-emitting diode, manufacturing method of nitride semiconductor self-supporting substrate, and nitride semiconductor crystal
JP2013060340A (en) * 2011-09-14 2013-04-04 Tokuyama Corp Apparatus for hydride vapor phase epitaxy, and method of producing aluminum-based group-iii nitride single crystal
JP2014051410A (en) * 2012-09-07 2014-03-20 Tokuyama Corp Method for producing aluminum halide gas

Also Published As

Publication number Publication date
JP2743443B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
US10358743B2 (en) High pressure chemical vapor deposition apparatuses, methods, and compositions produced therewith
JPS6291495A (en) Vapor growth method for thin semiconductor film
JPH02230720A (en) Vapor growth method and apparatus for compound semiconductor
JPH04132681A (en) Device for epitaxial growth of compound semiconductor
JPH0574724A (en) Method for growth of atomic layer of aluminum compound
JPS6221758B2 (en)
JPH0431396A (en) Growth of semiconductor crystal
JPH05186295A (en) Method for growing crystal
JP2743431B2 (en) Compound semiconductor vapor growth method and apparatus
JPS63182299A (en) Vapor growth method for iii-v compound semiconductor
JPH0535719B2 (en)
JPH04175299A (en) Compound semiconductor crystal growth and compound semiconductor device
JPS60131968A (en) Vapor growth deposition device
JPS63159296A (en) Vapor phase epitaxy
JP2743444B2 (en) (III)-Vapor phase growth apparatus for Group V compound semiconductor
JPS63174314A (en) Method for doping iii-v compound semiconductor crystal
JPH04261016A (en) Vapor phase growing device and method thereof
JPH03119721A (en) Crystal growth
JPS62182195A (en) Method for growing iii-v compound semiconductor
JPH02116120A (en) Crystal growth method
JPH04254499A (en) Production of compound semiconductor crystal
JPH0536397B2 (en)
JPS63112496A (en) Growth of element semiconductor crystal
JPS63181314A (en) Doping of iii-v compound semiconductor crystal
JPH03142922A (en) Semiconductor vapor growth device