JPS61224360A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPS61224360A
JPS61224360A JP6455885A JP6455885A JPS61224360A JP S61224360 A JPS61224360 A JP S61224360A JP 6455885 A JP6455885 A JP 6455885A JP 6455885 A JP6455885 A JP 6455885A JP S61224360 A JPS61224360 A JP S61224360A
Authority
JP
Japan
Prior art keywords
gate electrode
gate
etching
mask
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6455885A
Other languages
Japanese (ja)
Inventor
Hisao Hayashi
久雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6455885A priority Critical patent/JPS61224360A/en
Publication of JPS61224360A publication Critical patent/JPS61224360A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain a high reliability FET which has a required channel length in good reproductivity by preventing etching under a gate electrode, providing a mask on the side wall of the gate electrode on an insulation film. CONSTITUTION:An n<-> poly-Si thin film 2, an SiO2 layer 3 and a conductive poly-Si 4 are piled on a glass plate 1, the conductive layer 4 is etched, using a resist mask 5, and a gate electrode 6 W wide is made. A mask 20 is made on the side surface of the electrode 6 by RIE often covering with a photoresist 21. The formation of a bottom under the gate electrode 6 is prevented by isotropically etching with HF selecting the thickness T of the mask 20 and the width Ws of a gate insulation film 7. N<+> diffusion layers 2s, 2d; n<-> channel 2c are made by covering with a PSG 9 often removing resists 5, 7. Electrodes 10s, 10d are attached by opening a window on the PSG 9. This construction enables to avoid the unnecessary and unstable side surface etching of the gate insulation film, to effectively prevent unstable short channeling and to obtain a high reliability FET in good reproductivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電界効果トランジスタ、特に例えば絶縁基板
上に形成された多結晶シリコン層によって形成される薄
膜型トランジスタを得る場合に通用して好適な電界効果
トランジスタの製造方法に関わる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is applicable and suitable for obtaining field effect transistors, particularly thin film transistors formed by a polycrystalline silicon layer formed on an insulating substrate, for example. It is concerned with the manufacturing method of field effect transistors.

〔発明の概要〕[Summary of the invention]

本発明は、ゲート絶縁膜のパターンエツチングに先立っ
て、これの上に形成したゲート電極の側面にマスク部材
を被着して置くものであり、このようにしてゲート電極
下に入り込んでゲート絶縁膜のエツチングが行われてオ
ーバーハング部が生じることによる不都合を回避する。
In the present invention, prior to pattern etching of the gate insulating film, a mask member is placed on the side surface of the gate electrode formed thereon, and in this way, the mask material penetrates under the gate electrode and forms the gate insulating film. To avoid the inconvenience caused by overhanging portions caused by etching.

〔従来の技術〕[Conventional technology]

例えば液晶表示装置における駆動回路等においては絶縁
基板例えばガラス基板上に被着形成した多結晶シリコン
層に薄膜トランジスタ例えば絶縁ゲート型電界効果トラ
ンジスタ(Mis−FET)を形成をすることが行われ
る。
For example, in a drive circuit for a liquid crystal display device, a thin film transistor such as an insulated gate field effect transistor (Mis-FET) is formed on a polycrystalline silicon layer deposited on an insulating substrate such as a glass substrate.

このような薄膜型MIS−FETを作成する従来方法を
第2図を参照して説明する。
A conventional method for manufacturing such a thin film MIS-FET will be explained with reference to FIG.

先ず第2図Aに示すようにガスラ基板等の絶縁基板(1
)上に被着形成された多結晶シリコンよりなる例えば高
比抵抗のn型又はp型の半導体(2)上に、ゲート絶縁
膜となる5t02等の絶縁層(3)を被着し、これの上
に最終的にゲート電極を構成する例えば低比抵抗の多結
晶シリコンよりなる導電層(4)を被着する。
First, as shown in Figure 2A, an insulating substrate (1
) A high resistivity n-type or p-type semiconductor (2) made of polycrystalline silicon, for example, is coated with an insulating layer (3) such as 5T02 which becomes a gate insulating film. A conductive layer (4) made of, for example, low resistivity polycrystalline silicon, which will eventually constitute a gate electrode, is deposited thereon.

次にj82図Bに示すように導電層(4)を所定のパタ
ーンにエツチングして最終的に得るMIS−FETのゲ
ート長に対応する所定の幅Wを有するゲート電極(6)
を形成する。このゲート電極(6)を形成するこめのパ
ターン化はフォトリソグラフィー、すなわち導電層(嚇
上にエツチングレジストとしてフォトレジスト(5)を
写真技術によって形成し、これをマスクとして導電層(
匂を選択的にエツチングすることによって行い得る。
Next, as shown in Figure B, the conductive layer (4) is etched into a predetermined pattern to form a gate electrode (6) having a predetermined width W corresponding to the gate length of the MIS-FET that is finally obtained.
form. The patterning for forming this gate electrode (6) is done by photolithography. In other words, a photoresist (5) is formed as an etching resist on the conductive layer (5) using a photographic technique, and this is used as a mask to form the conductive layer (5).
This can be done by selectively etching the odor.

その後、第2図Cに示すように、ゲート電極(6)をマ
スクとしてこれの下の5i(h絶縁層(3)をパター 
ン化してゲート絶縁膜(刀を形成する。このゲート絶縁
11 (?)を形成するための5L(h絶縁層(3)に
対するエツチングは、通常ぶつ酸溶液を用いて行う。
Thereafter, as shown in FIG.
Etching of the 5L (h) insulating layer (3) to form the gate insulating layer (3) is usually carried out using an oxalic acid solution.

この場合、そのエツチングは等方的になされる。In this case, the etching is done isotropically.

したがってこの絶縁層(3)に対するエツチングは、ゲ
°−ト電極(6)下にその縁部から入り込んで進行する
いわゆるサイドエツチングが生ずる。これがため、この
ようにして得られたゲート絶縁膜(7)は、第2図Cに
示すようにゲート電極(6)の幅Wより小成る幅W1を
もって形成され、これに伴ってゲート絶縁膜(7)の上
方にゲート電極(6)の縁部が張り出したひさしく8)
が形成される。
Therefore, when etching the insulating layer (3), so-called side etching occurs, which proceeds from the edge of the gate electrode (6). Therefore, the gate insulating film (7) thus obtained is formed to have a width W1 smaller than the width W of the gate electrode (6) as shown in FIG. The edge of the gate electrode (6) extends above the eaves 8)
is formed.

次に、第2図りに示すように、全面的に半導体(2)と
同導電型、例えばn型の不純物の燐がドープされた燐シ
リケートガラス等の絶縁層(9)を全面的に周知の技術
、例えば化学的気相成長法(CVD法)によって被着形
成する。そして、この絶縁層(9)中の不純物を、半導
体(2)上に直接被着した部分より拡散して半導体層)
のゲート絶縁膜(7)の両側に、夫々高不純物濃度のソ
ース領域(2S)及びドレイン領域(2d)を形成する
。この場合、ソース領域(23)及びドレイン領域(2
d)の拡散は、ゲート絶縁膜(7)下にその縁部から入
り込んで形成されるので両ソース領域(2s)及びドレ
イン領域(2d)間の間隔、すなわちゲート長(チャン
ネル長)Lはゲート絶縁膜(7)の幅W1より更に小さ
く形成される。
Next, as shown in the second diagram, an insulating layer (9) of the same conductivity type as the semiconductor (2), such as phosphorus silicate glass doped with phosphorus, an n-type impurity, is completely covered. It is deposited by a technique such as chemical vapor deposition (CVD). Then, the impurities in this insulating layer (9) are diffused from the part directly deposited on the semiconductor (2) to form a semiconductor layer).
A source region (2S) and a drain region (2d) each having a high impurity concentration are formed on both sides of the gate insulating film (7). In this case, the source region (23) and the drain region (2
Since the diffusion d) is formed by penetrating under the gate insulating film (7) from its edge, the distance between both the source region (2s) and the drain region (2d), that is, the gate length (channel length) L, is the gate insulating film (7). It is formed to be smaller than the width W1 of the insulating film (7).

次に絶縁層(9)に選択的に電極窓開けを行ってソース
領域(23)及びドレイン領域(2d)に夫々オーミッ
クにソース電極(10s)及びドレイン電極(10d)
を被着形成する。 S、 G、及びDは夫々ソース・ゲ
ート及びドレインの各端子を示す。
Next, electrode windows are selectively opened in the insulating layer (9), and ohmic source electrodes (10s) and drain electrodes (10d) are formed in the source region (23) and drain region (2d), respectively.
Form the adhesion. S, G, and D indicate source, gate, and drain terminals, respectively.

このようにすれば、半導体層(2)にソース領域(23
)及びドレイン領域(2d)が形成され両者間にチャン
ネル形成領域(2c)が形成され、チャンネル形成領域
(2c)上にゲート絶縁111(7)を介してゲート電
極(6)が形成されたゲート部を有する目的とする薄層
突型のMis−PETが得られる。
In this way, the source region (23
) and a drain region (2d) are formed, a channel formation region (2c) is formed between them, and a gate electrode (6) is formed on the channel formation region (2c) via a gate insulator 111 (7). The desired thin layer protrusion-type Mis-PET having a section is obtained.

−ところがこのような方法によって得たMIS−FET
は、第2図Cを参照して説明したように、ゲート電極(
6)下にひさしく8)が形成されるために、これの上に
形成した不純物がドープされた絶縁層例えば燐シリケー
トガラスよりなる□絶縁層(9)にゲート電極1111
 (?)の両側において空洞ないしは良好に被着されな
い不安定な欠陥部(11)が発生する。
-However, the MIS-FET obtained by this method
As explained with reference to FIG. 2C, the gate electrode (
6) Since 8) is formed below, a gate electrode 1111 is formed on the insulating layer (9) doped with impurities formed on the insulating layer (9) made of, for example, phosphorus silicate glass.
Cavities or unstable defects (11) that are not well adhered occur on both sides of the (?).

従ってこのようにして得たMis−FETにおいては、
ソース領域(2s)及びドレイン領域(2d)のゲート
部と隣接する部分が絶縁層によって良好に覆われていな
いことになる。これがためこのMIS−FETは、ゲー
トと、ソース及びドレインとの間にリークが発生するな
どの信頼性が低いという欠点を有する。また絶縁層(3
)をエツチングしてゲート絶縁膜(7)を形成するにあ
たって前述したようにサイドエツチングが生じること、
更に薄い半導体(2)に対してソース及びドレインの形
成のための絶縁層(9)からの不純物の拡散を行うがた
めに、ソース領域(2s)及びドレイン領域(2d)間
の間隔が不安定に狭められ、いわゆる短チャンネル化が
生じ、特に薄膜型Mis−FETにおいて設計通りの小
なるチャンネル長りを有し、信頼性が高く均一な特性を
有するMis−FETを再現性良く製造することが難し
いという問題点がある。
Therefore, in the Mis-FET obtained in this way,
This means that the portions of the source region (2s) and drain region (2d) adjacent to the gate portion are not well covered with the insulating layer. For this reason, this MIS-FET has the disadvantage of low reliability, such as leakage occurring between the gate, source, and drain. In addition, the insulating layer (3
) to form the gate insulating film (7), side etching occurs as described above;
Furthermore, since impurities from the insulating layer (9) for forming the source and drain are diffused into the thin semiconductor (2), the distance between the source region (2s) and the drain region (2d) is unstable. In particular, in thin-film Mis-FETs, it is difficult to manufacture Mis-FETs with a small channel length as designed and highly reliable and uniform characteristics with good reproducibility. The problem is that it is difficult.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明においては上述したように薄膜型のMIS−FE
Tの作製において、ゲートとソース及びドレイン間のリ
ーク等の信頼性の問題、また短チャンネル化等の問題点
を解決しようとするものである。
In the present invention, as mentioned above, the thin film type MIS-FE
In the fabrication of a transistor T, it is an attempt to solve reliability problems such as leakage between the gate, source, and drain, and problems such as shortening of the channel.

(問題点を解決するための手段〕 本発明においては第1図にその製造工程図を示すように
、半導体(2)上に液絡的にゲート絶縁膜を構成する絶
縁層(3)を形成する工程と、この絶縁層上にゲート電
極(6)を形成する工程と、ゲート電極(6)の側壁に
エツチングのマスク部材(20)を形成する工程と、絶
縁層(3)の露出部を除去してゲート絶縁膜(7)を形
成する工程とを有し、エツチングのマスク部材(20)
によって絶縁層(3)のエツチングにあたってそのエツ
チングがゲート電極下において除去されるを抑制する。
(Means for Solving the Problems) In the present invention, as shown in the manufacturing process diagram in FIG. a step of forming a gate electrode (6) on this insulating layer; a step of forming an etching mask member (20) on the side wall of the gate electrode (6); and a step of etching the exposed portion of the insulating layer (3). removing the etching mask member (20) to form a gate insulating film (7);
This prevents the etching from being removed under the gate electrode when etching the insulating layer (3).

〔作用〕[Effect]

上述の本発明方法によれば、ゲート電極(6)の側壁に
エツチングのマスク部材(20)を被着したことによっ
てゲート絶縁11i (7)の形成のための□絶縁層(
3)の選択的エツチングにあたって、ゲート電極(6)
下に入り込んだエツチングが発生することを回避するこ
とができる。したがって爾後形成する不純物を含む絶縁
層の形成を半導体(2)のゲート絶縁層(3)によって
覆われない部分において確実に空洞等の欠陥部を生じる
ことなく被着形成し冒頭に述べた従来の欠点を解消する
According to the method of the present invention described above, the etching mask member (20) is deposited on the side wall of the gate electrode (6), thereby forming the □ insulating layer (2) for forming the gate insulator 11i (7).
In the selective etching of 3), the gate electrode (6)
It is possible to avoid etching from occurring underneath. Therefore, the impurity-containing insulating layer to be formed later is deposited on the portion of the semiconductor (2) that is not covered by the gate insulating layer (3) without creating defects such as cavities, and the conventional method described at the beginning is used. Eliminate shortcomings.

〔実施例〕〔Example〕

再び第1図を参照して本発明よる薄膜型M!5−FET
の製造方法の一実施例を詳細に説明する。
Referring again to FIG. 1, the thin film type M! according to the present invention will be described. 5-FET
An embodiment of the manufacturing method will be described in detail.

第1図において第2図と対応する部分には同一符号を付
す、この例においても、先ず第1図Aに示すようにガラ
ス基板等の絶縁基板(1)上に多結晶シリコン等の薄膜
状の半導体(2)が例えば選択的に所定のパターンに形
成されてなり、この半導体(2)上に鮭終的にゲート絶
縁膜を構成する5i(h等の絶縁層(3)をCVD法等
によって全面的に形成し、これの上に最終的にゲート電
極(6)を形成する低比抵抗、すなわち不純物が高濃度
にドープされた多結晶シリコン等の導電層(4)を同様
にCVD等によって被着する。
In FIG. 1, parts corresponding to those in FIG. 2 are given the same reference numerals. In this example as well, as shown in FIG. For example, a semiconductor (2) is selectively formed in a predetermined pattern, and an insulating layer (3) such as 5i (h), which will eventually constitute a gate insulating film, is formed on this semiconductor (2) by CVD or the like. A conductive layer (4) of low resistivity, i.e. polycrystalline silicon or the like doped with a high concentration of impurities, on which a gate electrode (6) will finally be formed is similarly formed by CVD etc. Deposited by.

次に、第1図Bに示すように、導電層(4)上に最終的
にゲート部を形成する部分に選択的にフォトレジスト等
のエツチングレジスト(5)を周知の技術によって形成
し、このエツチングレジスト(5)をエツチングマスク
呂して導電層(4)を選択的にエツチングして所定の幅
Wを有するゲート電極(6)を形成する。
Next, as shown in FIG. 1B, an etching resist (5) such as a photoresist is selectively formed on the conductive layer (4) in the portion where the gate portion will ultimately be formed, using a well-known technique. Using the etching resist (5) as an etching mask, the conductive layer (4) is selectively etched to form a gate electrode (6) having a predetermined width W.

次に第1V!JCに示すように、ゲート電極(6)の少
なくとも側面に被着されるようにマスク材(21)を全
面的に塗布する。この場合、マスク材(21)として例
えばフォトレジストを用いればこれをゲート電極(6)
の側面を覆うように塗布することは容易に行い得る。
Next is the 1st V! As shown in JC, a mask material (21) is applied over the entire surface of the gate electrode (6) so as to be coated on at least the side surfaces thereof. In this case, if a photoresist is used as the mask material (21), this can be used as the gate electrode (6).
It can be easily applied to cover the sides.

次に、第1図りに示すよう、マスク材(21)をその表
面からその厚さ方向にエツチングが進行する、つまり、
異方性を有する例えば02ガスによる反応性イオンエツ
チング法(RI E法)によるエツチングを行って、電
極(6)の側面に被着され実質的に厚さが大とな9てい
る部分を残して他部のマスク材(21)を除去すること
によってゲート電極(6)の側面に選択的に形成された
マスク部材(20)を形成する。
Next, as shown in the first diagram, etching progresses from the surface of the mask material (21) in the thickness direction, that is,
Etching is performed by reactive ion etching (RIE) using anisotropic 02 gas, for example, to leave a substantially thick portion 9 attached to the side surface of the electrode (6). By removing other portions of the mask material (21), mask members (20) selectively formed on the side surfaces of the gate electrode (6) are formed.

次に第1図Eに示すように、このマスク部材(20)を
マスクとして絶縁層(3)に対する選択的エツチングを
、例えばふっ酸による等方性エツチングによって行う、
この場合、マスク材(21)の厚さを通光に選定するこ
とによって、ゲート電極(6)の側壁に被着されたマス
ク部材(20)の厚さtを所定の厚さに選定し、ゲート
絶縁膜(7)にサイドエツチングが生じても、これがゲ
ート電極(6)下に入り込んでひさしを生ずるようなこ
とがないように設定し、ゲート絶縁膜(7)の幅Wsの
選定を行う。
Next, as shown in FIG. 1E, using this mask member (20) as a mask, the insulating layer (3) is selectively etched by, for example, isotropic etching using hydrofluoric acid.
In this case, by selecting the thickness of the mask material (21) to allow light to pass through, the thickness t of the mask member (20) attached to the side wall of the gate electrode (6) is selected to a predetermined thickness; The width Ws of the gate insulating film (7) is selected so that even if side etching occurs in the gate insulating film (7), it will not get under the gate electrode (6) and create an eaves. .

第1図Fに示すよう、マスク部材(20)及びエツチン
グレジスト(5)等の除去を行って最終的にソース及び
ドレイン領域を形成する不純物例えばn型の不純物燐P
を含む燐・シリケートガラスよりなる絶縁層(9)を全
面的に被着し、不純物を半導体(2)中に、ゲート絶縁
膜(刀によって覆われていない部分から拡散する。この
ようにして夫々高不純物濃度のソース領域(2s)とド
レイン領域(2d)を形成すると共に、これらソース領
域(2s)及びドレイン領域(2d)間に所定の長さし
を有する不純物がドープされない領域、すなわちチャン
ネル形成領域(2c)を形成する。
As shown in FIG. 1F, the mask member (20) and the etching resist (5) are removed to remove impurities such as n-type impurity phosphorus that will eventually form the source and drain regions.
An insulating layer (9) made of phosphorus-silicate glass containing phosphorus and silicate glass is deposited on the entire surface, and impurities are diffused into the semiconductor (2) from the gate insulating film (the part not covered by the sword). A source region (2s) and a drain region (2d) with high impurity concentration are formed, and a region having a predetermined length between these source region (2s) and drain region (2d) and not doped with impurities, that is, a channel formation A region (2c) is formed.

次に第1図Gに示すように絶縁層(9)の所定部に電極
窓開けを行ってソース領域(2s)及びドレイン領域(
2d)上に夫々ソース電極(10s)及びドレイン電極
(10d)を被着する。このようにすれば目的とするM
IS−FETが得られる。
Next, as shown in FIG.
2d) A source electrode (10s) and a drain electrode (10d) are respectively deposited on top. In this way, the target M
An IS-FET is obtained.

そしてこのようにして得たMIS−FETによれば、ゲ
ート電極(6)下に入り込んでゲート絶縁膜(ηが形成
されるようなこと、すなわちひさしが形成されるような
ことを回避したので、絶縁層(9)下に空洞等の欠陥を
発生することがなく、絶縁層(9)は、半導体(2c)
のゲート絶縁膜(7)の被着部以外の全表面を確実に覆
って形成される。
According to the MIS-FET obtained in this way, the formation of a gate insulating film (η) that penetrates under the gate electrode (6), that is, the formation of a canopy, is avoided. No defects such as cavities occur under the insulating layer (9), and the insulating layer (9) is made of a semiconductor (2c).
The gate insulating film (7) is formed so as to reliably cover the entire surface other than the deposited portion.

尚、図示の例では、nチャンネル型のMIS−FETを
例示したものであるが、図示とは逆の導電型を有するM
IS−FETを構成し得るなど種々の変形変更をなし得
る。
Note that although the illustrated example is an n-channel type MIS-FET, an MIS-FET having a conductivity type opposite to that shown in the figure
Various modifications may be made, such as forming an IS-FET.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明製法によれば、半導体(2)上に
確実に絶縁層(9)を被覆するようにしたので冒頭に述
べたゲートとソース及びドレインとの間のリークの発生
を回避でき、また不必要且つ不安定にゲート絶縁膜がサ
イドエツチングされて、これと薄膜の半導体(2)への
不純物ドープによるソース領域(2s)及びドレイン領
域(2d)の入り込みに基づく不安定な短チャンネル化
を効果的に回避できるので目的とする所要のチャンネル
長を有する信頼性の高いMis−FETを再現性よく得
ることができ実用に供してその利益は大である。
As described above, according to the manufacturing method of the present invention, since the insulating layer (9) is reliably coated on the semiconductor (2), it is possible to avoid the occurrence of leakage between the gate and the source and drain described at the beginning. In addition, the gate insulating film is side-etched unnecessarily and unstablely, and unstable short channels are formed due to the intrusion of the source region (2s) and drain region (2d) due to impurity doping into the thin film semiconductor (2). Since the distortion can be effectively avoided, a highly reliable Mis-FET having the desired desired channel length can be obtained with good reproducibility, and it is of great benefit in practical use.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電界効果トランジスタの製造方法
の一例の工程図、第2図は従来方法の製造工程図である
。 (1)は絶縁基板、(2)は半導体、(3)はゲート絶
縁膜(7)を構成する絶縁層、(4)はゲート電極(6
)を構成する導電層、(21)はマスク材、(20)は
マスク部材、(2s)及び(2d)はソース及びドレイ
ンの各領域である。 襄危工社口 第1図
FIG. 1 is a process diagram of an example of a method for manufacturing a field effect transistor according to the present invention, and FIG. 2 is a process diagram of a conventional method. (1) is an insulating substrate, (2) is a semiconductor, (3) is an insulating layer that constitutes a gate insulating film (7), and (4) is a gate electrode (6).
), (21) is a mask material, (20) is a mask member, (2s) and (2d) are source and drain regions. Yokeikosha Exit Diagram 1

Claims (1)

【特許請求の範囲】 (a)半導体上にゲート絶縁膜となる絶縁層を形成する
工程と、 (b)該絶縁層上にゲート電極を形成する工程と、(c
)該ゲート電極の側壁にマスク部材を形成する工程と、 (d)上記絶縁層の露出部を選択除去してゲート絶縁膜
を形成する工程とから成り、 (e)上記マスク部材によって上記絶縁層が上記ゲート
電極下において除去されるのを抑制することを特徴とす
る電界効果トランジスタの製造方法。
[Claims] (a) a step of forming an insulating layer to serve as a gate insulating film on the semiconductor; (b) a step of forming a gate electrode on the insulating layer; (c) a step of forming a gate electrode on the insulating layer;
) forming a mask member on the side wall of the gate electrode; (d) selectively removing the exposed portion of the insulating layer to form a gate insulating film; A method for manufacturing a field effect transistor, the method comprising: suppressing the removal of below the gate electrode.
JP6455885A 1985-03-28 1985-03-28 Manufacture of field effect transistor Pending JPS61224360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6455885A JPS61224360A (en) 1985-03-28 1985-03-28 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6455885A JPS61224360A (en) 1985-03-28 1985-03-28 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPS61224360A true JPS61224360A (en) 1986-10-06

Family

ID=13261677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6455885A Pending JPS61224360A (en) 1985-03-28 1985-03-28 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPS61224360A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555573A (en) * 1991-08-26 1993-03-05 Sharp Corp Thin film transistor and manufacture thereof
US5619045A (en) * 1993-11-05 1997-04-08 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US5648277A (en) * 1993-11-05 1997-07-15 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US5736414A (en) * 1994-07-14 1998-04-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US6331723B1 (en) 1991-08-26 2001-12-18 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device having at least two transistors having LDD region in one pixel
US6555843B1 (en) 1991-05-16 2003-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6867431B2 (en) * 1993-09-20 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290278A (en) * 1976-01-23 1977-07-29 Mitsubishi Electric Corp Production of semiconductor integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5290278A (en) * 1976-01-23 1977-07-29 Mitsubishi Electric Corp Production of semiconductor integrated circuit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555843B1 (en) 1991-05-16 2003-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
JPH0555573A (en) * 1991-08-26 1993-03-05 Sharp Corp Thin film transistor and manufacture thereof
US6331723B1 (en) 1991-08-26 2001-12-18 Semiconductor Energy Laboratory Co., Ltd. Active matrix display device having at least two transistors having LDD region in one pixel
US6803600B2 (en) 1991-08-26 2004-10-12 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect semiconductor devices and method of manufacturing the same
US6867431B2 (en) * 1993-09-20 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US5619045A (en) * 1993-11-05 1997-04-08 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US5648277A (en) * 1993-11-05 1997-07-15 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device
US6218678B1 (en) 1993-11-05 2001-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6475839B2 (en) 1993-11-05 2002-11-05 Semiconductor Energy Laboratory Co., Ltd. Manufacturing of TFT device by backside laser irradiation
US6617612B2 (en) * 1993-11-05 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and a semiconductor integrated circuit
US5736414A (en) * 1994-07-14 1998-04-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US3958323A (en) Three mask self aligned IGFET fabrication process
EP0236676B1 (en) Erasable programmable read only memory using floating gate field effect transistors
JPS61224360A (en) Manufacture of field effect transistor
JPH09186339A (en) Thin film transistor and manufacture thereof
JP3420301B2 (en) Method for manufacturing thin film transistor
JP2571004B2 (en) Thin film transistor
JP2000196016A (en) Semiconductor device and manufacture of the same
JPH04275436A (en) Soimos transistor
EP0066675B1 (en) Processes for the fabrication of field effect transistors
JPH077157A (en) Manufacture of thin film transistor
JP2707536B2 (en) Method for manufacturing semiconductor device
JPH01114042A (en) Manufacture of semiconductor device
JP3312541B2 (en) Method for manufacturing thin film semiconductor device
KR100243021B1 (en) Method for manufacturing semiconductor device
KR0167669B1 (en) Method for fabricating semiconductor device
JPH03171671A (en) Semiconductor device and manufacture thereof
JP2003046085A (en) Semiconductor device and method of manufacturing the same
JPH0548098A (en) Manufacture of semiconductor device
JP2765142B2 (en) Method for manufacturing semiconductor device
JPH0529624A (en) Thin film transistor and manufacture thereof
JPH0213827B2 (en)
JPS60103615A (en) Semiconductor device
GB2090467A (en) Low capacitance self-aligned semiconductor electrode structure and method of fabrication
JPH07254572A (en) Manufacture of semiconductor device
JPH06252411A (en) Manufacture for semiconductor memory device