JPS639156A - Manufacture of thin film transistor - Google Patents

Manufacture of thin film transistor

Info

Publication number
JPS639156A
JPS639156A JP15328386A JP15328386A JPS639156A JP S639156 A JPS639156 A JP S639156A JP 15328386 A JP15328386 A JP 15328386A JP 15328386 A JP15328386 A JP 15328386A JP S639156 A JPS639156 A JP S639156A
Authority
JP
Japan
Prior art keywords
layer
ohmic contact
insulating layer
opening
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15328386A
Other languages
Japanese (ja)
Other versions
JP2663418B2 (en
Inventor
Soichiro Kawakami
総一郎 川上
Tadashi Ahei
阿閉 忠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61153283A priority Critical patent/JP2663418B2/en
Publication of JPS639156A publication Critical patent/JPS639156A/en
Application granted granted Critical
Publication of JP2663418B2 publication Critical patent/JP2663418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

PURPOSE:To manufacture a thin film transistor with excellent and stable ohmic property and high reliability by a method wherein, after making an opening in a second insulating layer and performing hydrogen plasma processing, an ohmic contact layer is formed. CONSTITUTION:After forming the first conductive layer on an insulating sub strate 9, a control electrode 1 is formed of the first conductive layer and then the first insulating layer 2, a non-single crystal semiconductor layer 3, the second insulating later 4 are successively formed. Next, after making an opening, the second insulating layer 4 is hydrogen-plasma processed to form an ohmic contact layer 5 and the second conductive layer 6 successively on the second insulating layer 4. Later, the main electrodes 6a, 6b are formed of the second conductive layer 6 to remove the needless part of ohmic contact layer 5 using the main electrodes 6a, 6b as masks. Through these procedures, the impurity such as water content, oxygen and hydrocarbon etc. adhering to the layer 5 in case of making the opening can be removed so that excellent ohmic contact and stable electric property may be assured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は911g)ラジスタの製造方法に係り、特に非
単結晶半導体を!膜半導体層に用いた薄膜トラジスタの
製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing 911g) radiators, particularly non-single crystal semiconductors! The present invention relates to a method of manufacturing a thin film transistor used in a film semiconductor layer.

[従来技術] 非単結晶半導体1例えば非単結晶シリコンは屯結晶シリ
コンに比べてモビリティが小さいが、大面積に容易に低
コストで製造できるために、最近液晶ディスプレイ、イ
メージセンサ等に用いる薄膜トランジスタとしての応用
が注目されている。
[Prior art] Non-single crystal semiconductor 1 For example, non-single crystal silicon has lower mobility than crystalline silicon, but because it can be easily manufactured in a large area at low cost, it has recently been used as a thin film transistor for use in liquid crystal displays, image sensors, etc. The application of is attracting attention.

薄膜トランジスタは安定な素子特性を得るために半導体
層表面が大気と接触しないように、チャネル部の保護機
能を有する絶縁層が設けられることが多い。
In order to obtain stable device characteristics, thin film transistors are often provided with an insulating layer having a function of protecting the channel portion so that the surface of the semiconductor layer does not come into contact with the atmosphere.

第3図は玉記絶縁層を有する薄膜トランジスタの一例を
示す構成図であり、第3図(a)は平面図、第3図(b
)は第3図(&) (7)A−A ’断面図である。
FIG. 3 is a configuration diagram showing an example of a thin film transistor having an insulating layer. FIG. 3(a) is a plan view, and FIG.
) is a sectional view taken along line A-A' in FIG. 3 (&) (7).

第3図(a)、(b)に示すように、絶縁基板9上には
ゲート電極lが形成され、その上に窒化シリコン(以下
、S i Nx:Hと記す)、酸化シリコン(以下、5
i02 と記す)hgのゲート絶縁層2が形成され、さ
らにその上に非単結晶ジリコンの半導体層3が形成され
る。この半導体層3上にはS i NX:H、S i 
02等の保護機能を有する絶縁層4が形成され、部分的
に開口される。ざらにn上層のオーミックコンタクト層
5を介して、ソース電極6a、ドレイン電極6bが形成
される0図中7.8は開口部を示す。
As shown in FIGS. 3(a) and 3(b), a gate electrode l is formed on an insulating substrate 9, and silicon nitride (hereinafter referred to as S i Nx:H) and silicon oxide (hereinafter referred to as 5
A gate insulating layer 2 of hg (referred to as i02) is formed, and a semiconductor layer 3 of non-single crystal gyricon is further formed thereon. On this semiconductor layer 3 are S i NX:H, S i
An insulating layer 4 having a protective function such as 02 is formed and partially opened. Reference numeral 7.8 in FIG. 1 indicates an opening in which a source electrode 6a and a drain electrode 6b are formed via the ohmic contact layer 5 of the upper layer.

[発明が解決しようとする問題点] 前記薄膜トランジスタにおいては、絶縁層4に開口部を
形成した後に無処理です一ミックコンタクト層5を堆積
した場合、開口部形成工程での酸素、水分等の吸着によ
り良好なオーミック特性が得られず、均一で安定したト
ランジスタ特性が得られないという問題点を有していた
[Problems to be Solved by the Invention] In the thin film transistor described above, no treatment is performed after the opening is formed in the insulating layer 4. When the contact layer 5 is deposited, oxygen, moisture, etc. are adsorbed during the opening formation process. Therefore, there was a problem in that good ohmic characteristics could not be obtained, and uniform and stable transistor characteristics could not be obtained.

第4図は前記薄膜トランジスタの一例の特性図である。FIG. 4 is a characteristic diagram of an example of the thin film transistor.

第4図は前記FM膜トランジスタのId(ドレイン電流
) −Vd (ドレイン電圧)特性を示し、薄膜トラン
ジスタは、ゲート絶縁層、保M機老を有する絶縁層とし
てSiNx:H1半導体層としてアモルファスシリコン
(a−5i)、オーミックコンタクト層としてリンをド
ープしたアモルファスシリコンn中層を用い、それぞれ
プラズマCVD法により作製を行ったものである。同図
に示されるように、通常の電界効果型トランジスタのI
d−Vd特性(図中破線)から、大きくはずれた特性と
なっている。
FIG. 4 shows the Id (drain current) - Vd (drain voltage) characteristics of the FM film transistor, in which the thin film transistor is made of amorphous silicon (a -5i) and phosphorus-doped amorphous silicon n middle layer were used as the ohmic contact layer, and were manufactured by plasma CVD. As shown in the figure, the I of a normal field effect transistor is
The characteristics deviate greatly from the d-Vd characteristics (dashed line in the figure).

上記の問題点を解決する方法としては、特開昭59−4
8960号公報に示された次の方法がある。この方法は
良好なオーミックコンタクト層を形成するために、保2
1機能を有する絶縁層の開口部を開けた後、SiF4 
、XeF2等の原料ガスでのプラズマエツチングを行い
、ついでオーミックコンタクト層を被着するものである
が、この方法においても。
As a method to solve the above problems, JP-A No. 59-4
There is the following method disclosed in Japanese Patent No. 8960. In this method, in order to form a good ohmic contact layer,
After making an opening in the insulating layer with one function, SiF4
In this method, plasma etching is performed using a source gas such as XeF2, and then an ohmic contact layer is deposited.

(1)開口部表面にフッ素が残り、半導体層の不純物濃
度を制御することができず、トランジスタ特性が安定し
ない。
(1) Fluorine remains on the surface of the opening, making it impossible to control the impurity concentration of the semiconductor layer, resulting in unstable transistor characteristics.

(2)成膜装訝のチャンバー内にエツチングガスが残る
ため同一チャンバー内でオーミックコンタクト層を成膜
することができない。
(2) Since etching gas remains in the chamber of the deposition equipment, the ohmic contact layer cannot be deposited in the same chamber.

等のため工程数が増し、コスト高になるという間厘点を
有していた。
etc., which resulted in an increase in the number of steps and increased costs.

本発明はオーミック特性が良好で安定した、信頼性の高
いPM膜トランジスタの製造方法を提供することを口内
とするものである。
The object of the present invention is to provide a method for manufacturing a highly reliable PM film transistor with good and stable ohmic characteristics.

[問題点を解決するための手段] 上記の問題点は、絶縁基板上に第一の導電層を形成した
後、この第一の導電層から制御TL極を形成し、さらに
第一の絶縁層、非単結晶半導体層。
[Means for solving the problem] The above problem is solved by forming the first conductive layer on the insulating substrate, forming the control TL pole from this first conductive layer, and then forming the control TL pole on the first insulating layer. , non-single crystal semiconductor layer.

第二の絶縁層を順に形成する工程と、該第二の絶縁層に
開口部を開ける工程と、この開口部形成後に水素プラズ
マ処理を行う工程と、前記第二の絶縁層上にオーミック
コンタクト層、第二の導電層を順に形成した後、この第
二の導電層から主電極を形成する工程と、この主電極を
マスクとして不用な部分のオーミックコンタクト層を除
去する工程とを有する本発明の薄膜トランジスタの製造
方法によって解決される。
a step of sequentially forming a second insulating layer, a step of forming an opening in the second insulating layer, a step of performing hydrogen plasma treatment after forming the opening, and forming an ohmic contact layer on the second insulating layer. , after sequentially forming the second conductive layer, a step of forming a main electrode from the second conductive layer, and a step of removing unnecessary portions of the ohmic contact layer using the main electrode as a mask. The problem is solved by a method for manufacturing thin film transistors.

[作用] 本発明の薄膜トランジスタの製造方法は、第二の絶縁層
に開口部を開け、この開口部形成後に水素プラズマ処理
を行ったことにより、開口部形成時に吸着する水分、酸
素、炭化水素等の不純物を除去し、良好なオーミックコ
ンタクトを失えんとするものである。
[Function] In the method for manufacturing a thin film transistor of the present invention, an opening is formed in the second insulating layer, and hydrogen plasma treatment is performed after the opening is formed, thereby removing moisture, oxygen, hydrocarbons, etc. adsorbed during the formation of the opening. The purpose is to remove impurities and prevent loss of good ohmic contact.

[実施例] 以下、本発明の実施例を図面を用いて詳細に説明する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の薄膜トランジスタの製造方法の一実施
例例の製造工程を示す説明図であり。
FIG. 1 is an explanatory diagram showing the manufacturing process of one embodiment of the method for manufacturing a thin film transistor of the present invention.

第1図(a)〜(g)は各工程における部分断面図であ
る。
FIGS. 1(a) to 1(g) are partial cross-sectional views at each step.

まず、第1図(a)に示すように、絶縁基板9上に第一
の導電層を堆積し、次に第1図(b)に示すように、第
一の導電層をパターンニングしてル制御電極たるゲート
電極1を形成する。
First, as shown in FIG. 1(a), a first conductive layer is deposited on an insulating substrate 9, and then, as shown in FIG. 1(b), the first conductive layer is patterned. A gate electrode 1 serving as a control electrode is formed.

次に、第1図(C)に示すように、第一の絶縁層たるゲ
ート絶縁層2.非単結晶半導体の半導体層3.第二の絶
縁層たる保護機を駈奢有する絶縁層(以下、絶縁層と記
する)4を順次連続成膜した後、第1図(d)に示すよ
うに、絶縁層4をエツチングして開口部を開ける0本発
明においては。
Next, as shown in FIG. 1(C), a gate insulating layer 2. Semiconductor layer of non-single crystal semiconductor3. After successively forming an insulating layer 4 having a protector (hereinafter referred to as an insulating layer) as a second insulating layer, as shown in FIG. 1(d), the insulating layer 4 is etched. In the present invention, the opening is opened.

絶縁層4の開口部形成後に水素プラズマ雰囲気で処理を
行い、開口部の半導体層表面を活性にする。
After forming the opening in the insulating layer 4, treatment is performed in a hydrogen plasma atmosphere to activate the surface of the semiconductor layer in the opening.

次に第1図(e)に示すように、オーミックコンタクト
層5と第二の導電層6を堆積し、次に第1図(f)に示
すように、導電層6をパターンニングして主電極たるソ
ース電極6a、ドレイン電極6bを形成し、次に第1図
(g)に示すようにオーミックコンタクト層5をエツチ
ング除去する。
Next, as shown in FIG. 1(e), an ohmic contact layer 5 and a second conductive layer 6 are deposited, and then, as shown in FIG. 1(f), the conductive layer 6 is patterned to form a main layer. A source electrode 6a and a drain electrode 6b are formed, and then the ohmic contact layer 5 is removed by etching as shown in FIG. 1(g).

本発明の薄膜トランジスタの製造方法によれば、素子の
オーミック特性を著しく改善することができ、安定した
電気特性を得ることができる。
According to the method for manufacturing a thin film transistor of the present invention, the ohmic characteristics of the device can be significantly improved and stable electrical characteristics can be obtained.

また水素プラズマ処理とオーミックコンタクト層の形成
が同一チャンバー内で行うことができるので、新たに開
口部の表面活性化を行う工程を設ける必要がなく、工程
が簡易で、低コストな製造方法を提供することができる
In addition, since hydrogen plasma treatment and ohmic contact layer formation can be performed in the same chamber, there is no need to create a new process for activating the surface of the opening, providing a simple process and low-cost manufacturing method. can do.

以下、本発明の薄膜トランジスタの製造方法の実施例に
ついて説明する。
Examples of the method for manufacturing a thin film transistor of the present invention will be described below.

両面研府済みのガラス基板(コーニング社製#7059
)に中性洗剤を用いて洗浄を施す0次にスパッタ法でA
lt−0,1pm厚堆桔させ、ポジ型フォトレジス) 
(OFPR−800東京応化工業製)を用いて所望の形
状にフォトレジストパターンを形成した後、リン酸(8
5%水溶液)。
Double-sided polished glass substrate (Corning #7059
) using a neutral detergent.
lt-0.1pm thick deposited, positive photoresist)
After forming a photoresist pattern in a desired shape using OFPR-800 (manufactured by Tokyo Ohka Kogyo Co., Ltd.), phosphoric acid (800
5% aqueous solution).

硝酸(60%水溶液)、酢酸及び水を16:1:2:1
の容積比で混合した液(以下rAl用エツチング液」と
いう、)でエツチングしパターンを形成した。フォトレ
ジスh′As後、容量結合型のグロー放電分解装器内に
ガラス基板をセットし、lX10−’3Torr+7)
排気真空下で200℃に維持した0次に該装置内に水素
希釈lO%S i H4ガス(小松電子製)を1010
05e。
Nitric acid (60% aqueous solution), acetic acid and water 16:1:2:1
A pattern was formed by etching with a solution mixed in a volume ratio of (hereinafter referred to as "rAl etching solution"). After photoresist h'As, set the glass substrate in a capacitively coupled glow discharge decomposer and heat it to lX10-'3Torr+7).
Hydrogen diluted 10% Si H4 gas (manufactured by Komatsu Electronics) was added at 1010 °C in the zero-order device maintained at 200 °C under exhaust vacuum.
05e.

99.999%(7) N Hzガスを101005e
のmuで流入させ、ガス圧を0.4Torrに設定した
後、13.56MHzの高周波電源を用い、RF (R
adi o−Frequency)放電パワー200W
で20分間グロー放電を行い、3000人のS i N
XeH層を形成した。
99.999% (7) N Hz gas 101005e
After setting the gas pressure to 0.4 Torr, RF (R
adio Frequency) Discharge power 200W
Glow discharge was performed for 20 minutes, and 3,000 people were
A XeH layer was formed.

続いて、10%5iHn 300secm、ガス圧0.
5Torrの条件でRF放電パワーtoowで30分間
グロー放電を行い、水素化アモルファス(a−Si:H
)半導体層(W2厚2000人)を形成した後、10%
SiHn100sccm、NH:+ 50secm、ガ
ス圧0゜4To r rの条件−1l’RF放電パワー
300W−t’30分間グロー放電を行い、S i N
X X:H層(膜厚3000人)を形成した。
Subsequently, 10%5iHn 300sec, gas pressure 0.
Glow discharge was performed for 30 minutes under the condition of 5 Torr with RF discharge power too, and hydrogenated amorphous (a-Si:H
) After forming the semiconductor layer (W2 thickness 2000 people), 10%
SiHn 100 sccm, NH: + 50 sec, gas pressure 0°4 Torr conditions - 1l' RF discharge power 300 W - t' Glow discharge for 30 minutes, SiN
A X:H layer (thickness: 3000 layers) was formed.

次にポジ型フォトレジストを用いてパターンを形成し、
フッ酸(50%水溶液)、フッ化アンモニウム(40%
水溶液)を1:40の容積比で混合した液でS i N
K : HN3をエツチングし開口部を形成する。つい
でH2101005eの流量でガス圧0 、2To r
 r 、 RF放電パワー200Wで5分間グロー放電
を行い、同一チャンバー内で引き続いて、10%SiH
4100scc m 、水素希釈PH3ガス450se
cm、ガス圧0.5Torrの条件で、RF放電パワー
200Wで4C1間グロー放電を行い、オーミックコン
タクト層のn中層(膜厚tooo人)を形成した0次に
スパッタ法により、Cr(II2厚500人)  、A
t  (膜厚5000人)を堆積し。
Next, a pattern is formed using positive photoresist,
Hydrofluoric acid (50% aqueous solution), ammonium fluoride (40%
aqueous solution) at a volume ratio of 1:40.
K: Etch HN3 to form an opening. Then, at the flow rate of H2101005e, the gas pressure was set to 0 and 2 Torr.
r, glow discharge was performed for 5 minutes at RF discharge power of 200 W, and then 10% SiH
4100scc m, hydrogen diluted PH3 gas 450se
cm, gas pressure 0.5 Torr, 4C1 glow discharge was performed with RF discharge power 200W, and Cr (II2 thickness 500 mm) was formed by zero-order sputtering to form an n middle layer (thickness too thick) of the ohmic contact layer. person), A
t (thickness: 5000).

ポジ型フォトレジストを用いて所望の形状にフォトレジ
ストパターンを形成し、硝酸第2セリウムアンモニウム
及び過塩素酸の混合水液(Cr用エツチング液)でCr
を、AI用エツチング液でA1をエツチングして電極パ
ターンを形成した。
A photoresist pattern is formed in the desired shape using a positive photoresist, and Cr is etched with a mixed aqueous solution of ceric ammonium nitrate and perchloric acid (etching solution for Cr).
A1 was etched using an etching solution for AI to form an electrode pattern.

電極パターンをマスクにしてフッ酸(50%水溶液)、
硝酸(70%水溶液)、酢酸を2:10:88の容積比
で混合した液にヨウ素を過飽和溶解させた溶液でn中層
を選択的にエツチングして除去し、フォトレジストを剥
離しVjl12)ランジスタを得た。
Hydrofluoric acid (50% aqueous solution) using the electrode pattern as a mask,
The n middle layer was selectively etched and removed using a supersaturated solution of iodine in a mixture of nitric acid (70% aqueous solution) and acetic acid at a volume ratio of 2:10:88, and the photoresist was peeled off. I got it.

第2図は、上記本発明の薄膜トランジスタの製造方法に
よって作製された薄膜トランジスタのId−Vd特性で
ある。
FIG. 2 shows the Id-Vd characteristics of a thin film transistor manufactured by the method for manufacturing a thin film transistor of the present invention.

同図に示されるように、本発明の製造方法にょりほぼ十
分なオーミック特性が得られたことがわかる。
As shown in the figure, it can be seen that almost sufficient ohmic characteristics were obtained by the manufacturing method of the present invention.

なお、上記実施例においては、半導体層にアモルファス
シリコンを取り上げたが、これに限定されることなく、
非単結晶シリコンであればよく、例えば多結晶シリコン
等を用いてよい、また第−及び第二の絶t&層は窒化シ
リコンの代りに他の材質、例えば酸化シリコン等を用い
てもよい。
Although amorphous silicon is used as the semiconductor layer in the above embodiments, the present invention is not limited to this.
Any material may be used as long as it is non-monocrystalline silicon, such as polycrystalline silicon, and the second and second isolation layers may be made of other materials such as silicon oxide instead of silicon nitride.

また半導体層としては非単結晶シリコンが好適に用いら
れ、ことに水素又は/及びフッ素等の/\ロゲン原子を
0.001〜20原子%含有する非単結晶シリコンが望
ましいが、その他の材料を用いてもよい。
In addition, non-single crystal silicon is suitably used as the semiconductor layer, and preferably non-single crystal silicon containing 0.001 to 20 at. May be used.

[発明の効果] 以上詳細に説明したように1本発明のQll)ランジス
タの製造方法によれば、開口部形成時に吸着する水分、
酸素、炭化水素等の不純物を除去することができ、半導
体層に与えるダメージも少なく、他のエツチングガスの
使用時のように、エツチングガスの構成元素が残存する
こともなく、十分なオーミックコンタクトが得られ、安
定した電気的特性が得られる。また水素プラズマ処理は
n上層成膜チャンバー内で行うことができ、そのため装
置構成、製造工程が簡略化でき、低コストで高信頼性の
薄膜トランジスタが得られる。
[Effects of the Invention] As explained in detail above, according to the Qll) transistor manufacturing method of the present invention, moisture adsorbed when forming the openings,
Impurities such as oxygen and hydrocarbons can be removed, and there is little damage to the semiconductor layer. Unlike when using other etching gases, the constituent elements of the etching gas do not remain, and sufficient ohmic contact is created. and stable electrical characteristics can be obtained. Further, the hydrogen plasma treatment can be performed in an n upper layer deposition chamber, which simplifies the device configuration and manufacturing process, and provides a highly reliable thin film transistor at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の薄膜トランジスタの製造方法の一実施
例例の製造工程を示す説明図である。 第2図は、上記本発明の薄膜トランジスタの製造方法に
よって作製された薄膜トランジスタのId−Vd特性で
ある。 第3図は保**能を有する絶縁層を有する薄膜トランジ
スタの一例を示す構造図である。 第4図は前記6N膜トランジスタの一例の特性図である
。 l・・・・ゆゲート電極 2・・拳・・ゲート絶縁層 3・拳・−・半導体層 4Φ嗜・Φ・絶縁層 5・・・・・オーミックコンタクト層 6・−・・・導電層 6a*拳・・Φソース電極 6b・拳・・−ドレイン電極 代理人  弁理士 山 下 穣 子 羊1図 八 Vd(V) 第3図 (b) d
FIG. 1 is an explanatory view showing the manufacturing process of one embodiment of the method for manufacturing a thin film transistor of the present invention. FIG. 2 shows the Id-Vd characteristics of a thin film transistor manufactured by the method for manufacturing a thin film transistor of the present invention. FIG. 3 is a structural diagram showing an example of a thin film transistor having an insulating layer having a protective function. FIG. 4 is a characteristic diagram of an example of the 6N film transistor. l...Gate electrode 2...Fist...Gate insulating layer 3...Fist...Semiconductor layer 4ΦΦ-Insulating layer 5...Ohmic contact layer 6...Conductive layer 6a *Fist...Φ Source electrode 6b Fist...-Drain electrode Representative Patent attorney Minoru Yamashita Lamb 1 Figure 8 Vd (V) Figure 3 (b) d

Claims (1)

【特許請求の範囲】[Claims] 絶縁基板上に第一の導電層を形成した後、この第一の導
電層から制御電極を形成し、さらに第一の絶縁層、非単
結晶半導体層、第二の絶縁層を順に形成する工程と、該
第二の絶縁層に開口部を開ける工程と、この開口部形成
後に水素プラズマ処理を行う工程と、前記第二の絶縁層
上にオーミックコンタクト層、第二の導電層を順に形成
した後、この第二の導電層から主電極を形成する工程と
、この主電極をマスクとして不用な部分のオーミックコ
ンタクト層を除去する工程とを有する薄膜トランジスタ
の製造方法。
A step of forming a first conductive layer on an insulating substrate, forming a control electrode from this first conductive layer, and then sequentially forming a first insulating layer, a non-single crystal semiconductor layer, and a second insulating layer. forming an opening in the second insulating layer; performing hydrogen plasma treatment after forming the opening; and sequentially forming an ohmic contact layer and a second conductive layer on the second insulating layer. A method for manufacturing a thin film transistor, which includes the following steps: forming a main electrode from the second conductive layer; and removing unnecessary portions of the ohmic contact layer using the main electrode as a mask.
JP61153283A 1986-06-30 1986-06-30 Method for manufacturing thin film transistor Expired - Fee Related JP2663418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61153283A JP2663418B2 (en) 1986-06-30 1986-06-30 Method for manufacturing thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61153283A JP2663418B2 (en) 1986-06-30 1986-06-30 Method for manufacturing thin film transistor

Publications (2)

Publication Number Publication Date
JPS639156A true JPS639156A (en) 1988-01-14
JP2663418B2 JP2663418B2 (en) 1997-10-15

Family

ID=15559085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61153283A Expired - Fee Related JP2663418B2 (en) 1986-06-30 1986-06-30 Method for manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JP2663418B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141648A (en) * 1989-10-26 1991-06-17 Matsushita Electric Ind Co Ltd Manufacture of semiconductor element
JPH03148136A (en) * 1989-11-02 1991-06-24 Matsushita Electric Ind Co Ltd Semiconductor element and manufacture thereof
US5707895A (en) * 1996-10-21 1998-01-13 Taiwan Semiconductor Manufacturing Company, Ltd. Thin film transistor performance enhancement by water plasma treatment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927575A (en) * 1982-08-05 1984-02-14 Fujitsu Ltd Manufacture of self-alignment thin film transistor
JPS6190193A (en) * 1984-10-09 1986-05-08 セイコーインスツルメンツ株式会社 Active matrix liquid crystal display unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927575A (en) * 1982-08-05 1984-02-14 Fujitsu Ltd Manufacture of self-alignment thin film transistor
JPS6190193A (en) * 1984-10-09 1986-05-08 セイコーインスツルメンツ株式会社 Active matrix liquid crystal display unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141648A (en) * 1989-10-26 1991-06-17 Matsushita Electric Ind Co Ltd Manufacture of semiconductor element
JPH03148136A (en) * 1989-11-02 1991-06-24 Matsushita Electric Ind Co Ltd Semiconductor element and manufacture thereof
US5707895A (en) * 1996-10-21 1998-01-13 Taiwan Semiconductor Manufacturing Company, Ltd. Thin film transistor performance enhancement by water plasma treatment

Also Published As

Publication number Publication date
JP2663418B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US6268296B1 (en) Low temperature process for multiple voltage devices
JPS639156A (en) Manufacture of thin film transistor
JPS58112365A (en) Manufacture of thin film transistor
JPS5950564A (en) Manufacture of thin film transistor
JP2864658B2 (en) Method for manufacturing thin film transistor
JPS6014474A (en) Manufacture of thin film transistor
JPS60262438A (en) Manufacture of semiconductor device
JPS61224360A (en) Manufacture of field effect transistor
JPH0684938A (en) Manufacture of semiconductor device
JPH04221854A (en) Thin film semiconductor device
JP3392557B2 (en) Processing method of aluminum wiring
JP3344051B2 (en) Method for manufacturing thin film transistor
JP3388076B2 (en) Method for manufacturing staggered thin film transistor
KR970006256B1 (en) Fabrication of tft
JP3167445B2 (en) Method for manufacturing thin film transistor
JPH07273342A (en) Manufacture of thin film transistor
JPH07122752A (en) Manufacture of thin film transistor
JP3358308B2 (en) Method for manufacturing thin film transistor
JP3275699B2 (en) Semiconductor device and manufacturing method thereof
JPH04230024A (en) Manufacture of semiconductor device
JP2003234344A (en) Method of manufacturing semiconductor device
JP3157194B2 (en) Method for manufacturing semiconductor device
JP2513664B2 (en) Method for manufacturing thin film transistor
JPH03292773A (en) Manufacture of thin film transistor
JPH0659277A (en) Semiconductor device and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees