JPH02234134A - Active matrix substrate for liquid crystal display device - Google Patents

Active matrix substrate for liquid crystal display device

Info

Publication number
JPH02234134A
JPH02234134A JP1055344A JP5534489A JPH02234134A JP H02234134 A JPH02234134 A JP H02234134A JP 1055344 A JP1055344 A JP 1055344A JP 5534489 A JP5534489 A JP 5534489A JP H02234134 A JPH02234134 A JP H02234134A
Authority
JP
Japan
Prior art keywords
liquid crystal
film
wiring
substrate
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1055344A
Other languages
Japanese (ja)
Inventor
Ken Sumiyoshi
研 住吉
Mikio Sakamoto
幹雄 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1055344A priority Critical patent/JPH02234134A/en
Publication of JPH02234134A publication Critical patent/JPH02234134A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the active matrix substrate for the liquid crystal display device which has high yield and high performance by making a high-steepness step of aluminum wiring, etc., into a smooth flat surface by a process wherein a flattening film is formed by spin coating. CONSTITUTION:For example, a specific material is applied by spin coating, etc., to form the transparent insulation flattening film 110 by baking it. Then a specific device layer is adhered on a glass substrate 101 with an adhesive layer 102 and the flattening film 110 reduces the step of about 1mum formed of matrix wiring, etc., to, for example, about 0.1 - 0.2mum. Further, a step of matrix wiring, etc., is steep by photolithography, but made smooth by the flattening film 110. Therefore, a liquid crystal orientated film 112 formed on a display electrode 111, etc., becomes flat. Consequently, the whole liquid crystal orientated film 112 is rubbed uniformly without spoiling a TFT and orientated film defects are eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜半導体を用いたアクティブ素子を有する
液晶表示装置用アクティブマトリクス基板に関する. 〔従来の技術〕 近年、薄膜トランジスタ(TFT)や薄膜ダイオード(
TFD)等の薄膜半導体を用いたアクティブ素子を各画
素毎に設け、高画質化を狙ったアクティブマトリクス液
晶表示装置の開発が活発である.この様な液晶表示装置
は、液晶を2枚の基板ではさんだ構造で、一方は前記ア
クティブ素子をマトリクス状に形成したアクティブマト
リクス基板、他方は例えばガラス基板上全面に透明電極
を形成してなる対向基板から構成されている。液晶とし
ては通常コントラストの高くとれるTN型が多く用いら
れるため、アクティブ素子形成用基板もガラス等の透明
基板を利用した透過型液晶表示装置が開発されている. アクティブ素子のチャネル領域となる薄膜半導体材料と
しては、主にアモルファスシリコン(a−Si)やポリ
シリコン(poly−Si)が使用されている,a−S
iは、低温で膜形成が可能な事から安価なガラス基板を
使用でき、最近の多くのポケット型液晶テレビ等に応用
されている.poly−Siは、a=siより移動度が
大きく、また単結晶シリコン、a−Siに比べ極端に光
感度が鈍く、つま1り光に対し非常に安定な、高性能ア
クティブ素子を実現できる.このため次期高精細液晶表
示装置等への適用が期待されているが、まだ安価なガラ
ス基板が使える程の低温で、簡便に大面積形成が可能な
技術が熟成していない゛のが現状である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an active matrix substrate for a liquid crystal display device having an active element using a thin film semiconductor. [Prior art] In recent years, thin film transistors (TFTs) and thin film diodes (
There is active development of active matrix liquid crystal display devices that aim to improve image quality by providing each pixel with an active element using a thin film semiconductor such as TFD. Such a liquid crystal display device has a structure in which a liquid crystal is sandwiched between two substrates, one of which is an active matrix substrate in which the active elements are formed in a matrix, and the other is an opposing substrate made of, for example, a glass substrate with transparent electrodes formed on the entire surface. It consists of a substrate. Since TN type liquid crystals with high contrast are usually used as liquid crystals, transmission type liquid crystal display devices have been developed in which transparent substrates such as glass are used as substrates for forming active elements. Amorphous silicon (a-Si) and polysilicon (poly-Si) are mainly used as thin film semiconductor materials that form the channel region of active elements.
i allows the use of inexpensive glass substrates because the film can be formed at low temperatures, and has been applied to many recent pocket-type LCD televisions. Poly-Si has higher mobility than a=si, and has extremely low photosensitivity compared to single-crystal silicon and a-Si, which means it can realize high-performance active elements that are extremely stable against light. For this reason, it is expected that it will be applied to the next generation of high-definition liquid crystal display devices, but the current state is that the technology that can easily form large areas at low enough temperatures to use inexpensive glass substrates has not yet matured. be.

poly−Siアクティブ素子を形成する方法として通
常のシリコンIC+LSIプロセス中の高fflPol
y−Stプロセスを利用する方法がある。ただし基板材
料としては、この様な高温プロセスに耐える石英や単結
晶シリコン基板が必要である.この中で後者の単結晶シ
リコン基板を用い、光入射が無くかつ高速.高性能が要
求される周辺駆動回路を単結晶シリコントランジスタ回
路で形成し、光入射のあるアクティブ素子部をp o 
1 y − S i T F Tで形成し、アクティブ
マトリクス基板とする方法が例えば特願昭61−246
653 rアクティブマトリクス5液晶表示装置および
その製造方法」の明細書中に述べられている.この発明
によれば、第2図に示す様に例えば透明ガラス基板20
1上にエボキシまたはポリイミド等の透明な接着層20
2によりアクティブ素子が形成されたデバイス層を接着
し、アクティブマトリクス基板を構成している. デバイス層の詳細は以下の通りである.第2図には示さ
れていないが、単結晶シリコン基板上に、通常のシリコ
ンIC,LSIプロセスを用い例えば二酸化シリコンか
らなる熱酸化絶縁膜203上に島状のpoly−Si半
導体層204をマトリクス状に配列形成した後、ゲーI
・絶縁膜205.ゲート電極206を順次パターン形成
する.次にイオン注入等によりソース,ドレイン領域を
poly−Si半導体層中に形成した後、配線分離用絶
縁膜207を形成、コンタクトホールをあけ、アルミ配
線で信号配線用のトレイン配線208.ソースコンタス
ト209をパターン形成し、TPTとする.表示電極2
10はITOからなる透明電極で、ソースコンタクト2
0つと接続される.この場合、特にソースコンタクトは
無くてかまわないが、500人程度の表示電極210だ
けでは通常3000人以上のコンタクトホールを通して
ソース領域との接続の信頼性が無くなるので、ソースコ
ンタクトは有る方がよい.最後に、この単結晶シリコン
基板を裏面から選択ポリッシングにより熱酸化絶縁膜2
03まで研磨し、薄膜のデバイス層としている.周辺駆
動回路まで含めたアクティブマトリクス基板の模式的平
面図を第3図に示す.例えばゲート電極206を水平配
線、ドレイン配線208を垂直配線とするマトリクス配
線とp o 1 y − S i T F T 3 0
 3および表示電極210で各々分離された画素とから
形成されたアクティブマトリクス素子部の周囲に、周辺
駆動回路である例えば単結晶シリコントランジスタで構
成された走査駆動回路301.信号駆動回路302が設
置されている.以上の様にして形成されたアクティブマ
トリクス基板上に液晶配向膜211《第2図参照》を少
なくても表示電極210上全面に形成し、ITOからな
る透明性対向電5212が透明ガラス基板201全面に
形成された対向基板とでTN型液晶213をはさむ事に
より液晶表示装置が完成される(第2図)。
As a method for forming poly-Si active devices, high fflPol during normal silicon IC+LSI process is used.
There is a method using the y-St process. However, the substrate material must be quartz or single crystal silicon that can withstand such high-temperature processes. Among these, the latter single-crystal silicon substrate is used, and there is no light incidence and high speed. The peripheral drive circuit that requires high performance is formed with a single crystal silicon transistor circuit, and the active element part where light enters is
For example, a method of forming an active matrix substrate using 1y-S i T F T is disclosed in Japanese Patent Application No. 61-246.
653 r active matrix 5 liquid crystal display device and its manufacturing method”. According to this invention, for example, a transparent glass substrate 20 as shown in FIG.
1, a transparent adhesive layer 20 of epoxy or polyimide, etc.
2, the device layer on which the active element is formed is adhered to form an active matrix substrate. The details of the device layer are as follows. Although not shown in FIG. 2, an island-shaped poly-Si semiconductor layer 204 is formed in a matrix on a thermally oxidized insulating film 203 made of silicon dioxide, for example, on a single crystal silicon substrate using a normal silicon IC or LSI process. After forming the array in the form of
- Insulating film 205. Gate electrodes 206 are sequentially patterned. Next, after forming source and drain regions in the poly-Si semiconductor layer by ion implantation or the like, an insulating film 207 for wiring isolation is formed, a contact hole is opened, and a train wiring 208 for signal wiring is formed using aluminum wiring. The source contour 209 is patterned to form TPT. Display electrode 2
Reference numeral 10 denotes a transparent electrode made of ITO, which serves as a source contact 2.
Connected to 0. In this case, there is no particular need for a source contact, but if there are only about 500 display electrodes 210, the reliability of the connection with the source region through contact holes of 3000 or more will usually be lost, so it is better to have a source contact. Finally, a thermal oxidation insulating film 2 is applied to this single crystal silicon substrate by selective polishing from the back side.
It is polished to 03 to form a thin device layer. Figure 3 shows a schematic plan view of the active matrix board including the peripheral drive circuit. For example, there is a matrix wiring in which the gate electrode 206 is a horizontal wiring and the drain wiring 208 is a vertical wiring.
3 and pixels separated by display electrodes 210, a peripheral drive circuit, for example, a scan drive circuit 301 . A signal drive circuit 302 is installed. On the active matrix substrate formed as described above, a liquid crystal alignment film 211 (see FIG. 2) is formed on at least the entire surface of the display electrode 210, and a transparent counter electrode 5212 made of ITO is formed on the entire surface of the transparent glass substrate 201. A liquid crystal display device is completed by sandwiching a TN type liquid crystal 213 between the opposite substrates formed on the substrate (FIG. 2).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで液晶配向膜211を形成する方法として何種類
かあるがその中で最近では、製造が非常に容易なラビン
グ法が用いられている.これは、液晶配向膜として例え
ばポリイミド等の有機膜を印刷等でパターン形成した後
、液晶分子が一方向に配列する様に、布等の表面の植毛
で有機膜を摩擦する方法である.この方法により、第2
図に示した様にアクティブマトリクス基板上に形成した
有機膜をラビングで液晶配向膜211とする場合、アル
ミ配線等の段差により全域にわたり均一な配向が得られ
ない.特に、段差部、つまり表示電極210の周辺部で
顕著となる.例えばアルミ配線の膜厚による段差は、通
常1μm以上となり顕著な場合、ラビングされるのはほ
とんどアルミ配線上で、ラビングしたい表示電極210
上は無配向となってしまう。また表示電極210上を良
好な配向膜とするため摩擦力を強くしたりすると、TP
Tに損傷を与えかねない。以上の様に従来例においては
、液晶配向膜211形成のラビング時において配向膜不
良をおこしたり、またTPTに損障を与えなりする歩留
りの悪い構造であった。以上の課題は、石英基板上に直
接poty−SiTFTを形成したアクティブマトリク
ス基板においても同様である. 本発明の目的は、この様な従来の欠点を取り除き、高歩
留りで高性能な液晶表示装置用アクティブマトリクス基
板を提供する事にある.〔課題を解決するための手段〕 上記目的を達成するためには、本発明の液晶表示装置用
アクティブマトリクス基板は、絶縁性基板上に、マトリ
クス状に形成され薄膜半導体アクティブ素子.該アクテ
ィブ素子を通じ信号を制御,印加するためのマトリクス
配線,前記アクティブ素子および前記マトリスク配線を
覆い前記絶縁性基板上に形成された透明の絶縁性平坦化
膜,該絶縁性平坦化膜上に形成された表示電極とから少
なくとも構成されたものである. 〔実施例〕 以下本発明の一実施例について図面を参照して説明する
. 第1図は、本発明の一実施例を説明するための液晶表示
装置用アクティブマトリクス基板の断面図である。第1
図において、例えば保持基板として安価な透明ガラス基
板101を用い、この上に接着層102を介してpol
y−SiTFTからなるマトリクス状に配列されたアク
ティブ素子を有する薄膜のデバイス層が設置されている
構造は前に述べた従来例と同様である。また接着層10
2も従来例同様例えばエボキシ系あるいはポリイミド系
の透明性接着材である. 以下デバイス層について詳細に説明する.図示されてい
ないが単結晶シリコン基板上に熱酸化法やCVD法等に
より二酸化シリコンの絶縁膜103を形成する.厚さは
特に限定は無いが後で述べるデバイス層を形成するため
の研磨精度から1000人以上が望ましい.この絶縁膜
103上に例えばCVD法によりpoly−Si半導体
層104を蒸着、マトリクス状の各画素毎のTPTチャ
ネル領域となる様に島状にパターン化する。
By the way, there are several methods for forming the liquid crystal alignment film 211, and among them, the rubbing method, which is extremely easy to manufacture, has been used recently. This is a method in which an organic film such as polyimide is patterned by printing as a liquid crystal alignment film, and then the organic film is rubbed with flocking on the surface of cloth or the like so that the liquid crystal molecules are aligned in one direction. With this method, the second
As shown in the figure, when an organic film formed on an active matrix substrate is rubbed to form a liquid crystal alignment film 211, uniform alignment cannot be obtained over the entire area due to steps such as aluminum wiring. This is particularly noticeable at the stepped portion, that is, the peripheral portion of the display electrode 210. For example, if the level difference due to the film thickness of aluminum wiring is noticeable and is usually 1 μm or more, most of the rubbing will be done on the aluminum wiring, and the display electrode 210 to be rubbed will be rubbed.
The upper part becomes unoriented. In addition, if the frictional force is increased to form a good alignment film on the display electrode 210, the TP
This may cause damage to the T. As described above, in the conventional example, the yield was poor because alignment film defects were caused during rubbing for forming the liquid crystal alignment film 211, and the TPT was damaged. The above problems also apply to active matrix substrates in which poty-SiTFTs are directly formed on quartz substrates. An object of the present invention is to eliminate such conventional drawbacks and provide a high-yield, high-performance active matrix substrate for a liquid crystal display device. [Means for Solving the Problems] In order to achieve the above object, the active matrix substrate for a liquid crystal display device of the present invention is formed in a matrix shape on an insulating substrate and has thin film semiconductor active elements. A matrix wiring for controlling and applying signals through the active element, a transparent insulating flattening film formed on the insulating substrate to cover the active element and the matrix wiring, and a transparent insulating flattening film formed on the insulating flattening film. The display electrode is made up of at least two display electrodes. [Example] An example of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of an active matrix substrate for a liquid crystal display device for explaining one embodiment of the present invention. 1st
In the figure, for example, an inexpensive transparent glass substrate 101 is used as a holding substrate, and a pol film is placed on it with an adhesive layer 102 thereon.
The structure in which a thin film device layer having active elements arranged in a matrix of y-Si TFTs is provided is the same as the conventional example described above. Also, the adhesive layer 10
Similar to the conventional example, adhesive No. 2 is a transparent adhesive material such as epoxy or polyimide. The device layer will be explained in detail below. Although not shown, an insulating film 103 of silicon dioxide is formed on a single crystal silicon substrate by a thermal oxidation method, a CVD method, or the like. There is no particular limit to the thickness, but it is desirable to have at least 1000 polishers in view of the polishing accuracy required to form the device layer, which will be discussed later. A poly-Si semiconductor layer 104 is deposited on this insulating film 103 by, for example, the CVD method, and patterned into an island shape to form a TPT channel region for each pixel in a matrix.

続いてpoly−Si半導体層104上に例えば熱酸化
による二酸化シリコンからなるゲート絶縁膜105.p
oty−siゲート電極106を通常のシリコンICの
MOSFETと同等なプロセスで順次形成,パターン化
する,poly−Siゲート電! 1. 0 6は、そ
のままマトリクス配線の例えば水平配線を形成し、p 
o 1 y − S i T F Tの開閉制御を行な
う。poly−SL半導体層104にソース,ドレイン
領域を形成する例えばイオン注入を行なった後、ゲート
電極106と後のアルミ配線を分離する配線分離用絶縁
膜107を形成し、ソース,トレイン領域にコンタクト
ホールをあける.次いで、厚さ1μm程度にアルミニウ
ムを全面蒸着後、信号印加配線となるドレイン配線10
8およびソースコンタスト109にパターン化する.ド
レイン配線108は例えば垂直配線を形成しゲート電極
106の水平配線とてマトリクス配線を構成する.その
後、少なくともマトリクス状に配列されたpol3/−
SiTPTを含む前記マトリクス配線で囲まれた領域全
面に、例えば二酸化シリコン系塗膜材料(商品名 東京
応化製OCD)あるいはアクリル系樹脂塗膜材料(商品
名 日本合成ゴム製JSS−451)等を1μm〜2μ
m程度スビンコート等で塗布し焼成する事により透明の
絶縁性平坦化膜110を形成する。次に、マトリクス状
に配列された全てのpo 1 y−S LTFTのソー
スコンタクト109上の前記平坦化膜1.. 1 0に
フォl・リソグラフィによりコンタクトホールを形成し
、各々のソースコンタクト109と接続され各画素に分
離された例えばITOからなる透明の表示電極111を
設置する。この時表示電極111は、例えば500人〜
1000人の薄膜であるため、例えばコンタクトホール
部の段差が0.5μm〜1μmとなる様な平坦化膜11
0形成条件である場合は、エッチバック等により段差低
減が望ましい。最後に、従来例で述べた様に選択ポリッ
シングを用い、単結晶シリコン基板を裏面より研磨し、
デバイス層が完成する.平坦化膜110,表示電極11
1は、単結晶シリコ基板研磨後のアクティブマトリクス
基板上に形成する方法でもかまわない.以上の様にして
形成されたデバイス層を接着層102を介してガラス基
板101に接着した本実施例のアクティブマトリクス基
板においては、平坦化膜110によって、マトリクス配
線等による1μm程度の段差が例えば0.1〜0.2μ
m程度に軽減される.またマトリクス配線等による段差
はフォトリソグラフィにより急峻であるが、平坦化膜1
10ではなめらかな段差の構造となっている.したがっ
て表示電極上等に形成された液晶配向膜112も平坦と
なり、TPTを損なくことなく液晶配向膜全体が一様に
ラビングでき、配向膜不良は生じない. 尚、本実施例では、周辺駆動回路を単結晶シリコン基板
上に構成するのは第3図に示す従来例と同じで、平坦化
プロセスは共用も可能である.また、本実施例では、単
結晶シリコン基板上にpoly−SiTFTを形成する
アクティブマトリクス基板について説明したが、従来例
で述べた石英基板上に直接poly−SiTFTを形成
する場合でもさらにa − S i T F TやTF
D等のアクティブマトリクス基板においても本発明は適
用できる. 〔発明の効果〕 以上説明した様に、本発明の液晶表示装置用アクティブ
マトリクス基板によれば、平坦化膜111のスビンコー
トという簡単なプロセスにより、アルミ配線等による急
峻な高い段差を1なめらかで平坦な表面とすることがで
き、ラビングにより表示電極部上においてもムラの無い
良好な液晶配向膜112が形成され、良好な液晶表示を
可能とする.また摩擦力の強いラビングは不必要であり
、ラビング時におけるアルミ配線やTFT部へのダメー
ジが少なく欠陥の無い高歩留りな構造となっている.
Subsequently, a gate insulating film 105 made of silicon dioxide by thermal oxidation, for example, is formed on the poly-Si semiconductor layer 104. p
The poly-Si gate electrode 106 is sequentially formed and patterned using the same process as a MOSFET of a normal silicon IC! 1. 06 directly forms matrix wiring, for example, horizontal wiring, and p
o 1 y - S i T FT Controls opening and closing of T. After performing, for example, ion implantation to form source and drain regions in the poly-SL semiconductor layer 104, a wiring isolation insulating film 107 is formed to separate the gate electrode 106 and subsequent aluminum wiring, and contact holes are formed in the source and train regions. Open it. Next, after aluminum is deposited on the entire surface to a thickness of about 1 μm, a drain wiring 10 that becomes a signal application wiring is formed.
8 and source contrast 109. The drain wiring 108 forms, for example, a vertical wiring, and the horizontal wiring of the gate electrode 106 forms a matrix wiring. Then, at least pol3/- arranged in a matrix
For example, a silicon dioxide coating material (trade name: OCD manufactured by Tokyo Ohka Co., Ltd.) or an acrylic resin coating material (trade name: JSS-451 manufactured by Nippon Synthetic Rubber Co., Ltd.) or the like is applied to a thickness of 1 μm over the entire area surrounded by the matrix wiring containing SiTPT. ~2μ
A transparent insulating flattening film 110 is formed by coating the film in a thickness of about m with a tin coat or the like and baking it. Next, the planarization film 1. on the source contacts 109 of all the po 1 y-S LTFTs arranged in a matrix. .. A contact hole is formed in 10 by photolithography, and a transparent display electrode 111 made of, for example, ITO is installed connected to each source contact 109 and separated into each pixel. At this time, the display electrode 111 can accommodate, for example, 500 or more people.
Since it is a thin film of 1,000 layers, the flattening film 11 is such that the level difference in the contact hole part is 0.5 μm to 1 μm, for example.
If the condition is 0, it is desirable to reduce the step difference by etching back or the like. Finally, as described in the conventional example, the single crystal silicon substrate is polished from the back side using selective polishing.
The device layer is completed. Planarization film 110, display electrode 11
1 may be formed on an active matrix substrate after polishing a single crystal silicon substrate. In the active matrix substrate of this embodiment in which the device layer formed as described above is bonded to the glass substrate 101 via the adhesive layer 102, the level difference of about 1 μm due to matrix wiring etc. can be eliminated by the flattening film 110, for example. .1~0.2μ
It is reduced to about m. In addition, the level difference due to matrix wiring etc. is steep due to photolithography, but the flattening film 1
10 has a smooth step structure. Therefore, the liquid crystal alignment film 112 formed on the display electrode etc. becomes flat, and the entire liquid crystal alignment film can be rubbed uniformly without damaging the TPT, and no alignment film defects occur. In this embodiment, the peripheral drive circuit is constructed on a single-crystal silicon substrate in the same way as the conventional example shown in FIG. 3, and the planarization process can also be shared. Furthermore, in this embodiment, an active matrix substrate in which poly-Si TFTs are formed on a single crystal silicon substrate has been described, but even when poly-Si TFTs are directly formed on a quartz substrate as described in the conventional example, there is still a T F T or TF
The present invention can also be applied to active matrix substrates such as D. [Effects of the Invention] As explained above, according to the active matrix substrate for a liquid crystal display device of the present invention, steep and high steps caused by aluminum wiring etc. can be smoothed and flattened by a simple process of coating the flattening film 111. By rubbing, a good liquid crystal alignment film 112 with no unevenness is formed even on the display electrode portion, and a good liquid crystal display is possible. Furthermore, rubbing with strong frictional force is unnecessary, and the aluminum wiring and TFT parts are less damaged during rubbing, resulting in a high-yield structure with no defects.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims]  絶縁性基板上に、マトリクス状に形成され薄膜半導体
アクティブ素子、該アクティブ素子を通じ信号を制御、
印加するためのマトリクス配線、前記アクティブ素子お
よび前記マトリスク配線を覆い前記絶縁性基板上に形成
された透明の絶縁性平坦化膜、該絶縁性平坦化膜上に形
成された表示電極とから少なくとも構成された事を特徴
とする液晶表示装置用アクティブマトリスク基板。
Thin film semiconductor active elements formed in a matrix on an insulating substrate, controlling signals through the active elements,
The display device comprises at least a matrix wiring for applying voltage, a transparent insulating flattening film formed on the insulating substrate to cover the active element and the matrix wiring, and a display electrode formed on the insulating flattening film. An active matrix substrate for a liquid crystal display device, which is characterized by:
JP1055344A 1989-03-07 1989-03-07 Active matrix substrate for liquid crystal display device Pending JPH02234134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055344A JPH02234134A (en) 1989-03-07 1989-03-07 Active matrix substrate for liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055344A JPH02234134A (en) 1989-03-07 1989-03-07 Active matrix substrate for liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH02234134A true JPH02234134A (en) 1990-09-17

Family

ID=12995891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055344A Pending JPH02234134A (en) 1989-03-07 1989-03-07 Active matrix substrate for liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH02234134A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177325A (en) * 1990-11-13 1992-06-24 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JPH04177326A (en) * 1990-11-13 1992-06-24 Semiconductor Energy Lab Co Ltd Liquid crystal display device and driving method thereof
US5486939A (en) * 1994-04-28 1996-01-23 Xerox Corporation Thin-film structure with insulating and smoothing layers between crossing conductive lines
US5721601A (en) * 1994-09-29 1998-02-24 Sanyo Electric Co., Ltd. Display units having two insolating films and a planarizing film and process for producing the same
JPH10186399A (en) * 1996-12-20 1998-07-14 Sony Corp Liquid crystal device
US5899547A (en) * 1990-11-26 1999-05-04 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US5933205A (en) * 1991-03-26 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same
US5956105A (en) * 1991-06-14 1999-09-21 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US6157428A (en) * 1997-05-07 2000-12-05 Sanyo Electric Co., Ltd. Liquid crystal display
US6195139B1 (en) 1992-03-04 2001-02-27 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6204905B1 (en) 1997-11-18 2001-03-20 Sanyo Electric Co., Ltd. Vertical alignment liquid crystal display device having planarized substrate surface
JP2001109402A (en) * 1995-11-17 2001-04-20 Semiconductor Energy Lab Co Ltd Display device
JP2001125510A (en) * 1995-11-17 2001-05-11 Semiconductor Energy Lab Co Ltd Active matrix type el display device
US6242758B1 (en) 1994-12-27 2001-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device employing resinous material, method of fabricating the same and electrooptical device
US6246458B1 (en) 1997-11-18 2001-06-12 Sanyo Electric Co., Ltd. Method for manufacturing liquid crystal display
US6369788B1 (en) 1990-11-26 2002-04-09 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US6441468B1 (en) 1995-12-14 2002-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2002095834A1 (en) * 2001-05-18 2002-11-28 Sanyo Electric Co., Ltd. Thin film transistor and active matrix type display unit production methods therefor
US6563558B2 (en) 1997-11-18 2003-05-13 Sanyo Electric Co., Ltd. Liquid crystal display with light shielding film
JP2003229282A (en) * 2003-01-09 2003-08-15 Idemitsu Kosan Co Ltd Organic active el light emitting device
US6693301B2 (en) 1991-10-16 2004-02-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving and manufacturing the same
US6800875B1 (en) 1995-11-17 2004-10-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix electro-luminescent display device with an organic leveling layer
US6893906B2 (en) 1990-11-26 2005-05-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US6911688B2 (en) 2002-04-15 2005-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and manufacturing method thereof
US6960786B2 (en) 2002-05-13 2005-11-01 Semiconductor Energy Laboratory Co., Ltd. Display device
US6963382B1 (en) 1995-11-17 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display and method of driving same
US6992332B2 (en) 2002-05-15 2006-01-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method for manufacturing the same
US7038239B2 (en) 2002-04-09 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US7071910B1 (en) 1991-10-16 2006-07-04 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device and method of driving and manufacturing the same
US7116302B2 (en) 1991-10-16 2006-10-03 Semiconductor Energy Laboratory Co., Ltd. Process of operating active matrix display device having thin film transistors
US7154147B1 (en) * 1990-11-26 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US7169657B2 (en) 1992-03-26 2007-01-30 Semiconductor Energy Laboratory Co., Ltd. Process for laser processing and apparatus for use in the same
US7242021B2 (en) 2002-04-23 2007-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display element using semiconductor device
US7253440B1 (en) 1991-10-16 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having at least first and second thin film transistors
US7253437B2 (en) 1990-12-25 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Display device having a thin film transistor
US8012782B2 (en) 1995-03-18 2011-09-06 Semiconductor Energy Laboratory Co., Ltd. Method for producing display device
US8835271B2 (en) 2002-04-09 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US9366930B2 (en) 2002-05-17 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Display device with capacitor elements

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104026A (en) * 1986-10-21 1988-05-09 Nec Corp Manufacture of liquid crystal display device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104026A (en) * 1986-10-21 1988-05-09 Nec Corp Manufacture of liquid crystal display device

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04177325A (en) * 1990-11-13 1992-06-24 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JPH04177326A (en) * 1990-11-13 1992-06-24 Semiconductor Energy Lab Co Ltd Liquid crystal display device and driving method thereof
US7462515B2 (en) 1990-11-13 2008-12-09 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US6893906B2 (en) 1990-11-26 2005-05-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US6369788B1 (en) 1990-11-26 2002-04-09 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US5899547A (en) * 1990-11-26 1999-05-04 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US5905555A (en) * 1990-11-26 1999-05-18 Semiconductor Energy Laboratory Co., Ltd. Active matrix type electro-optical device having leveling film
US7154147B1 (en) * 1990-11-26 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US5946059A (en) * 1990-11-26 1999-08-31 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and driving method for the same
US7375375B2 (en) 1990-12-25 2008-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US7253437B2 (en) 1990-12-25 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Display device having a thin film transistor
US5963278A (en) * 1991-03-26 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same
US5933205A (en) * 1991-03-26 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same
US5956105A (en) * 1991-06-14 1999-09-21 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US7116302B2 (en) 1991-10-16 2006-10-03 Semiconductor Energy Laboratory Co., Ltd. Process of operating active matrix display device having thin film transistors
US7253440B1 (en) 1991-10-16 2007-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having at least first and second thin film transistors
US6693301B2 (en) 1991-10-16 2004-02-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving and manufacturing the same
US7071910B1 (en) 1991-10-16 2006-07-04 Semiconductor Energy Laboratory Co., Ltd. Electrooptical device and method of driving and manufacturing the same
US6759680B1 (en) 1991-10-16 2004-07-06 Semiconductor Energy Laboratory Co., Ltd. Display device having thin film transistors
US6195139B1 (en) 1992-03-04 2001-02-27 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US7123320B2 (en) 1992-03-04 2006-10-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US8035773B2 (en) 1992-03-04 2011-10-11 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US6618105B2 (en) 1992-03-04 2003-09-09 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device
US7169657B2 (en) 1992-03-26 2007-01-30 Semiconductor Energy Laboratory Co., Ltd. Process for laser processing and apparatus for use in the same
US7781271B2 (en) 1992-03-26 2010-08-24 Semiconductor Energy Laboratory Co., Ltd. Process for laser processing and apparatus for use in the same
US5486939A (en) * 1994-04-28 1996-01-23 Xerox Corporation Thin-film structure with insulating and smoothing layers between crossing conductive lines
US5721601A (en) * 1994-09-29 1998-02-24 Sanyo Electric Co., Ltd. Display units having two insolating films and a planarizing film and process for producing the same
US6429053B1 (en) 1994-12-27 2002-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device method of fabricating same, and, electrooptical device
US6242758B1 (en) 1994-12-27 2001-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device employing resinous material, method of fabricating the same and electrooptical device
US8012782B2 (en) 1995-03-18 2011-09-06 Semiconductor Energy Laboratory Co., Ltd. Method for producing display device
US6867434B2 (en) 1995-11-17 2005-03-15 Semiconductor Energy Laboratory Co., Ltd. Active matrix electro-luminescent display with an organic leveling layer
US6800875B1 (en) 1995-11-17 2004-10-05 Semiconductor Energy Laboratory Co., Ltd. Active matrix electro-luminescent display device with an organic leveling layer
US6963382B1 (en) 1995-11-17 2005-11-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display and method of driving same
JP2001125510A (en) * 1995-11-17 2001-05-11 Semiconductor Energy Lab Co Ltd Active matrix type el display device
JP2001109402A (en) * 1995-11-17 2001-04-20 Semiconductor Energy Lab Co Ltd Display device
US9213193B2 (en) 1995-11-17 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display and method of driving
US6445059B1 (en) 1995-12-14 2002-09-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6441468B1 (en) 1995-12-14 2002-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US6787887B2 (en) 1995-12-14 2004-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JPH10186399A (en) * 1996-12-20 1998-07-14 Sony Corp Liquid crystal device
US6157428A (en) * 1997-05-07 2000-12-05 Sanyo Electric Co., Ltd. Liquid crystal display
US6246458B1 (en) 1997-11-18 2001-06-12 Sanyo Electric Co., Ltd. Method for manufacturing liquid crystal display
US6563558B2 (en) 1997-11-18 2003-05-13 Sanyo Electric Co., Ltd. Liquid crystal display with light shielding film
US6204905B1 (en) 1997-11-18 2001-03-20 Sanyo Electric Co., Ltd. Vertical alignment liquid crystal display device having planarized substrate surface
US6362864B2 (en) 1997-11-18 2002-03-26 Sanyo Electric Co., Ltd. Vertical alignment liquid crystal display device having planarized substrate surface
US6995048B2 (en) 2001-05-18 2006-02-07 Sanyo Electric Co., Ltd. Thin film transistor and active matrix type display unit production methods therefor
WO2002095834A1 (en) * 2001-05-18 2002-11-28 Sanyo Electric Co., Ltd. Thin film transistor and active matrix type display unit production methods therefor
US10854642B2 (en) 2002-04-09 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US8946717B2 (en) 2002-04-09 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US10700106B2 (en) 2002-04-09 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US7038239B2 (en) 2002-04-09 2006-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US10083995B2 (en) 2002-04-09 2018-09-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US9406806B2 (en) 2002-04-09 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US11101299B2 (en) 2002-04-09 2021-08-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US9666614B2 (en) 2002-04-09 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US8835271B2 (en) 2002-04-09 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
US10050065B2 (en) 2002-04-09 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US9105727B2 (en) 2002-04-09 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US8946718B2 (en) 2002-04-09 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element and display device using the same
US6911688B2 (en) 2002-04-15 2005-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device and manufacturing method thereof
US7148510B2 (en) 2002-04-15 2006-12-12 Semiconductor Energy Laboratory Co. Ltd. Electronic apparatus having a protective circuit
US7242021B2 (en) 2002-04-23 2007-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display element using semiconductor device
US7554116B2 (en) 2002-05-13 2009-06-30 Semiconductor Energy Laboratory Co., Ltd. Display device
US9508756B2 (en) 2002-05-13 2016-11-29 Semiconductor Energy Laboratory Co., Ltd. Display device
US9165991B2 (en) 2002-05-13 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Display device
US9966390B2 (en) 2002-05-13 2018-05-08 Semicondutcor Energy Laboratory Co., LTD. Display device
US8927994B2 (en) 2002-05-13 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Display device
US6960786B2 (en) 2002-05-13 2005-11-01 Semiconductor Energy Laboratory Co., Ltd. Display device
US7723179B2 (en) 2002-05-15 2010-05-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method for manufacturing the same
US6992332B2 (en) 2002-05-15 2006-01-31 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method for manufacturing the same
US9366930B2 (en) 2002-05-17 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Display device with capacitor elements
US10133139B2 (en) 2002-05-17 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Display device
US10527903B2 (en) 2002-05-17 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Display device
US11422423B2 (en) 2002-05-17 2022-08-23 Semiconductor Energy Laboratory Co., Ltd. Display device
JP2003229282A (en) * 2003-01-09 2003-08-15 Idemitsu Kosan Co Ltd Organic active el light emitting device

Similar Documents

Publication Publication Date Title
JPH02234134A (en) Active matrix substrate for liquid crystal display device
US6040200A (en) Method of fabricating semiconductor device having stacked-layered substrate
JP2821830B2 (en) Semiconductor thin film device and its application device and method of manufacturing semiconductor thin film device
KR100653758B1 (en) Semiconductor device and method of fabricating the same
US7477352B2 (en) Liquid crystal display device including step-compensating pattern and fabricating method thereof
US5349453A (en) Liquid crystal display device with microlenses on same plane as switching elements
JPH1020298A (en) Liquid crystal display device
KR100811640B1 (en) liquid crystal display devices
US6521950B1 (en) Ultra-high resolution liquid crystal display on silicon-on-sapphire
JPH02198428A (en) Active matrix substrate for liquid crystal display device
JPH06291291A (en) Manufacture of semiconductor device
JPS6390859A (en) Thin film transistor and manufacture thereof
JPH02211428A (en) Active matrix substrate for liquid crystal display device
KR100264889B1 (en) Fabrication method of lcd with plastic substrate
JPH0611729A (en) Liquid crystal display device and its production
US6954235B1 (en) Silicon-on-sapphire display apparatus and method of fabricating same
US20050157226A1 (en) Integrated color filter and fabricating method thereof
JP3805754B2 (en) Active matrix substrate and manufacturing method thereof
JPH0980412A (en) Manufacture of liquid crystal display device
JP2838612B2 (en) Light valve device and manufacturing method thereof
JPH07248508A (en) Liquid crystal display device
JPS6145221A (en) Device for image display and its manufacture
JPH1048660A (en) Liquid crystal display device
WO2014036752A1 (en) Liquid crystal display panel
JP3111568B2 (en) Active matrix substrate and manufacturing method thereof