JPS6390859A - Thin film transistor and manufacture thereof - Google Patents

Thin film transistor and manufacture thereof

Info

Publication number
JPS6390859A
JPS6390859A JP61236217A JP23621786A JPS6390859A JP S6390859 A JPS6390859 A JP S6390859A JP 61236217 A JP61236217 A JP 61236217A JP 23621786 A JP23621786 A JP 23621786A JP S6390859 A JPS6390859 A JP S6390859A
Authority
JP
Japan
Prior art keywords
source
crystal
substrate
layer
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61236217A
Other languages
Japanese (ja)
Inventor
Setsuo Kaneko
節夫 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61236217A priority Critical patent/JPS6390859A/en
Publication of JPS6390859A publication Critical patent/JPS6390859A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To obtain a TFT which can be manufacted through simple processes using single crystal Si and suitable for liquid crystal displays, by providing an island single-crystal Si layer including source and drain regions therein in the same plane with an element isolating insulation layer, and providing a gate insulation film, a gate electrode and bonding insulative film between an insulating substrate and a single-crystal Si section. CONSTITUTION:On an insulating substrate 1, there are provided an element isolating insulation layer 9, an island single-crystal Si section 6 including source and drain regions 7 and 8 and disposed in the same plane with said element isolating insulation layer 9, a gate insulating film 3, a gate electrode 4 and an bonding insulative layer 2 disposed between the insulating substrate 1 and the single-crystal Si section 6, and source and drain electrodes 11 and 10 arranged on the surface of the single-crystal Si section 6 opposite to the gate electrode 4. After forming the element isolating insulation film 9 and the island single-crystal Si layer 6 on the Si substrate 14 to provide a transistor having the source and drain regions 7 and 8, and bonding an insulating substrate 1 thereto, the Si substrate 14 is polished and source and drain electrodes 11 and 10 are formed to provide a TFT.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体薄膜、特に単結晶Siを用いた液晶ディ
スプレイ等を駆動する薄膜トランジスタ及びその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor thin film, particularly a thin film transistor for driving a liquid crystal display using single crystal Si, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

近年、液晶フラットパネルディスプレイ、エレクトロル
ミセンスディスプレイ等の駆動デバイスとして使われる
薄膜トランジスタの研究開発が盛んに行われている。こ
の薄膜トランジスタに要求されていることは、 (1)透明絶縁性基板上に形成できること、(2)ON
電流が太きくOFF電流が十分小さいこと、 (3)大容量のトランジスタアレイが形成できるプロセ
スが可能なこと、 等があげられており、半導体薄膜として多結晶Siやア
モルファスSiを用いた薄膜トランジスタが研究開発さ
れている。ところが、多結晶SiやアモルファスSiの
キャリア移動度は1〜20cri/■・secと比較的
小さいため、この薄膜トランジスタを駆動させるための
周辺駆動ICが必要となる。そのため、大容量の薄膜ト
ランジスタアレイと周辺駆動ICとの端子接続が必要に
なり、装置の大型化、高コスト化、低信頼化をもたらし
てきた。
In recent years, research and development has been actively conducted on thin film transistors used as driving devices for liquid crystal flat panel displays, electroluminescent displays, and the like. This thin film transistor is required to (1) be formed on a transparent insulating substrate, (2) ON
Thin film transistors using polycrystalline Si or amorphous Si as semiconductor thin films are being researched because of the following characteristics: (3) the ability to process large-capacity transistor arrays; being developed. However, since the carrier mobility of polycrystalline Si or amorphous Si is relatively small at 1 to 20 cr/sec., a peripheral driving IC is required to drive this thin film transistor. Therefore, a terminal connection between a large-capacity thin film transistor array and a peripheral drive IC has become necessary, leading to an increase in the size, cost, and reliability of the device.

一方、単結晶Siはトランジスタとしての前述の条件(
2)、  (3)の要求を満足し、移動度も高いため、
周辺駆動回路もトランジスタアレイ形成時に同時に同一
基板上に形成でき、周辺駆動回路との端子接続が不要に
なる利点が有る。第3図に単結晶Siを用いた液晶ディ
スプレイ用トランジスタの構造を示す〔たとえば、ササ
エティ オブ インフォーメーション ディスプレイ、
ダイジェスト オブ テクニカル ペイパー(Soci
etyof Information Display
、Digest of TechnicalPapar
) 、 p150−p151.1983 ) 、図中、
14はSi基板、15は素子分離用Si層、7はドレイ
ン領域、8はソース領域、5は絶縁保護層、4はゲート
電極、10はドレイン電極、11はソース電極である。
On the other hand, single-crystal Si can be used as a transistor under the above-mentioned conditions (
Since it satisfies the requirements of 2) and (3) and has high mobility,
The peripheral drive circuit can also be formed on the same substrate at the same time as the transistor array is formed, which has the advantage of eliminating the need for terminal connections with the peripheral drive circuit. Figure 3 shows the structure of a transistor for a liquid crystal display using single-crystal Si [for example, a society of information displays,
Digest of Technical Paper (Soci
etyof Information Display
, Digest of Technical Paper
), p150-p151.1983), in the figure,
14 is a Si substrate, 15 is a Si layer for element isolation, 7 is a drain region, 8 is a source region, 5 is an insulating protection layer, 4 is a gate electrode, 10 is a drain electrode, and 11 is a source electrode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第3図に示した単結晶Siを用いた液晶ディスプレイ用
トランジスタは、基板として不透明の単結晶Siを使用
しているため、基板を透過する光を使う液晶ディスプレ
イには不適当であった。
The liquid crystal display transistor using single-crystal Si shown in FIG. 3 uses opaque single-crystal Si as a substrate, and therefore is not suitable for a liquid crystal display that uses light that passes through the substrate.

一方、単結晶Siを薄膜化する技術としては、デバイス
基板を支持基板に張付けた後、研磨加工して薄膜化し、
再度所望の店仮に張付ける転写技術が知られており、3
次元ICに応用されている〔ジャパニーズ ジャーナル
 オブ アプライドフィジンクス(Jpn、J、App
l、Phys、)23. L815〜817゜1984
)。しかし、この技術は薄<シたデバイスを所望の基板
に張付ける工程が必要であるため、工程が複雑で、歩留
り低下の原因であった。
On the other hand, the technology for thinning single-crystal Si is to attach a device substrate to a supporting substrate and then polish it to make it thin.
A transfer technique is known in which the desired location is pasted again, and 3
Applied to dimensional IC [Japanese Journal of Applied Physics (Jpn, J, App
l, Phys, )23. L815-817゜1984
). However, this technique requires a step of attaching a thin device to a desired substrate, which makes the process complicated and causes a decrease in yield.

本発明の目的は、単結晶Siを薄膜化する技術を用い、
液晶ディスプレイに適した簡単なプロセスを存する薄膜
トランジスタの構造とその製造方法を堤供することにあ
る。
The purpose of the present invention is to use technology to thin single crystal Si,
The object of the present invention is to provide a structure of a thin film transistor and a method for manufacturing the same, which has a simple process suitable for liquid crystal displays.

〔問題点を解決するための手段〕[Means for solving problems]

第1の本発明は、絶縁性基板上に設けられた薄膜トラン
ジスタにおいて、素子分離用絶縁層と、ソース、ドレイ
ン領域を有し前記素子分離用絶縁層と同一面内に設けら
れた島状の単結晶Si部と、前記絶縁性基板と前記単結
晶Si部との間に設けられたゲート絶縁膜1ゲート電極
、接着絶縁層と、前記島状の単結晶Si部に対して前記
ゲート電極と反対側にソース、ドレイン領域と電気的に
接触せしめるように設けられたソース、ドレイン電極と
を有することを特徴としている。
A first aspect of the present invention provides a thin film transistor provided on an insulating substrate, which includes an insulating layer for element isolation, and an island-shaped unit having source and drain regions and provided in the same plane as the insulating layer for element isolation. A gate insulating film 1 provided between a crystalline Si portion, the insulating substrate and the single crystal Si portion, a gate electrode, an adhesive insulating layer, and a gate electrode opposite to the gate electrode with respect to the island-shaped single crystal Si portion. It is characterized by having source and drain electrodes provided on the sides so as to be in electrical contact with the source and drain regions.

第2の本発明は、Si基板上に素子分離用絶縁層を形成
する工程と、前記素子分離用絶縁層を部分的に除去して
絶縁層の窓を形成する工程と、形成された窓部分に島状
の単結晶Si層を選択的に形成する工程と、前記島状の
単結晶SiFにこの層の厚さ以上の厚さを持つソース、
ドレイン領域を有するトランジスタを形成する工程と、
形成されたトランジスタ側に絶縁性基板を接着する工程
と、前記絶縁性基板の反対側から前記Si基板を研磨加
工して前記素子分離用絶縁層と前記トランジスタを残し
て薄膜化する工程と、前記ソース。
A second aspect of the present invention includes a step of forming an insulating layer for element isolation on a Si substrate, a step of partially removing the insulating layer for element isolation to form a window in the insulating layer, and a step of forming a window in the insulating layer. selectively forming an island-shaped single-crystal Si layer on the island-shaped single-crystal SiF layer;
forming a transistor having a drain region;
a step of adhering an insulating substrate to the side of the formed transistor; a step of polishing the Si substrate from the opposite side of the insulating substrate to leave the element isolation insulating layer and the transistor and thinning the Si substrate; sauce.

ドレイン領域と電気的接触せしめるようにソース。The source makes electrical contact with the drain region.

ドレイン電極を形成する工程とを含むことを特徴として
いる。
The method is characterized in that it includes a step of forming a drain electrode.

〔作用〕[Effect]

第1の発明の薄膜トランジスタの構造を、第1図(a)
、 fb)に示す。(a)は断面図、(b)は平面図で
ある。
The structure of the thin film transistor of the first invention is shown in FIG. 1(a).
, fb). (a) is a sectional view, and (b) is a plan view.

3■々トランジスタが形成される単結晶S i Fi 
6及びドレイン、ソース領域7,8は素子分離用絶縁層
9と同一面内に形成されている。また、透明電極からな
る絵素電極13はソース領域8と電気的にる。更にデバ
イス全体が透明接着材2によって透明絶縁性基板1に接
着されているため、透明絶縁性基板1から入射した光は
吸収がほとんどなく絵素電極13に到達するため、透過
型液晶ディスプレイとして最適な構造である。
Single crystal Si Fi in which 3 transistors are formed
6 and drain and source regions 7 and 8 are formed in the same plane as the element isolation insulating layer 9. Further, the picture element electrode 13 made of a transparent electrode is electrically connected to the source region 8. Furthermore, since the entire device is bonded to the transparent insulating substrate 1 with the transparent adhesive 2, the light incident from the transparent insulating substrate 1 reaches the pixel electrode 13 with almost no absorption, making it ideal for use as a transmissive liquid crystal display. It has a unique structure.

第2の発明である薄膜トランジスタの製造方法を、第2
図(a)〜(f)に示す。Si基板14上に島状に窓が
あけられた素子分離用絶縁層9を形成し、島状の窓部に
単結晶Si層6を選択的に形成する(第2図(a))。
The method for manufacturing a thin film transistor, which is the second invention, is
Shown in Figures (a) to (f). An insulating layer 9 for element isolation having an island-shaped window is formed on the Si substrate 14, and a single-crystal Si layer 6 is selectively formed in the island-shaped window portion (FIG. 2(a)).

続いて通常のMOSプロセスに従いMOSFETを形成
する(第2図(b))。このとき、ソース、ドレイン領
域8.7は通常イオン注入や不純物拡散等でつくられる
が、ソース、ドレイン領域の深さは素子分離用絶縁層9
や単結晶Si層6とほぼ同じであるか深いように形成す
る。
Subsequently, a MOSFET is formed according to a normal MOS process (FIG. 2(b)). At this time, the source and drain regions 8.7 are usually formed by ion implantation, impurity diffusion, etc., but the depth of the source and drain regions is determined by the element isolation insulating layer 9.
It is formed to have a depth that is approximately the same as or deeper than the single crystal Si layer 6.

これにより絶縁性基板1に張付けて化学研磨によりSi
基板14を除去した後、ドレイン、ソース領域が表面に
現れるようになる(第2図(d))。その後、ドレイン
、ソース領域7,8と電気的接触せしめるようにドレイ
ン、ソース電極10.11を形成する(第2図(f))
事により、簡単なプロセスで逆スタガード構造の単結晶
Si薄膜トランジスタが形成される。この工程から分る
ように、従来の技術で行われた2回のデバイス転写が本
発明では1回で良くプロセスが簡単になっている。また
、ドレイン配線とゲート配線が比較的厚い素子分離用絶
縁膜によって簡単に多層配線されており、電極間の短絡
等の画素欠陥の恐れの少ない薄膜トランジスタアレイが
得られる。
As a result, it is attached to the insulating substrate 1 and the Si is bonded by chemical polishing.
After removing the substrate 14, drain and source regions appear on the surface (FIG. 2(d)). Thereafter, drain and source electrodes 10 and 11 are formed so as to be in electrical contact with the drain and source regions 7 and 8 (FIG. 2(f)).
As a result, a single-crystal Si thin film transistor with an inverted staggered structure can be formed by a simple process. As can be seen from this step, in the present invention, device transfer is performed only once, instead of twice in the conventional technique, simplifying the process. In addition, the drain wiring and gate wiring are easily multilayered by using a relatively thick insulating film for element isolation, and a thin film transistor array can be obtained with less risk of pixel defects such as short circuits between electrodes.

〔実施例〕〔Example〕

本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described using the drawings.

第1図は第1の発明の一実施例を示す断面図及び平面図
である。また第2図(a)〜(「)は第2の発明の薄膜
トランジスタの製造方法の一実施例を示す。
FIG. 1 is a sectional view and a plan view showing an embodiment of the first invention. FIGS. 2(a) to 2(a) show an embodiment of the method for manufacturing a thin film transistor according to the second invention.

各製造工程での断面図である。なお、第2図に示す製造
方法は、第1図に示す薄膜トランジスタの製造方法を示
すものである。
It is a sectional view in each manufacturing process. Note that the manufacturing method shown in FIG. 2 is a method for manufacturing the thin film transistor shown in FIG. 1.

第2図において、p型Si基板14に素子分離用絶縁層
9として熱酸化膜を0.7 μm形成し、ドライエツチ
ング加工により島状の窓を形成する。この島状の窓部分
にS iHz C(!z  H2HCIC方形を用いて
単結晶Si層6を選択的に形成する(第2図(a))。
In FIG. 2, a thermal oxide film with a thickness of 0.7 μm is formed as an element isolation insulating layer 9 on a p-type Si substrate 14, and an island-shaped window is formed by dry etching. A single-crystal Si layer 6 is selectively formed in this island-shaped window portion using a SiHz C (!z H2HCIC square) (FIG. 2(a)).

続いて、ゲート絶縁膜3として熱酸化膜を0.2μm形
成し、さらに100kVの加速電圧で5XIOI5cm
−”のほう素をマスクを用いて単結晶Si層6に注入し
、950℃、150分間アニールして、約1μmの深さ
にほう素を拡散しソース、ドレイン領域8,7を形成す
る。さらにゲート電極4として/lを0.3μm形成し
パターニングする。その後、第1の絶縁保護層5として
、CVDを用いて5in2を0.6 pm形成し、MO
SFETが形成される(第2図(b))。
Subsequently, a thermal oxide film with a thickness of 0.2 μm was formed as the gate insulating film 3, and a 5×IOI of 5 cm was further formed at an accelerating voltage of 100 kV.
-'' boron is implanted into the single crystal Si layer 6 using a mask, and annealed at 950° C. for 150 minutes to diffuse boron to a depth of about 1 μm to form source and drain regions 8 and 7. Further, a gate electrode 4 of 0.3 μm /l is formed and patterned. Thereafter, a first insulating protective layer 5 of 5 in 2 is formed with a thickness of 0.6 pm using CVD, and MO
A SFET is formed (FIG. 2(b)).

更に絶縁性基板1上に透明接着材2(たとえばエポキシ
樹脂)を用いてMOS F ETが形成されたSi基板
を、ゲート電極4側が絶縁性基板1と貼り合わせられる
ように接着する(第2図(C))。
Furthermore, the Si substrate on which the MOS FET is formed is bonded onto the insulating substrate 1 using a transparent adhesive 2 (e.g., epoxy resin) so that the gate electrode 4 side is bonded to the insulating substrate 1 (see FIG. 2). (C)).

この後、Si基板14は化学研磨を用いて除去、薄膜化
する(第2図(d))。化学研摩時の研だ材としては0
.02μm径の石英粒と有機アンモニアを用いた。これ
により、Si結晶の方が絶縁層9よりも約10倍研磨ス
ピードが速くなり、絶縁N9の厚さで自動的に研摩が終
了する。さらに、スパッタ法を用いて第2の絶縁保護層
12としてSingを1500人形成し、コンタクトホ
ールを開ける(第2図(e))。
Thereafter, the Si substrate 14 is removed and thinned using chemical polishing (FIG. 2(d)). 0 as an abrasive material during chemical polishing
.. Quartz grains with a diameter of 0.02 μm and organic ammonia were used. As a result, the polishing speed of the Si crystal becomes about 10 times faster than that of the insulating layer 9, and the polishing automatically ends when the thickness of the insulating layer N9 is reached. Furthermore, 1,500 layers of Sing are formed as the second insulating protective layer 12 using a sputtering method, and contact holes are opened (FIG. 2(e)).

その後、ドレイン、ソース電極10.11としてAlを
0.3 μm形成し、ドレイン、ソース領域7゜8と電
気的に接続されるようにパターニング形成する。更に、
液晶ディスプレイ用薄膜トランジスタアレイを形成する
場合には、ソース電極11と接続されるように透明電極
として酸化インジウム銭(ITO)をスパッタ法で10
00人形成し、パターニングして絵素電極13を形成し
、ディスプレイ用薄膜トランジスタが完成される(第2
図(f))。第1図は、以上のようにして製造された薄
膜トランジスタを示している6 なお、本実施例においてはANゲー)pMO3FETが
形成されているが、多結晶Siゲートを用いたFETや
nMO3FETでも本発明は有効である。また、本実施
例においては第1.第2の絶縁保護層5,12は信頼性
向上のため形成しであるが、必ずしも必要なものではな
い。
Thereafter, Al is formed to a thickness of 0.3 .mu.m as drain and source electrodes 10.11, and patterned to be electrically connected to the drain and source regions 7.8. Furthermore,
When forming a thin film transistor array for a liquid crystal display, 100% of indium oxide (ITO) is sputtered as a transparent electrode so as to be connected to the source electrode 11.
The thin film transistor for display is completed by patterning and forming the pixel electrode 13.
Figure (f)). FIG. 1 shows a thin film transistor manufactured as described above6. Note that in this example, a pMO3FET (AN gate) is formed, but an FET using a polycrystalline Si gate or an nMO3FET can also be used according to the present invention. is valid. Moreover, in this embodiment, the first. The second insulating protective layers 5 and 12 are formed to improve reliability, but are not necessarily required.

〔発明の効果〕〔Effect of the invention〕

本発明による薄膜トランジスタの特性を調べた結果、9
MO3薄膜トランジスタで、移動度〜200cIa/v
 −5ec 、  OF F電流0.8〜4 Xl0−
12A、nMO3薄膜トランジスタで、移動度〜600
 cd/v・sec、OFF電流2〜5 Xl0−” 
Aというように、液晶ディスプレイ用の薄膜トランジス
タとして十分な性能を有するばかりか、周辺駆動回路と
しても十分な性能を有する薄膜トランジスタが得られた
。また、光透過率も80%以上の透明性を有する高性能
薄膜トランジスタが得られた。
As a result of investigating the characteristics of the thin film transistor according to the present invention, 9
Mobility ~200 cIa/v with MO3 thin film transistor
-5ec, OF current 0.8~4Xl0-
12A, nMO3 thin film transistor, mobility ~600
cd/v・sec, OFF current 2 to 5 Xl0-”
As shown in A, a thin film transistor was obtained that not only had sufficient performance as a thin film transistor for a liquid crystal display, but also had sufficient performance as a peripheral drive circuit. Furthermore, a high-performance thin film transistor having transparency with a light transmittance of 80% or more was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明の実施例を示す図であり、(alは
断面図、(blは平面図、 第2図は第2の発明の薄膜トランジスタの製造方法の一
実施例を示す図であり、(a)〜(f)は各製造工程で
の断面図、 第3図は従来の単結晶Siを用いた液晶ディスプレイ用
トランジスタの構造を示す図である。 1・・・絶縁性基板 2・・・透明接着材 3・・・ゲート絶縁膜 4・・・ゲート電極 5・・・第1の絶縁保護層 6・・・単結晶Si層 7・・・ドレイン領域 8・・・ソース領域 9・・・素子分離用絶縁層 10・・・ドレイン電極 11・・・ソース電極 12・・・第2の絶縁保護層 13・・・絵素電極 14・・・Si基板 15・・・素子分離用Si層 代理人弁理士   岩  佐  義  幸第1図 第 2図 (その1) 第 2図 (その2) 第3図
FIG. 1 is a diagram showing an embodiment of the first invention, (al is a cross-sectional view, (bl is a plan view, and FIG. 2 is a diagram showing an embodiment of the method for manufacturing a thin film transistor of the second invention. 1. Insulating substrate 2 ...Transparent adhesive material 3...Gate insulating film 4...Gate electrode 5...First insulating protective layer 6...Single crystal Si layer 7...Drain region 8...Source region 9 ...Insulating layer for element isolation 10...Drain electrode 11...Source electrode 12...Second insulating protective layer 13...Picture element electrode 14...Si substrate 15...For element isolation Si layer representative patent attorney Yoshiyuki Iwasa Figure 1 Figure 2 (Part 1) Figure 2 (Part 2) Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁性基板上に設けられた薄膜トランジスタにお
いて、素子分離用絶縁層と、ソース、ドレイン領域を有
し前記素子分離用絶縁層と同一面内に設けられた島状の
単結晶Si部と、前記絶縁性基板と前記単結晶Si部と
の間に設けられたゲート絶縁膜、ゲート電極、接着絶縁
層と、前記島状の単結晶Si部に対して前記ゲート電極
と反対側にソース、ドレイン領域と電気的に接触せしめ
るように設けられたソース、ドレイン電極とを有するこ
とを特徴とする薄膜トランジスタ。
(1) In a thin film transistor provided on an insulating substrate, an insulating layer for element isolation, an island-shaped single crystal Si portion having source and drain regions and provided in the same plane as the insulating layer for element isolation; , a gate insulating film, a gate electrode, an adhesive insulating layer provided between the insulating substrate and the single-crystal Si portion, and a source on the side opposite to the gate electrode with respect to the island-shaped single-crystal Si portion; A thin film transistor characterized by having a source electrode and a drain electrode provided in electrical contact with a drain region.
(2)Si基板上に素子分離用絶縁層を形成する工程と
、前記素子分離用絶縁層を部分的に除去して絶縁層の窓
を形成する工程と、形成された窓部分に島状の単結晶S
i層を選択的に形成する工程と、前記島状の単結晶Si
層にこの層の厚さ以上の厚さを持つソース、ドレイン領
域を有するトランジスタを形成する工程と、形成された
トランジスタ側に絶縁性基板を接着する工程と、前記絶
縁性基板の反対側から前記Si基板を研磨加工して前記
素子分離用絶縁層と前記トランジスタを残して薄膜化す
る工程と、前記ソース、ドレイン領域と電気的接触せし
めるようにソース、ドレイン電極を形成する工程とを含
むことを特徴とする薄膜トランジスタの製造方法。
(2) A step of forming an insulating layer for element isolation on the Si substrate, a step of partially removing the insulating layer for element isolation to form a window in the insulating layer, and a step of forming an island-like insulating layer in the formed window portion. Single crystal S
A step of selectively forming an i-layer, and a step of forming the island-shaped single crystal Si.
A step of forming a transistor having a source and drain region having a thickness equal to or greater than the thickness of this layer in a layer, a step of bonding an insulating substrate to the side of the formed transistor, and a step of bonding the insulating substrate from the opposite side of the insulating substrate. The method includes the steps of: polishing the Si substrate to make it a thin film leaving the element isolation insulating layer and the transistor; and forming source and drain electrodes so as to make electrical contact with the source and drain regions. Characteristic method for manufacturing thin film transistors.
JP61236217A 1986-10-06 1986-10-06 Thin film transistor and manufacture thereof Pending JPS6390859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61236217A JPS6390859A (en) 1986-10-06 1986-10-06 Thin film transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61236217A JPS6390859A (en) 1986-10-06 1986-10-06 Thin film transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6390859A true JPS6390859A (en) 1988-04-21

Family

ID=16997515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61236217A Pending JPS6390859A (en) 1986-10-06 1986-10-06 Thin film transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6390859A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05152332A (en) * 1991-11-07 1993-06-18 Fujitsu Ltd Mos transistor and manufacturing method thereof
US5347154A (en) * 1990-11-15 1994-09-13 Seiko Instruments Inc. Light valve device using semiconductive composite substrate
US5455182A (en) * 1990-11-02 1995-10-03 Sharp Kabushiki Kaisha Semiconductor process for forming channel layer with passivated covering
US5496764A (en) * 1994-07-05 1996-03-05 Motorola, Inc. Process for forming a semiconductor region adjacent to an insulating layer
US5574292A (en) * 1992-05-13 1996-11-12 Seiko Instruments Inc. Semiconductor device with monosilicon layer
US5618739A (en) * 1990-11-15 1997-04-08 Seiko Instruments Inc. Method of making light valve device using semiconductive composite substrate
US5633176A (en) * 1992-08-19 1997-05-27 Seiko Instruments Inc. Method of producing a semiconductor device for a light valve
US5674758A (en) * 1995-06-06 1997-10-07 Regents Of The University Of California Silicon on insulator achieved using electrochemical etching
US5811322A (en) * 1996-07-15 1998-09-22 W. L. Gore & Associates, Inc. Method of making a broadband backside illuminated MESFET with collecting microlens
US6187605B1 (en) * 1992-08-19 2001-02-13 Seiko Instruments Inc. Method of forming a semiconductor device for a light valve

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252582A (en) * 1975-10-25 1977-04-27 Toshiba Corp Device and production for semiconductor
JPS5678168A (en) * 1980-10-08 1981-06-26 Hitachi Ltd Manufacture of semiconductor device
JPS5691276A (en) * 1979-12-25 1981-07-24 Citizen Watch Co Ltd Display panel
JPS5692573A (en) * 1979-12-26 1981-07-27 Citizen Watch Co Ltd Display panel
JPS5928330A (en) * 1982-08-10 1984-02-15 Nec Corp Vapor growth method of semiconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252582A (en) * 1975-10-25 1977-04-27 Toshiba Corp Device and production for semiconductor
JPS5691276A (en) * 1979-12-25 1981-07-24 Citizen Watch Co Ltd Display panel
JPS5692573A (en) * 1979-12-26 1981-07-27 Citizen Watch Co Ltd Display panel
JPS5678168A (en) * 1980-10-08 1981-06-26 Hitachi Ltd Manufacture of semiconductor device
JPS5928330A (en) * 1982-08-10 1984-02-15 Nec Corp Vapor growth method of semiconductor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5455182A (en) * 1990-11-02 1995-10-03 Sharp Kabushiki Kaisha Semiconductor process for forming channel layer with passivated covering
US5618739A (en) * 1990-11-15 1997-04-08 Seiko Instruments Inc. Method of making light valve device using semiconductive composite substrate
US5347154A (en) * 1990-11-15 1994-09-13 Seiko Instruments Inc. Light valve device using semiconductive composite substrate
US5486708A (en) * 1990-11-15 1996-01-23 Seiko Instruments Inc. Light valve device using semiconductive composite substrate
US5728591A (en) * 1990-11-15 1998-03-17 Seiko Instruments Inc. Process for manufacturing light valve device using semiconductive composite substrate
US5572045A (en) * 1990-11-15 1996-11-05 Seiko Instruments Inc. Light valve device using semiconductive composite substrate
JPH05152332A (en) * 1991-11-07 1993-06-18 Fujitsu Ltd Mos transistor and manufacturing method thereof
US5574292A (en) * 1992-05-13 1996-11-12 Seiko Instruments Inc. Semiconductor device with monosilicon layer
US5633176A (en) * 1992-08-19 1997-05-27 Seiko Instruments Inc. Method of producing a semiconductor device for a light valve
US6187605B1 (en) * 1992-08-19 2001-02-13 Seiko Instruments Inc. Method of forming a semiconductor device for a light valve
US5496764A (en) * 1994-07-05 1996-03-05 Motorola, Inc. Process for forming a semiconductor region adjacent to an insulating layer
US5674758A (en) * 1995-06-06 1997-10-07 Regents Of The University Of California Silicon on insulator achieved using electrochemical etching
US5811322A (en) * 1996-07-15 1998-09-22 W. L. Gore & Associates, Inc. Method of making a broadband backside illuminated MESFET with collecting microlens

Similar Documents

Publication Publication Date Title
US5258323A (en) Single crystal silicon on quartz
JP3526058B2 (en) Semiconductor device for light valve
US7989304B2 (en) Method for transferring semiconductor element, method for manufacturing semiconductor device, and semiconductor device
JP2866730B2 (en) Method of forming semiconductor circuit
EP1751789B1 (en) Flexible electro-optical apparatus and method for manufacturing the same
JPH02234134A (en) Active matrix substrate for liquid crystal display device
JP2716266B2 (en) Liquid crystal display including electrode and driving device integrated in single crystal semiconductor layer and method of manufacturing the same
JP3531415B2 (en) SOI substrate, method of manufacturing the same, semiconductor device and liquid crystal panel using the same
JPS6390859A (en) Thin film transistor and manufacture thereof
JP3211995B2 (en) Method for manufacturing semiconductor device
JPH01181570A (en) Manufacture of thin film transistor
JPH0618926A (en) Large-sized substrate for liquid crystal display and its production
CN101874289A (en) Semiconductor device manufacturing method and semiconductor device
JP2561735B2 (en) Liquid crystal display manufacturing method
JP3278296B2 (en) Method for manufacturing liquid crystal display array
JP3218861B2 (en) Manufacturing method of liquid crystal display device
JPH0611729A (en) Liquid crystal display device and its production
JP3073462B2 (en) Method of manufacturing SOI semiconductor device using electrochemical etching method and method of manufacturing active drive liquid crystal display device using the same
JP3483671B2 (en) Semiconductor device and manufacturing method thereof
JPS6390858A (en) Manufacture of thin film transistor
WO1995018463A1 (en) Single crystal silicon on quartz
JP3179160B2 (en) Semiconductor device and manufacturing method thereof
JP3342732B2 (en) Method of manufacturing semiconductor device for light valve
JP2767958B2 (en) Method for manufacturing semiconductor device
JP2633402B2 (en) Manufacturing method of liquid crystal display device