JPS636835A - Manufacture of semiconductor thin film - Google Patents

Manufacture of semiconductor thin film

Info

Publication number
JPS636835A
JPS636835A JP14955086A JP14955086A JPS636835A JP S636835 A JPS636835 A JP S636835A JP 14955086 A JP14955086 A JP 14955086A JP 14955086 A JP14955086 A JP 14955086A JP S636835 A JPS636835 A JP S636835A
Authority
JP
Japan
Prior art keywords
flow rate
time
gas
tma
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14955086A
Other languages
Japanese (ja)
Inventor
Takeyuki Hiruma
健之 比留間
Yuichi Ono
小野 佑一
Harunori Sakaguchi
春典 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Hitachi Ltd
Original Assignee
Hitachi Cable Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Hitachi Ltd filed Critical Hitachi Cable Ltd
Priority to JP14955086A priority Critical patent/JPS636835A/en
Publication of JPS636835A publication Critical patent/JPS636835A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce the cost of a high performance transistor by increasing the density or flow rate of a gas material at the start of feeding the material different from a gas material grown on a first type semiconductor to abruptly vary the material composition in a boundary of hetero junction. CONSTITUTION:Non-doped GaAs is grown on a semiconductor substrate by TMG or AsH3 before time t1. TMA is fed at flow rate of l2=1500cc/min as H2 base, TMH and AsH3 flow rates are always constant during crystal growth at 10cc/min and 240cc/min at H2 base from time t1 to time t3. Only TMA is reduced at its flow rate from the time t3 to time t4 at flow rate l1=7cc/min. and the thickness of nondoped GaAlAs at 100Angstrom from the time t3 to time t4. Dopant Si2H6 is fed at flow rate of 14cc/min to a reaction furnace to set the thickness of So-doped GaAlAs at 500Angstrom from time t4 fo time t2. Thus, the abrupt variation in the material composition occurs in the boundary of the hetero junction to reduce the cost of a high performance transistor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、気相成長を利用した半導体薄膜の製造方法に
係り、特に半導体のへテロ接合を利用した高電子移動度
トランジスタ用薄膜の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor thin film using vapor phase growth, and in particular to a method for manufacturing a thin film for a high electron mobility transistor using a semiconductor heterojunction. Regarding the method.

〔従来の技術〕[Conventional technology]

気相成長を利用した化合物半導体へテロ接合結晶の、I
2造方法として、有効金属の熱分解による成長方法(M
OCVD法)が用いられている。この方法では、結晶成
長時、原料はすべてガスの形で成長室に搬送されるため
、ヘテロ接合形成に際して。
I of compound semiconductor heterojunction crystal using vapor phase growth
As a second production method, a growth method by thermal decomposition of effective metals (M
OCVD method) is used. In this method, during crystal growth, all raw materials are transported to the growth chamber in the form of gas, so it is difficult to form a heterojunction.

原料ガス切換時に、流量変化がゆるやかになってしまう
のでヘテロ界面に形成される2次元電子ガスを利用した
高電子移動度1〜ランジスタの高速性を充分に引き出し
得るような急峻なヘテロ界面の形成が困難であった。こ
れを図を用いて説明する3第3図はMOCVD 法によ
るGaΔs/GaAQAsエピタキシャル成長システム
の概略を示す図である。  I第3図で1は基板、2は
サセプタ、:3は高周波コイル(RFコイル)、4は反
応炉、5は原料ガスの搬送パイプ、6はバイパス用パイ
プ、7,8はそれぞれ有機金属トリメチルアルミニラA
 (’rM^)、トリメチルガリウム(’I’MG) 
、 9 、10はそれぞれモノシランガス及びアルシン
ガス、11はガスの開閉バルブで、バルブA、B、C,
Dは反応炉4につながっており、バルブE、F、G、H
はバイパス6につながっている。12はマスフローコン
トローラでHzガス、原料ガスの流敏制御に用いる。1
3はガスの逆流防止用トラップである。
When switching the source gas, the flow rate changes slowly, so we need to form a steep hetero interface that can fully utilize the high-speed performance of high electron mobility 1 to transistors using the two-dimensional electron gas formed at the hetero interface. was difficult. This will be explained with reference to the drawings. Figure 3 is a diagram schematically showing a GaΔs/GaAQAs epitaxial growth system by the MOCVD method. In Figure 3, 1 is a substrate, 2 is a susceptor, 3 is a high frequency coil (RF coil), 4 is a reactor, 5 is a raw material gas transfer pipe, 6 is a bypass pipe, 7 and 8 are organometallic trimethyl, respectively. Aluminum A
('rM^), trimethyl gallium ('I'MG)
, 9 and 10 are monosilane gas and arsine gas respectively, 11 is a gas opening/closing valve, valves A, B, C,
D is connected to reactor 4, and valves E, F, G, H
is connected to bypass 6. 12 is a mass flow controller used for flow control of Hz gas and raw material gas. 1
3 is a gas backflow prevention trap.

この系では、M料ガスは、H2ガスをキャリヤガスとし
てパイプラインを搬送され1反応炉4に注入される。し
かしながら、ツノ:(料ガスの放出バルブA、B、C,
D、$と反応炉4内の基板1との間に 1は通常数1o
anから数mの距疏があるため、バルブA、B、C,D
から放出しされた原料ガスのステップ状の濃度変化(流
量変化)は1反応炉に到達するまでの間になまってしま
う。これを第4図により説明する。第4し1は反応炉に
導入される原料ガスの濃度(流量)を時間と位置に対し
て模式的にプロットしたものである。ここではM料ガス
として’I’ M Aを例にとる。なお、〃π料ガスの
a度は、流量に比例しているので、以後、流量変化が濃
度変化を意味するものとする。第4図で、時間t1から
tZの間に原料ガス1’ M Aが、原料ガス吹出口か
らステップ状の流量変化曲線14で吹き出されたとする
と1反応炉内の基板直前におけるTMAの流量変化は時
間ΔLだけ遅れて曲線16のようになり、ステップ立ち
上がりの原形を保つた急峻な流量変化曲線15のように
はならない。
In this system, the M material gas is transported through a pipeline using H2 gas as a carrier gas and is injected into one reactor 4. However, the horns: (feed gas release valves A, B, C,
Between D and $ and the substrate 1 in the reactor 4, 1 is usually a number 1o
Since there is a distance several meters from an, valves A, B, C, D
The stepwise concentration change (flow rate change) of the raw material gas released from the reactor becomes dull before it reaches one reactor. This will be explained with reference to FIG. 4th to 1 is a diagram schematically plotting the concentration (flow rate) of the raw material gas introduced into the reactor versus time and position. Here, 'I' MA is taken as an example of the M source gas. Note that since the a degree of the π material gas is proportional to the flow rate, hereinafter, a change in flow rate will mean a change in concentration. In FIG. 4, if raw material gas 1'MA is blown out from the raw material gas outlet in a step-like flow rate change curve 14 from time t1 to tZ, the flow rate change of TMA immediately before the substrate in one reactor is as follows. It becomes like the curve 16 with a delay of time ΔL, and does not become like the steep flow rate change curve 15, which maintains the original shape of the step rise.

第5図は、GaA!、/G、JAQ Asへテロ接合の
エネルギーバンドを模式的に示したもので、ヘテロ1妾
合の界面におけるAQの組成変化が急峻な場合が(a)
で、ヘテロ接合界面に2次元電子ガスがたまる一方、A
Qの組成変化が緩い場合が(b)で。
Figure 5 shows GaA! , /G, JAQ This is a schematic diagram of the energy band of an As heterojunction. (a) is the case where the composition change of AQ at the interface of a heterojunction is steep.
While two-dimensional electron gas accumulates at the heterojunction interface, A
(b) is a case where the composition change of Q is gradual.

この図では、AQの組成変化が緩すぎて、2次元電子ガ
スのたまりができていない。第4図に示したように、反
応炉内基板直前でTMAの芯数な頻度変化がない場合に
は、第5図(a)のようなヘテロ界面に急峻なAQの組
成変化をもたせることが困難で同図(b)の如くとなる
ことは明白であり、高移動度トランジスタを炸裂するこ
とができない、このような原料ガス切換え時のttK料
ガスの流量C’a度)変化に急峻性をもたせるための工
夫として、特公昭58−38929に述べられているよ
うな不純物ガスの収容器を原料ガス放出バルブ直前に設
ける方法がある。
In this figure, the change in the composition of AQ is too gradual, and no accumulation of two-dimensional electron gas is formed. As shown in Figure 4, if there is no frequency change in the number of TMA cores immediately before the substrate in the reactor, it is possible to create a steep AQ composition change at the hetero interface as shown in Figure 5 (a). It is obvious that this is difficult and results in a situation like that shown in Fig. 2(b), and it is impossible to explode a high-mobility transistor. One way to achieve this is to provide a container for impurity gas immediately before the raw material gas discharge valve, as described in Japanese Patent Publication No. 58-38929.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように従来技術では、反応炉内基板直前における
原料ガスの瞬間的な濃度変化をつけることが難しい。ま
た、特公昭58− :18929に述べられている原料
ガスの収容器をガスの放出バルブ直前に設ける方法は、
収容器内に圧力をかけてためられた原料ガスが、放出バ
ルブから放出される際、圧力低下に伴い蒸気圧がさがっ
て、液化あるいは固化して、バルブ出口の付近に付着し
1反応炉に搬送されにくくなる可能性がある。特に、有
機金属1゛MΔやTMGなどの場合には、この可能性が
大きく、バルブが詰まることも配慮しなければならない
As described above, with the conventional technology, it is difficult to account for instantaneous concentration changes in the raw material gas immediately before the substrate in the reactor. Furthermore, the method described in Japanese Patent Publication No. 58-18929, in which a raw material gas container is provided immediately before the gas release valve, is as follows:
When the raw material gas stored under pressure in the container is released from the release valve, the vapor pressure decreases as the pressure decreases, and it liquefies or solidifies and adheres to the vicinity of the valve outlet and enters one reactor. It may become difficult to transport. In particular, in the case of organic metals such as 1゛MΔ and TMG, this possibility is large, and consideration must be given to the possibility that the valve will become clogged.

本発明の[1的はへテロ接合における材料組成の急峻な
変化をもたせろための新規な気相成長法を提供すること
にある。
One object of the present invention is to provide a novel vapor phase growth method for producing a sharp change in material composition in a heterojunction.

〔問題点を解決するための手段〕[Means for solving problems]

上記[1的を達成するための本発明の構成は、原料ガス
のステップ状の吹出しにおいて、吹出しの初期にパルス
的な原料ガスの流量変化(a度変化)を例えばマスフロ
ーコントローラを用いた流量制御や同種の原料容器を2
以上用いることによって与え、試料上における気体組成
の変化を急峻ならしめるものである。
The configuration of the present invention to achieve the above object [1] is to control the flow rate using a mass flow controller, for example, to control the pulsed flow rate change (a degree change) of the raw material gas in the stepwise blowing of the raw material gas at the beginning of the blowing. or 2 similar raw material containers.
By using the above, the change in gas composition on the sample is made steeper.

〔作用〕[Effect]

第1図は原料ガスとして、TMAを例にとり、本発明を
実施した場合のTMA流量の時間と位置に対する変化を
模式的に示したものである。第1図で、原料ガス吹出バ
ルブの位置において、時刻t1からt8までは流量11
2で、その後は流量を減らしt4からt、 zまでは流
量Q五のようにすると1反応炉内基板直前における流量
変化は、立ち上がりが急峻になる。また、原料のTMA
容器を。
FIG. 1 takes TMA as an example of the raw material gas and schematically shows changes in TMA flow rate with respect to time and position when the present invention is implemented. In FIG. 1, at the position of the source gas blow-off valve, the flow rate is 11 from time t1 to t8.
2, and thereafter the flow rate is reduced to a flow rate Q5 from t4 to t and z.1 The flow rate change immediately before the substrate in the reactor has a steep rise. In addition, the raw material TMA
container.

第3図の有機金属バブラー容’tljと並行にもう1つ
設けて、マスフローコン1−ローラとバルブにより、T
MAの流量制御を行ない、負)2図(a)、(L)に示
すような流駄制f4Iを各′r〜IAに対して行い、そ
の総和どして、第2図(c)に示すようなT M Aの
jAδN変化をつけることができる。このように、マス
フローコン1〜ローラとバルブの制御で、D;(料ガス
流暇をパルス的に変化させることで、ペデロ接?1界面
におけるAQ Jul成の急峻な変化を実現することが
できる。
Another organometallic bubbler tank 'tlj shown in Fig.
MA flow rate control is performed, and the flow rate f4I as shown in Figure 2 (a) and (L) is performed for each 'r~IA, and the sum is shown in Figure 2 (c). It is possible to add jAδN changes in T M A as shown. In this way, by controlling the mass flow controller 1~roller and valve, it is possible to realize a steep change in the AQJul formation at the pedero contact ?1 interface by changing the flow time of the raw gas in a pulsed manner. .

〔発明の実施例〕[Embodiments of the invention]

実施例l GaAs/GaAQAsヘテロ接合の形成においてTM
A流量の時間変化を、第1図のように変化させてみた。
Example l TM in the formation of GaAs/GaAQAs heterojunctions
I tried changing the A flow rate over time as shown in Figure 1.

ここでは、マスフローコン1−ローラにより、TMAの
流量を変えて、原料の濃度変化をつけるようにしである
。T M Aは20℃の一定温度に保たれたバブラー容
器に入れ、H2ガスをTMA液中に発泡させ、Hzガス
中に”1’ M Aを含ませて、パイプラインを搬送し
反応炉に導く、第1図で、時間L1よりも以前には、T
MG(−10℃)とAsH3(10%濃度にH2で希釈
)を用いて、半絶縁基板上にノンドープGaAsを65
0℃で1μm成長させた1次に1時間t1からt3まで
の10秒間開MAをH2ベースで流量Q2=15cc/
min 、 TMHおよびAsHa流量は結晶成長中、
常に一定流量としH2ベースでそれぞれ10cc/ll
l1nおよび240 cc / minとした6次に、
t3からt4までの10秒間にTMAのみ流量減少させ
てQ l= 7 cc/mjnとして、ノンドープGa
Al2AsのPIさを100人とした。t4からt2ま
での60秒間は、ドーパントS i zHo (4pp
mのa度にH2で希釈)を反応炉に14 cc / m
inの流量で導入して、SiドープGaAQAsのノブ
さを500人とした。なお、GaAQAsの成長湿度は
700 ’Cとした。次に、成長後のへテロ接合の界面
におけるAl1の組成変化を調べたところ第6図(b)
に示すように、界面で極めて急峻になっていることがわ
かった。第6図(a)は、界面におけるAQの組成変化
をもとにヘテロ接合界面近くのエネルギーバンドを模式
的に描いたものである。
Here, the mass flow controller 1-roller is used to change the flow rate of TMA to vary the concentration of the raw material. TMA is placed in a bubbler container maintained at a constant temperature of 20°C, H2 gas is bubbled into the TMA liquid, 1'M A is included in the Hz gas, and it is transported through a pipeline to the reactor. In FIG. 1, before time L1, T
Undoped GaAs was deposited on a semi-insulating substrate using MG (-10°C) and AsH3 (diluted with H2 to a concentration of 10%).
After growing 1 μm at 0°C, open MA for 10 seconds from t1 to t3 for 1 hour at H2 base flow rate Q2 = 15cc/
min, TMH and AsHa flow rate during crystal growth,
Always constant flow rate, 10cc/ll each on H2 basis
6th order with l1n and 240 cc/min,
During the 10 seconds from t3 to t4, the flow rate of only TMA was reduced to Q l = 7 cc/mjn, and non-doped Ga
The PI of Al2As was set to 100 people. For 60 seconds from t4 to t2, dopant Si zHo (4pp
diluted with H2 to a degree of m) into the reactor at 14 cc/m
The flow rate of Si-doped GaAQAs was introduced at a flow rate of 500 in. Note that the growth humidity of GaAQAs was 700'C. Next, we investigated the compositional change of Al1 at the interface of the heterojunction after growth, as shown in Figure 6(b).
As shown in , it was found that the interface was extremely steep. FIG. 6(a) schematically depicts the energy band near the heterojunction interface based on the composition change of AQ at the interface.

以上のことは、反応炉内基板直11「におけるTMA流
量の時間変化が立ち上がりが急なパルス状になっていた
ためである6上記の如くして作製したGaAs/GaA
QAsへテロ接合結晶の電子移動度をホール効果の測定
から求めたところ、室温で8000d/V・S、77に
でgo、oooαt/V−8であった。−方、TMA流
量が、第4図の曲線16で示されるような濃度変化で結
晶成長した場合には、電子移動度は室温で、3000a
+f/V・S 、 77 Kテ15,000ffl/V
 −S 、!:低く、高移動度トランジスタに不充分で
あることがわかった。
This is because the time change in the TMA flow rate at the substrate 11 in the reactor was in the form of a pulse with a steep rise.6 The GaAs/GaA
When the electron mobility of the QAs heterojunction crystal was determined from Hall effect measurements, it was 8000 d/V·S at room temperature, 77° go, oooαt/V−8. - On the other hand, when the TMA flow rate changes in concentration as shown by curve 16 in FIG. 4, the electron mobility is 3000a
+f/V・S, 77 Kte 15,000ffl/V
-S,! : It was found to be low and insufficient for high mobility transistors.

実施例2 実施例1では、TMAバブラー容器を1つだけ用いたが
、今度は、TMAバブラー容器を2つ用い、それぞれの
TMAをマスフローコントローラとエアーバルブにより
流駄制御し、反応管にTMAのガスラインを2零値行に
設けて結晶成長を行った。第2図は、2つのT M A
バブラー容躇吹出しバルブの位置におけるTMA流量の
時間変化を描いたもので、(a)は、時間し6からし0
までの10秒間、第1のTMAを5cc/minの流量
で流し、(b)は、第2のT M Aをt6からし7ま
での70秒間7 cc / winの流量で流した場合
で。
Example 2 In Example 1, only one TMA bubbler container was used, but this time, two TMA bubbler containers were used, each TMA was controlled by a mass flow controller and an air valve, and TMA was introduced into the reaction tube. Crystal growth was performed by providing gas lines in two zero value rows. Figure 2 shows two TMA
The figure depicts the time variation of the TMA flow rate at the position of the bubbler hemostatic blow-off valve, where (a) shows the time from 6 to 0.
The first TMA was flowed at a flow rate of 5 cc/min for 10 seconds, and (b) the second TMA was flowed at a flow rate of 7 cc/win for 70 seconds from t6 to t7.

(c)は、(a)と(b)の流量和を示したものである
。実施例1と同様に、’1’MGとΔsHaの流量を常
に一定とし、それぞれL Q cc / minおよび
240顔/min、また、ドーバン1−として5izH
eを用い、時間上〇からし7までの60秒間に20 c
c / win流量で流した。時間t6よりも以前には
、’I’ M OとA s Hsをそれぞれ、16関/
winおよび240 cc/winで20分間流した。
(c) shows the sum of the flow rates of (a) and (b). As in Example 1, the flow rates of '1' MG and ΔsHa were always constant, L Q cc / min and 240 faces/min, respectively, and 5 izH as Dovan 1-.
Using e, 20 c for 60 seconds from time 1 to 7.
The flow rate was c/win. Before time t6, 'I' M O and A s Hs are each 16 functions/
Win and 240 cc/win for 20 minutes.

以上のようにして、成長せしめたGaAs/GaP Q
 Asヘテロ接合結晶のへテロ界面におけるAQ組成を
測定したところ、第6図(b)に示したAQ組成とほぼ
同じになっていることがわかった9次に、成長したGa
As/GaAQAsへテロ接合結晶の電子移動度を求め
たところ、室温で8200 ad / V・S、77に
で90,0OOffl/V・Sとなり、極めて高い移j
1度を示す結晶になっていることがわがった。
GaAs/GaP Q grown in the above manner
When we measured the AQ composition at the heterointerface of the As heterojunction crystal, we found that it was almost the same as the AQ composition shown in Figure 6(b).
When the electron mobility of the As/GaAQAs heterojunction crystal was determined, it was 8200 ad/V S at room temperature and 90,0 O Offl/V S at 77°C, indicating an extremely high mobility.
It turned out that the crystals showed a temperature of 1 degree.

以上の実施例では、GaAs/Gξ】AQAsの場合を
示したが、InP/InGaAs、Ga/G3As。
In the above embodiments, the case of GaAs/Gξ]AQAs was shown, but InP/InGaAs and Ga/G3As.

GaSb/AQ Sb、GaAs/GaP等のへテロ接
合においても同様の効果が確められた。
Similar effects were confirmed for heterojunctions such as GaSb/AQ Sb and GaAs/GaP.

〔発明の効果〕〔Effect of the invention〕

以上の実施例で説明したように本発明によれば、ヘテロ
接合の界面における材料組成の急峻な変化をもたせるこ
とができ、2次元電子ガスを利用した高移動度トランジ
スタが、■歩留りで太1+)生産できるので、高性能ト
ランジスタの低価格化が実現するという経済効果が甚だ
大きい。
As explained in the above embodiments, according to the present invention, it is possible to cause a sharp change in material composition at the interface of a heterojunction, and a high mobility transistor using two-dimensional electron gas can be produced with a high yield of 1+ ), the economic effect of lowering the price of high-performance transistors is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明による原料ガスの流量制御
を示す模式図、第3図はMOCVD法による気相成長系
の構成を示す概略図、第4図は、従来技術による原料ガ
スの流量制御方式を示す模式図、第5図および第6図は
0aAs/GaAQAsヘテロ接合のエネルギヘテンド
構造と組成変化を示す模式図である。 1・・・基板、2・・・サセプタ、3・・・晶周波(R
F)コイル、4・・・反応炉、5・・・搬送パイプ、6
・・・バイパスパイプ、7・・・トリメチルアルミニウ
ム(TMA)、8・・・トリメチルガリウム(TMG)
 、9・・・モノシラン(S i H4) 、 10−
アルシン(Asl−1g)、11・・・バルブ、12・
・・マスフローコントローラ、13・・・1−ラップ、
14,1.5.16・・・原料ガス濃度(流量)の時間
変化曲線、17・・・アンドープG a A s、18
−・・アンドープGaAuAs、19−・・Siドープ
G rr A QΔS、20 ・2次元7[fi子ガス
1 and 2 are schematic diagrams showing flow rate control of source gas according to the present invention, FIG. 3 is a schematic diagram showing the configuration of a vapor phase growth system by MOCVD method, and FIG. 4 is a schematic diagram showing the flow rate control of source gas according to the prior art. FIGS. 5 and 6 are schematic diagrams illustrating the flow rate control system, and are schematic diagrams illustrating the energy holding structure and composition changes of the 0aAs/GaAQAs heterojunction. 1...Substrate, 2...Susceptor, 3...Crystal frequency (R
F) Coil, 4... Reactor, 5... Conveyance pipe, 6
... Bypass pipe, 7... Trimethyl aluminum (TMA), 8... Trimethyl gallium (TMG)
, 9... Monosilane (S i H4), 10-
Arsine (Asl-1g), 11... valve, 12...
...mass flow controller, 13...1-lap,
14, 1.5.16...Time change curve of raw material gas concentration (flow rate), 17...Undoped Ga As, 18
-...Undoped GaAuAs, 19-...Si-doped G rr A QΔS, 20 - 2-dimensional 7[fi-son gas.

Claims (1)

【特許請求の範囲】[Claims] 1、気体状の半導体材料を、配管を通して反応炉に導き
、第1種の半導体薄膜上に第2種の半導体薄膜を形成す
る方法において、第2種半導体を成長する気体材料のう
ち、第1種半導体を成長する気体材料とは異なる気体材
料の流しはじめをパルス的に濃度増加または流量増加さ
せたことを特徴とする半導体薄膜の製造方法。
1. In a method of forming a second type of semiconductor thin film on a first type of semiconductor thin film by introducing a gaseous semiconductor material into a reaction furnace through piping, the first type of gaseous material for growing the second type of semiconductor is A method for manufacturing a semiconductor thin film, characterized in that the concentration or flow rate of a gaseous material different from that used to grow the seed semiconductor is increased in a pulsed manner at the beginning of the flow.
JP14955086A 1986-06-27 1986-06-27 Manufacture of semiconductor thin film Pending JPS636835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14955086A JPS636835A (en) 1986-06-27 1986-06-27 Manufacture of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14955086A JPS636835A (en) 1986-06-27 1986-06-27 Manufacture of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPS636835A true JPS636835A (en) 1988-01-12

Family

ID=15477609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14955086A Pending JPS636835A (en) 1986-06-27 1986-06-27 Manufacture of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS636835A (en)

Similar Documents

Publication Publication Date Title
US6645302B2 (en) Vapor phase deposition system
JP2008531458A (en) Single-step high-temperature nucleation method for lattice-mismatched substrates
JPH0888345A (en) Semiconductor device utilizing three-dimensional quantum confinement
JPS61219793A (en) Gas phase growth apparatus by thermally decomposing method for organic metal
JPS636835A (en) Manufacture of semiconductor thin film
JPS5645899A (en) Vapor phase growing method for gallium nitride
JP2743443B2 (en) Compound semiconductor vapor growth method and apparatus
JP3575618B2 (en) Crystal growth method of gallium nitride based compound semiconductor film
KR960004591B1 (en) Doped crystal growing method
JPH02203520A (en) Growth of compound semiconductor crystal
JP3052269B2 (en) Vapor phase growth apparatus and growth method thereof
JPS61275195A (en) Method and device for forming compound semiconductor thin film
JPH0265124A (en) Crystal growth of compound semiconductor
JP3335671B2 (en) Method of forming quantum wires and quantum boxes by atomic layer growth
JPH02126632A (en) Vapor phase epitaxy for compound semiconductor crystal layer and reaction tube therefor
JP2732622B2 (en) (III)-(V) Group Compound Semiconductor Vapor Phase Growth Method
JP3006776B2 (en) Vapor growth method
JPS6134987A (en) Manufacture of semiconductor laser
JPH04254490A (en) Vapor growth method
JPH02203519A (en) Growth of compound semiconductor crystal
JP2000138368A (en) Vapor growth method for iii-v compound semiconductor and manufacture of high electron mobility transistor
JPH01110720A (en) Vapor growth method of iii-v compound semiconductor
JPS6148917A (en) Forming method of selective pope-hetero structure of group iii-v compound semiconductor
McCrary et al. Low pressure MOCVD in a vertical reactor: growth and characterization of InGaAsP on (100) InP for 1.3 μm lasers
JPS63318784A (en) Manufacture of field-effect transistor