JPS63845B2 - - Google Patents

Info

Publication number
JPS63845B2
JPS63845B2 JP55154255A JP15425580A JPS63845B2 JP S63845 B2 JPS63845 B2 JP S63845B2 JP 55154255 A JP55154255 A JP 55154255A JP 15425580 A JP15425580 A JP 15425580A JP S63845 B2 JPS63845 B2 JP S63845B2
Authority
JP
Japan
Prior art keywords
layer
film
substrate
polymer molded
molded substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55154255A
Other languages
Japanese (ja)
Other versions
JPS5778628A (en
Inventor
Koichi Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP55154255A priority Critical patent/JPS5778628A/en
Publication of JPS5778628A publication Critical patent/JPS5778628A/en
Publication of JPS63845B2 publication Critical patent/JPS63845B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/66Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers
    • G11B5/672Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent the record carriers consisting of several layers having different compositions in a plurality of magnetic layers, e.g. layer compositions having differing elemental components or differing proportions of elements

Description

【発明の詳細な説明】 本発明は、磁気記録層のほぼ厚さ方向に沿う方
向の磁化によつて記録を行う、いわゆる垂直磁化
による磁気記録媒体の製造方法に関する。特に、
テープ、シート、デイスク等の形態別にみると、
いわゆるフレキシブル磁気デイスクの製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium using so-called perpendicular magnetization, in which recording is performed by magnetization in a direction substantially along the thickness direction of a magnetic recording layer. especially,
By type of tape, sheet, disk, etc.,
This invention relates to a method of manufacturing a so-called flexible magnetic disk.

記録密度の向上の努力は、高抗磁力、薄膜の磁
気記録媒体を生み、最近では蒸着による金属薄膜
型の磁気テープも実用に供されるに至つている。
Efforts to improve recording density have produced thin-film magnetic recording media with high coercive force, and recently, vapor-deposited metal thin-film magnetic tapes have come into practical use.

これは面内記録で最も高い記録密度を得るとさ
れる記録媒体であるが、この媒体と競合しうる媒
体として垂直記録媒体の提案がなされ、各方面で
研究が進められている。
This is a recording medium that is said to achieve the highest recording density with longitudinal recording, but a perpendicular recording medium has been proposed as a medium that can compete with this medium, and research is progressing in various fields.

これまでに知られている最も実用化に近い電磁
変換特性を有する媒体の構成は、いわゆる両面フ
レキシブル磁気デイスクと呼ばれたものである。
The configuration of a medium that has electromagnetic conversion characteristics closest to practical use known to date is what is called a double-sided flexible magnetic disk.

これは、第1図に断面構造を示したように、ポ
リエステル、ポリアミド、ポリイミド等の高分子
成形物基板1の両面に、パーマロイ層2,4と、
Co―Crの合金層3,5を積層してなる媒体であ
る。
As the cross-sectional structure is shown in FIG. 1, this has permalloy layers 2 and 4 on both sides of a molded polymer substrate 1 made of polyester, polyamide, polyimide, etc.
This is a medium formed by stacking Co--Cr alloy layers 3 and 5.

この構成は、本質的に逃げられない薄膜の内部
応力による媒体の変形を一時的に相殺するために
とられたものであり、記録、再生には一方の面に
形成された合金層は不要であり、本質的な利点を
有するものではなく、かつ製造コスト面からみて
も、片面にのみ磁気記録層を有するデイスクの製
造方法への期待は高くなつてきている。
This configuration was adopted to temporarily offset the deformation of the medium due to the essentially inescapable internal stress of the thin film, and the alloy layer formed on one surface is not required for recording and playback. However, there are high expectations for a method of manufacturing a disk having a magnetic recording layer on only one side, since it does not have any essential advantages and also from a manufacturing cost perspective.

本発明は、このような業界の要求に充分応え得
るものであり、対象となる磁気記録媒体の断面構
造の代表例は第2図に示す通りで、高分子成形物
基板6の上に0.2〜1.0μのパーマロイ層7、その
上に磁気記録層としての例えば0.3〜1.0μのCo〜
Crの合金層を形成したものである。
The present invention can fully meet these industry demands, and a representative example of the cross-sectional structure of the target magnetic recording medium is as shown in FIG. Permalloy layer 7 with a thickness of 1.0μ, and on top of that a Co~ layer with a thickness of 0.3 to 1.0μ as a magnetic recording layer.
A Cr alloy layer is formed.

以下本発明を実施するための装置の一例を第3
図に示し、説明する。
A third example of the apparatus for carrying out the present invention will be described below.
It is shown and explained in the figure.

真空槽11の内部に高分子成形物基板12の移
動搬送系、すなわち、捲き出し軸13、捲き取り
軸14、フリーローラ15、回転ドラム16が設
けられている。勿論、エキスパンダローラ、ダン
サーローラ等は、搬送系の制御方式等に応じてそ
の都度工夫されるのはいうまでもない。
A moving conveyance system for the polymer molded substrate 12 is provided inside the vacuum chamber 11, that is, a winding shaft 13, a winding shaft 14, a free roller 15, and a rotating drum 16. Of course, it goes without saying that the expander rollers, dancer rollers, etc. are devised each time depending on the control system of the conveyance system.

真空槽11の内部は、真空排気装置17により
たえず排気され、時により外部より積極的にガス
を導入し、所定の圧力で平衡させることも当然と
られることである。図ではいわゆるスパツタリン
グ法により、合金層を形成する例を模式的に示し
たが、電子ビーム蒸着法や他の公知の物理蒸着法
によつてもよいのは勿論で、その場合は、蒸着ド
ラム16を複数個にする等は適宜工夫されるべき
である。18はNiFeのスパツタ源を、19は例
えばCo―15wt%Crのスパツタ源をそれぞれ模式
的に示している。スパツタ源の構成は、公知のカ
ソード・アノードより構成されている二極スパツ
タ方式でもよいし、他の変形でもよい。
The inside of the vacuum chamber 11 is constantly evacuated by the evacuation device 17, and it is natural that gas is sometimes actively introduced from the outside to balance the pressure at a predetermined level. Although the figure schematically shows an example in which the alloy layer is formed by a so-called sputtering method, it is of course possible to use an electron beam evaporation method or other known physical vapor deposition method. Appropriate measures should be taken, such as using multiple numbers. Reference numeral 18 schematically shows a NiFe sputter source, and 19 schematically shows a Co-15wt% Cr sputter source, for example. The configuration of the sputter source may be a bipolar sputter system consisting of a known cathode and anode, or may be of other variations.

いずれにしても高周波の利用が一般的である。
本発明者も主として高周波スパツタ方式を用いて
きたが、それは本発明の重要点が後工程にあるた
めで、合金層の形成は他に直流スパツタ法、電子
ビーム蒸着法の確認を行つた。この製膜法による
差は、後工程の条件に影響を有するものの本質的
なものではなく、調整範囲内の変化であつた。
In any case, the use of high frequencies is common.
The present inventor has mainly used the high-frequency sputtering method, but this is because the important point of the present invention is in the post-process, and for forming the alloy layer, we have also confirmed the DC sputtering method and the electron beam evaporation method. Although this difference due to the film forming method had an influence on the conditions of the post-process, it was not essential and was a change within the adjustment range.

まず基板の選択であるが、主として二軸延伸し
たポリエチレンテレフタレートフイルムで、いわ
ゆる配向度に異方性のないバランス型を用いた。
厚み範囲は10μ〜60μで、平均的なヤング率は400
〜500Kg/mm2であつた。他に、6μ〜40μのポリア
ミドフイルム、45μのポリイミドフイルムについ
ても本発明の効果を確認した。
First, regarding the selection of the substrate, a biaxially stretched polyethylene terephthalate film, which is a so-called balanced type without anisotropy in orientation, was used.
Thickness ranges from 10μ to 60μ, average Young's modulus is 400
It was ~500Kg/ mm2 . In addition, the effects of the present invention were also confirmed for polyamide films of 6μ to 40μ and polyimide films of 45μ.

基板の幅は550mmと200mmの2水準で、標準的な
製造長さは1000mである。
The width of the board is 550mm and 200mm, and the standard manufacturing length is 1000m.

まずパーマロイ層の形成は、回転ドラム(直径
1m)の周側面に沿つて、至近距離9cmの位置に
ターゲツトを配して行つた。ターゲツト面積は
600mm×300mmを3枚用いた。高周波は13.56MHz
で、アルゴンガスを導入し、圧力はサーボモータ
による弁調節を行い、2×10-2〜3×10-2Torr
の範囲に保持した。
First, the permalloy layer was formed by placing a target at a close distance of 9 cm along the circumferential side of a rotating drum (1 m in diameter). The target area is
Three sheets of 600 mm x 300 mm were used. High frequency is 13.56MHz
Then, argon gas was introduced, and the pressure was adjusted by a valve using a servo motor to 2×10 -2 to 3×10 -2 Torr.
was maintained within the range of

膜形成に先だち、20m/minでNiFe、Co―Cr
のスパツタ源を利用して、90W〜120Wの高周波
電力で、高分子フイルム基板に表面処理を施し
た。
Prior to film formation, NiFe, Co-Cr at 20 m/min
Using a sputtering source, a polymer film substrate was surface treated with high frequency power of 90W to 120W.

この時の導入ガスは、ArとO2の混合ガスで、
ArとO2との流量比でほぼ1:2の値になるよう
に調節した。
The gas introduced at this time is a mixed gas of Ar and O 2 .
The flow rate ratio of Ar and O 2 was adjusted to a value of approximately 1:2.

この処理の重要性、特にO2の存在の重要性は、
記録再生の耐久性、とりわけ多湿環境での耐久性
の確保において顕著な効果を有する点である。
The importance of this treatment, especially the importance of the presence of O2 , is
This is a point that has a remarkable effect in ensuring durability of recording and reproduction, especially in a humid environment.

連続して、前処理としての上記処理を施した
後、NiFe膜、Co―Cr膜を形成するような装置構
成が実質的であることは当然であるが、詳細な説
明は省略する。
It goes without saying that the apparatus has a substantial configuration in which the NiFe film and the Co--Cr film are successively formed after performing the above-mentioned pre-treatment, but a detailed explanation will be omitted.

標準的な成膜条件は、ラインスピード3m/
minで、NiFeへの高周波電力の投入は450〜
900W/ターゲツト、Co―Crへの高周波電力投入
は1600〜1950W/ターゲツトで、基板の過熱防止
のために、回転ドラム16の表面性、冷媒の循環
路構成には充分配慮した。
Standard film forming conditions are line speed 3m/
min, the input of high frequency power to NiFe is 450 ~
The high frequency power input to Co-Cr was 900W/target and 1600 to 1950W/target, and sufficient consideration was given to the surface quality of the rotating drum 16 and the coolant circulation path configuration to prevent overheating of the substrate.

磁気特性は、NiFe層が保磁力10O¨e以下、飽和
磁化(Ms)は500〜700G、Co―Cr層は膜面に垂
直な方向の保磁力が800〜1000O¨e、飽和磁化
(Ms)が560〜650G、膜厚は標準値として0.4μと
した。
As for the magnetic properties, the NiFe layer has a coercive force of 10 O¨e or less, and the saturation magnetization (Ms) is 500 to 700 G. The Co-Cr layer has a coercive force of 800 to 1000 O¨e in the direction perpendicular to the film surface, and the saturation magnetization (Ms). was 560 to 650G, and the film thickness was set to 0.4μ as a standard value.

膜厚の均一性は、550mm幅のフイルムの場合、
500mmの範囲で±4%、200mm幅のフイルムの場
合、180mmの範囲で±3%であつた。またそれぞ
れの磁気特性の均一性は保磁力がNiFe層で±18
%、Co―Cr層で±2%、MsでNiFe層が±6%、
Co―Cr層で±3%であつた。NiFe層の保磁力の
バラツキが大きいが、これは記録再生になんら支
障のないものであり、後述するように、本発明に
最も関係の深いのは膜厚の均一性である。基板フ
イルムの選択により、寸法安定性、記録媒体の平
坦性を確保するのに必要な膜厚の均一性の限度は
±7%で、その範囲内であれば本発明を達成でき
ることを、広範な実験をくり返し確認を行つた。
The uniformity of the film thickness is as follows for a film with a width of 550 mm.
It was ±4% in the range of 500 mm, and in the case of a 200 mm wide film, it was ±3% in the range of 180 mm. In addition, the uniformity of each magnetic property is that the coercive force is ±18 for the NiFe layer.
%, ±2% for Co-Cr layer, ±6% for NiFe layer for Ms,
It was ±3% in the Co--Cr layer. Although the coercive force of the NiFe layer has large variations, this does not pose any problem in recording and reproducing, and as will be described later, the most closely related to the present invention is the uniformity of the film thickness. By selecting a substrate film, the limit of film thickness uniformity required to ensure dimensional stability and flatness of the recording medium is ±7%, and it has been extensively demonstrated that the present invention can be achieved within this range. We repeated the experiment to confirm.

これまでの説明は、NiFe、Co―Crの2層構造
についてのみ触れたが、それ以外の軟磁性層、垂
直磁化層の組み合わせも当然可能であり、非磁性
層Al2O3、SiO、金属等の中から選択して、構成
に加えることも目的により採用されるわけで、本
発明を限定するものではない。また、無機物、有
機物の層を垂直磁化層を持たない側の高分子成形
物基板表面にコーテイング法、プラズマCVD法、
スパツタリング法等、公知のいずれかの手段によ
り形成するのも自由である。ただ注意を要するの
は、熱処理の前に上述の工程を終えることであ
る。
The explanation so far has only mentioned the two-layer structure of NiFe and Co-Cr, but other combinations of soft magnetic layers and perpendicular magnetic layers are of course possible, and non-magnetic layers such as Al 2 O 3 , SiO, metal It is also possible to select one of these and add it to the configuration depending on the purpose, and this does not limit the present invention. In addition, coating method, plasma CVD method, plasma CVD method, etc.
It is also free to form by any known means such as sputtering. However, care must be taken to complete the above steps before heat treatment.

次に本発明の重要点のひとつである熱処理工程
について説明すると、この工程の目的は、記録媒
体としての平坦化、耐久性の確保、特に高分子成
形物基板と薄膜層との付着強度の安定化および強
化、寸法安定性の確保、垂直磁化層の特性の安定
化にある。
Next, we will explain the heat treatment process, which is one of the important points of the present invention.The purpose of this process is to flatten the recording medium, ensure durability, and in particular stabilize the adhesion strength between the polymer molded substrate and the thin film layer. The objective is to strengthen and strengthen the structure, ensure dimensional stability, and stabilize the properties of the perpendicular magnetic layer.

熱処理の条件としてまず考慮する点は、高分子
成形物基板の熱物性値と、高分子成形物基板上に
形成したそれぞれの薄膜の主として内部応力であ
り、これらの合成値である。これらは複合体の形
状変化で抑えることもできるし、溶剤によりポリ
エステルを溶かして、NiFe―Co―Crの複合膜を
高分子成形物基板より分離して、内部応力を測定
するかいずれかの方法がよい。
The first points to be considered as conditions for heat treatment are the thermophysical property values of the polymer molded substrate and the internal stress of each thin film formed on the polymer molded substrate, and their composite value. These can be suppressed by changing the shape of the composite, or by dissolving the polyester with a solvent, separating the NiFe-Co-Cr composite film from the polymer molded substrate, and measuring the internal stress. Good.

結果としては、膜の製造条件、膜厚、材質によ
り、内部応力は異なるが、高分子成形物基板のガ
ラス転移点近傍の温度で、数時間、処理するのが
1段階である。この処理は、平坦化の完成を目指
すものではなく、後述の第2段階の熱処理とで調
整されるのであり、したがつて条件は温度、時
間、環境の種々の組み合わせが可能になる。
As a result, the internal stress varies depending on the manufacturing conditions, film thickness, and material of the film, but one step is processing for several hours at a temperature near the glass transition point of the polymer molded substrate. This treatment does not aim to complete planarization, but is adjusted with the second stage heat treatment described later, and therefore various combinations of temperature, time, and environment are possible.

しかしながら、配慮されるべき主要な点は、第
1段階の熱処理時は、処理対象の媒体に外力の影
響を極力抑制することである。この要件は、550
mm幅、200mm幅の媒体を1000m以上捲回し、例え
ばオーブン中に保存することで達成される。
However, the main point to be considered is to suppress the influence of external forces on the medium to be treated as much as possible during the first stage heat treatment. This requirement is 550
This is accomplished by rolling a 200 mm wide medium over 1000 m and storing it in an oven, for example.

時間の選定は温度と強い相関を有するが、それ
は高分子成形基板の熱物性で決められる。
The selection of time has a strong correlation with temperature, which is determined by the thermophysical properties of the polymer molded substrate.

これまで述べた範囲の具体例でいえば、酸素雰
囲気で、かつ湿度60%RHに規格化した時、70〜
80℃で2〜12時間で充分であつた。
To give a specific example of the range mentioned above, when normalized to an oxygen atmosphere and humidity of 60% RH, 70 to
2 to 12 hours at 80°C was sufficient.

これは本発明の限定ではなく、60℃で1日の場
合から1週間の場合までについても確認を行つた
が、全て目的が達成されていることがわかつた。
This is not a limitation of the present invention, and tests were also conducted at 60° C. for one day to one week, and it was found that the objective was achieved in all cases.

詳細は検討中であるが、秒単位まで、温度で加
速することには壁があるように、好ましくは設定
条件に到達するのに、処理媒体の熱容量(長尺に
なる程注意しなければならない)との関連で、数
時間が選ばれるべきであろう。
The details are still under consideration, but as there is a barrier to accelerating with temperature down to the second level, it is preferable to reach the set conditions by increasing the heat capacity of the processing medium (the longer the length, the more care must be taken) ), several hours should be chosen.

第2段階の熱処理は、媒体の平坦化の完成にあ
り、第1段階で平坦に近い状態に修正したのち、
特に長尺の媒体の場合は、平坦度をオンラインで
検知しながら、加熱されたロールに沿つて移動し
ながら(必要に応じて、雰囲気を選び)、熱ロー
ルに作用している時間を変えながら応力緩和を行
い、平坦化を完成させる。
The second stage of heat treatment is to complete the flattening of the medium, and after the first stage has corrected it to a nearly flat state,
Particularly in the case of long media, the flatness is detected online while moving along the heated roll (choose the atmosphere if necessary), and while changing the length of time the media is acting on the heated roll. Stress relaxation is performed to complete flattening.

次に得られた広幅、長尺の媒体は必要なデイス
ク形状に打抜かれる。これは連続的に大量に処理
するためにキヤリヤシートを用い、重ねて搬送し
ながら打抜き、打抜かれたデイスクを回収する方
法をとつた。
The resulting wide, long media is then punched into the required disc shape. In order to continuously process a large amount of discs, a carrier sheet was used, the discs were stacked and conveyed, and the discs were punched out, and the punched discs were collected.

超硬の打抜き治具を工夫する点や、媒体を冷却
するなどは勿論、本発明の打抜き工程は広義にレ
ーザー光によるカツテイングも含まれるものであ
る。
Of course, the punching process of the present invention includes, in a broad sense, cutting with laser light, as well as the modification of the carbide punching jig and the cooling of the medium.

本発明により、磁気デイスクの大量生産性は勿
論、実使用上においても特性の極めて安定な磁気
記録媒体を得ることができる。
According to the present invention, it is possible not only to mass-produce magnetic disks, but also to obtain a magnetic recording medium with extremely stable characteristics in actual use.

従来の両面フレキシブルデイスクは、NiFe層、
Co―Cr層のヤング率が大きいために、厳密な平
坦性を得るに必要な膜厚の制御が大面積になる程
困難であり、かつ高分子成形物基板と金属の熱膨
張の差による寸法変化が両面に金属層があるた
め、本発明の片面にのみ金属層が配設されている
のに比べて影響度が大きいことなどから容易に理
解されるように、安定度の優れた媒体を大量に得
られる。本発明の工業的有価値性は極めて大なる
ものである。
Conventional double-sided flexible disks have a NiFe layer,
Because the Young's modulus of the Co-Cr layer is large, controlling the film thickness necessary to achieve strict flatness is difficult as the area becomes larger, and the dimensions due to the difference in thermal expansion between the polymer molded substrate and the metal. As can be easily understood from the fact that there is a metal layer on both sides, the influence is greater than in the case of the present invention, which has a metal layer on only one side. Obtained in large quantities. The industrial value of the present invention is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気記録媒体の断面図、第2図
は本発明による磁気記録媒体の断面図、第3図は
本発明の製造方法を実施するための装置の概略断
面図である。 6,12……高分子成形物基板、8……合金膜
(合金層)、19……合金のスパツタ源。
FIG. 1 is a sectional view of a conventional magnetic recording medium, FIG. 2 is a sectional view of a magnetic recording medium according to the present invention, and FIG. 3 is a schematic sectional view of an apparatus for carrying out the manufacturing method of the present invention. 6, 12... Polymer molded substrate, 8... Alloy film (alloy layer), 19... Alloy spatter source.

Claims (1)

【特許請求の範囲】[Claims] 1 ガラス転移点Tg(℃)の高分子成形物基板の
一方の面のみに少なくとも1層以上の膜面に垂直
な方向に磁化容易軸を有する合金膜を形成した
後、Tg(℃)近傍の温度でロール状、無張力下で
長時間熱処理し、合金膜、高分子成形物基板界面
の歪みを最小なするための第1熱処理工程と、熱
ロールに沿わせて、短時間高温処理し、高分子成
形物基板を熱収縮させて平坦化する第2熱処理工
程を経て所定形状に打抜くことを特徴とする磁気
記録媒体の製造方法。
1 After forming an alloy film having an axis of easy magnetization in the direction perpendicular to the film surface of at least one layer on only one side of a polymer molded substrate having a glass transition point Tg (°C), A first heat treatment step in which the material is heat treated in a roll shape at high temperature for a long time under no tension to minimize distortion at the interface between the alloy film and the polymer molded substrate; 1. A method of manufacturing a magnetic recording medium, which comprises punching a molded polymer substrate into a predetermined shape through a second heat treatment step of thermally shrinking and flattening the polymer molded substrate.
JP55154255A 1980-10-31 1980-10-31 Manufacture of magnetic recording medium Granted JPS5778628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55154255A JPS5778628A (en) 1980-10-31 1980-10-31 Manufacture of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55154255A JPS5778628A (en) 1980-10-31 1980-10-31 Manufacture of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5778628A JPS5778628A (en) 1982-05-17
JPS63845B2 true JPS63845B2 (en) 1988-01-08

Family

ID=15580205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55154255A Granted JPS5778628A (en) 1980-10-31 1980-10-31 Manufacture of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5778628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11824279B2 (en) 2021-02-24 2023-11-21 Bluehalo, Llc System and method for a digitally beamformed phased array feed

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935580Y2 (en) * 1982-07-30 1984-10-01 株式会社徳田製作所 sputtering equipment
JPS6076026A (en) * 1983-09-30 1985-04-30 Fuji Xerox Co Ltd Production of vertical magnetic recording medium
IL110297A0 (en) * 1993-07-21 1994-10-21 Dynamotive Corp A method for removal of certain oxide films from metal surfaces

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423506A (en) * 1977-07-22 1979-02-22 Matsushita Electric Ind Co Ltd Production of magnetic recording media

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5423506A (en) * 1977-07-22 1979-02-22 Matsushita Electric Ind Co Ltd Production of magnetic recording media

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11824279B2 (en) 2021-02-24 2023-11-21 Bluehalo, Llc System and method for a digitally beamformed phased array feed

Also Published As

Publication number Publication date
JPS5778628A (en) 1982-05-17

Similar Documents

Publication Publication Date Title
JPH1011734A (en) Magnetic recording medium
JPS63845B2 (en)
US4865878A (en) Method of manufacturing vertical magnetization type recording medium
JPH0532807B2 (en)
JPH0581967B2 (en)
JPH0548530B2 (en)
JP3304382B2 (en) Magnetic recording medium and method of manufacturing the same
JPS6014408B2 (en) Method for manufacturing magnetic recording media
JPH103663A (en) Production of magnetic recording medium
JPH0393024A (en) Metallic thin film type magnetic recording medium
JPH0320816B2 (en)
JPS61242332A (en) Device for producing vertical magnetic recording medium
JPS62175926A (en) Vertical magnetic recording medium and its production
JPS62175925A (en) Vertical magnetic recording medium and its production
JPS61180921A (en) Vertically magnetized recording medium and its production
JPS61187127A (en) Manufacture of magnetic recording medium
JPS62162222A (en) Vertical magnetic recording medium and its production
JPS63188828A (en) Production of magnetic recording medium
JPH03266219A (en) Production of magnetic recording medium
JPS60205818A (en) Magnetic recording medium
JPS6226637A (en) Manufacture of vertical magnetic recording medium having thin soft magnetic 'permalloy(r)' film
JPH02216610A (en) Magnetic recording medium and its production
JPS61153818A (en) Vertical magnetic recording medium and its production
JPH0991699A (en) Production of magnetic recording medium and magnetic recording medium
JP2004118890A (en) Tape-shaped recording medium and its manufacturing method