JPH0320816B2 - - Google Patents

Info

Publication number
JPH0320816B2
JPH0320816B2 JP58160512A JP16051283A JPH0320816B2 JP H0320816 B2 JPH0320816 B2 JP H0320816B2 JP 58160512 A JP58160512 A JP 58160512A JP 16051283 A JP16051283 A JP 16051283A JP H0320816 B2 JPH0320816 B2 JP H0320816B2
Authority
JP
Japan
Prior art keywords
substrate
film
layer
soft magnetic
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58160512A
Other languages
Japanese (ja)
Other versions
JPS6052930A (en
Inventor
Takashi Tomie
Masato Sugyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP16051283A priority Critical patent/JPS6052930A/en
Publication of JPS6052930A publication Critical patent/JPS6052930A/en
Publication of JPH0320816B2 publication Critical patent/JPH0320816B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[技術分野] 本発明は垂直磁気記録媒体の製造方法に関し、
更に詳しくは可撓性を有する有機高分子の基板上
にNi Fe合金膜からなる軟磁性層とCo系合金膜
からなる垂直磁気記録媒体を形成した垂直磁気記
録媒体の製造方法に関する。 [従来技術] 近年、高密度記録特性の優れた磁気記録方式と
して、垂直磁気記録媒体が提案されている。この
方式は、特公昭58−91号公報、特公昭58−10764
号公報等で公知の如く、磁化容易軸が膜面に対し
て垂直な方向を有する記録媒体を用い、残留磁化
が膜面に対して垂直に向くように記録するもの
で、信号が高密度になるほど媒体内反磁界は減少
し、優れた記録及び再生を行なうことができる。
この方式に適する記録媒体としてCo系合金薄膜
(特にCo Cr合金薄膜)が公知である。特に、特
公昭58−91号公報に提案されているCo系合金薄
膜の下地にパーマロイ合金のような軟磁性層を設
けた垂直磁気記録媒体は、記録効率が向上できる
とともに、大きな再生出力が得られる点から注目
されている。 ところで、上述の垂直磁気記録媒体において、
安価で且つ機械的特性に優れたポリエチレンテレ
フタレート(PET)等の有機高分子のフイルム
を基板として、その上にスパツタリング法により
軟磁性層及び記録層を形成した場合、その表面が
粗面化されると共に軟磁性層の磁気特性が劣化
し、所望の記録特性及び再生特性が得られない問
題がある。 [本発明の目的] 本発明はかかる問題を解決すべくなされたもの
で、有機高分子からなる基板を用いたかかる問題
のない垂直磁気記録媒体の製造方法を提供するこ
とを目的とする。 [本発明の構成及び作用効果] 前述の目的は以下の本発明により達成される。
すなわち、本発明は可撓性の有機高分子の基板の
両面にNi、Feを主成分とする合金膜からなる軟
磁性層とCo系合金膜よりなる記録層とを有する
垂直磁気記録媒体を製造するに際し、前記軟磁性
層を120℃以下の基板温度で前記基板の両面に形
成し、次いで前記記録層を所定温度以上の基板温
度で形成することを特徴とする垂直磁気記録媒体
の製造方法である。 上述の本発明は以下のようにしてなされたもの
である。本発明の対象である基板上に軟磁性層と
記録層とを有する垂直磁気記録媒体(以下二層膜
媒体という)において、高密度記録が可能で実用
となる再生出力を得るためには、記録層のCo系
合金膜の膜面に垂直方向の保磁力が適当な値(大
略500±150Oe(エルステツド)程度)を有するこ
とが必要である。これを満足するCo系合金膜を
得るには、その膜形成時の基板温度を一定温度以
上に保持しなければならない。例えば、Co系合
金膜がCo Cr合金膜の場合には、その垂直方向の
保磁力Hcvとこれをスパツタリング法によつて形
成する際の基板温度Tとは、第1図に示すような
関係にあり、350Oe以上の保磁力Hcvを得るには
基板温度Tは、140℃以上の高温にする必要があ
る。なお、第1図の基板温度Tは基板を移送する
キヤンの表面温度である。 そして、種々検討の結果、本発明者らは前述し
たように有機高分子の基板を用いた二層膜媒体の
表面が粗面化したり、軟磁性層の軟磁気特性が劣
化するのは、前述の高温下での記録層形成時等に
基板表面に基板中に含まれる揮発分が析出するこ
とに原因があることをつきとめ本発明に到達し
た。 以下、その点をPET基板上に軟磁性層として
Ni Fe Mo合金膜を、記録層としてCo Cr合金膜
をスパツタリング法により形成した二層膜媒体の
例に基いて詳述する。 第2図にNi Fe Mo合金よりなる厚さ0.44μm
の軟磁性層の形成時の基板温度Tとその面内方向
の保磁力Hchとの関係を、第3図に前述の二層膜
媒体の軟磁性層の該保持力Hchと2KFRPI矩形波
の記録再生出力Epとの関係を示した。なお、記
録再生特性の測定条件を表−1に示した。使用し
たヘツドは特公昭58−91号開示の補助磁極励磁型
の垂直ヘツドを用いた。さらに軟磁性層上に形成
した記録層のCo Cr合金薄膜(Cr:20重量%)の
特性を表−2に示した。
[Technical Field] The present invention relates to a method for manufacturing a perpendicular magnetic recording medium,
More specifically, the present invention relates to a method for manufacturing a perpendicular magnetic recording medium, in which a perpendicular magnetic recording medium comprising a soft magnetic layer comprising a NiFe alloy film and a Co-based alloy film is formed on a flexible organic polymer substrate. [Prior Art] In recent years, perpendicular magnetic recording media have been proposed as a magnetic recording system with excellent high-density recording characteristics. This method is published in Japanese Patent Publication No. 58-91 and Publication No. 58-10764.
As is known from the above publication, a recording medium in which the axis of easy magnetization is perpendicular to the film surface is used, and recording is performed so that the residual magnetization is oriented perpendicular to the film surface, so that the signal can be recorded at high density. Indeed, the demagnetizing field inside the medium is reduced, and excellent recording and reproduction can be performed.
A Co-based alloy thin film (particularly a CoCr alloy thin film) is known as a recording medium suitable for this method. In particular, a perpendicular magnetic recording medium in which a soft magnetic layer such as a permalloy alloy is provided on the base of a Co-based alloy thin film, as proposed in Japanese Patent Publication No. 58-91, can improve recording efficiency and provide a large reproduction output. It is attracting attention because of its ability to By the way, in the above-mentioned perpendicular magnetic recording medium,
When a soft magnetic layer and a recording layer are formed by sputtering on a substrate made of an organic polymer film such as polyethylene terephthalate (PET), which is inexpensive and has excellent mechanical properties, the surface becomes rough. At the same time, there is a problem in that the magnetic properties of the soft magnetic layer deteriorate, making it impossible to obtain desired recording and reproduction characteristics. [Object of the present invention] The present invention was made in order to solve such problems, and it is an object of the present invention to provide a method for manufacturing a perpendicular magnetic recording medium using a substrate made of an organic polymer and free from such problems. [Configuration and effects of the present invention] The above-mentioned objects are achieved by the present invention as described below.
That is, the present invention manufactures a perpendicular magnetic recording medium having a soft magnetic layer made of an alloy film mainly composed of Ni and Fe and a recording layer made of a Co-based alloy film on both sides of a flexible organic polymer substrate. In this method, the soft magnetic layer is formed on both sides of the substrate at a substrate temperature of 120° C. or lower, and then the recording layer is formed at a substrate temperature of a predetermined temperature or higher. be. The above-mentioned present invention was made as follows. In a perpendicular magnetic recording medium (hereinafter referred to as a dual-layer film medium) having a soft magnetic layer and a recording layer on a substrate, which is the object of the present invention, in order to achieve high-density recording and to obtain a practical reproduction output, recording It is necessary that the coercive force in the direction perpendicular to the film surface of the Co-based alloy film of the layer has an appropriate value (approximately 500±150 Oe (Oersted)). In order to obtain a Co-based alloy film that satisfies this requirement, the substrate temperature must be maintained at a certain temperature or higher during film formation. For example, when the Co-based alloy film is a CoCr alloy film, the vertical coercive force Hcv and the substrate temperature T when it is formed by sputtering have a relationship as shown in Figure 1. Therefore, in order to obtain a coercive force Hcv of 350 Oe or more, the substrate temperature T needs to be a high temperature of 140° C. or more. Note that the substrate temperature T in FIG. 1 is the surface temperature of the can for transferring the substrate. As a result of various studies, the present inventors found that the reason for the roughening of the surface of a two-layer film medium using an organic polymer substrate and the deterioration of the soft magnetic properties of the soft magnetic layer is as described above. The present invention was achieved by discovering that the cause is that volatile components contained in the substrate are deposited on the substrate surface during the formation of the recording layer at high temperatures. Below, we will discuss this point as a soft magnetic layer on a PET substrate.
The Ni Fe Mo alloy film will be explained in detail based on an example of a two-layer film medium in which a Co Cr alloy film is formed as a recording layer by a sputtering method. Figure 2 shows a Ni Fe Mo alloy with a thickness of 0.44 μm.
Figure 3 shows the relationship between the substrate temperature T and the coercive force Hch in the in-plane direction during the formation of the soft magnetic layer of the above-mentioned two-layer media. The relationship with playback output Ep is shown. Note that the measurement conditions for recording and reproducing characteristics are shown in Table 1. The head used was an auxiliary magnetic pole excitation type vertical head disclosed in Japanese Patent Publication No. 1982-91. Furthermore, Table 2 shows the properties of the CoCr alloy thin film (Cr: 20% by weight), which is the recording layer formed on the soft magnetic layer.

【表】【table】

【表】 面のロツキング曲線の半値巾
従来は軟磁性層の磁気特性(Hc等)にあまり
注意が払われていなかつたが、第2図、第3図よ
り軟磁性層形成時の基板温度Tと軟磁性層の保磁
力Hchと二層膜媒体の再生出力Epには明瞭な関
係が存在することが判明した。すなわち良好な再
生出力Epを得るには、低い基板温度Tで基板よ
りの揮発力の析出を防止しながら軟磁性膜を形成
する必要がある。なお、かかる基板よりの揮発分
とは、水分等基板表面の吸着物があるが、特に両
面に磁性層を有するフロツピーデイスクのごとき
両面媒体においては基板のPETフイルムより析
出し、表面で結晶化する主として3量体よりなる
オリゴマーが、表面を粗面化し、大きな問題とな
る。 本発明者らの真空中でのPETよりのオリゴマ
ー析分状況の研究において、オリゴマーの析出・
結晶化は主として加熱面、すなわち高温のキヤン
に接触する面で発生し、大気中とは挙動が異るこ
とが判明した。すなわち、基板の片面にのみ磁性
層を有する媒体の作製時においては、基板の磁性
層側へのオリゴマー析出はなく(又は、析出して
もすぐに昇華し)、軟磁性層の磁気特性と若干損
うのみで表面を粗面化することはないが、両面に
磁性層を有する媒体においては、片面に磁性層、
記録層のスパツタ膜形成時に反対面に析出・結晶
化するオリゴマーの為に反対面が粗面化し大きな
問題となる。 ところで、かかるオリゴマーの析出は、2軸延
伸PETフイルムでは延伸倍率や熱固定温度によ
り10〜20℃程度の差を有し、ポリエチレンナフタ
レートではやや少ないものの、概略120℃以上で
現れ、特に140℃以上では顕著となる。オリゴマ
ーの析出した媒体においては、スペーシングロス
による出力低下のみでなく、基板とその上に形成
される合金膜との接着性や耐久性が劣化するとい
う問題がある。 本発明は以上に述べた知見に基いてなされたも
のであつて、従つて、前述した本発明により低保
磁力に軟磁性層を有し、表面性も損われていない
良好な高分子基板の二層膜媒体が得られることは
明らかである。 更に、フロツピーデイスクに適した第4図に示
すように、基板Fの両面に軟磁性層Sと記録層R
を設けた両面二層膜媒体においては、軟磁性層S
を両面に形成した後、記録層Rを形成することに
より両面共良好な特性の高分子基板の両面二層膜
媒体が得られる。 なお、本発明において基板温度とは、基板の温
度を規制する冷却キヤン、基板ホルダー等の基板
との接触面の温度をいう。 又、本発明の基板は有機高分子フイルムからな
るものである。有機高分子としては、ポリエステ
ル、ポリイミド等公知のものが適用できるが、安
価で表面性、寸法安定性等の機械的特性に優れた
エチレンテレフタレートまたはエチレンナフタレ
ートを主構成成分とするポリエステルが好まし
い。なお、本発明の軟磁性層はNi Fe合金やNi
Fe Mo合金よりなるいわゆるパーマロイを代表
とするものであるが、他にCo、Feを主成分とし、
Zr、Nb、Ta、W、B、Si等を添加したアモルフ
アス合金も使用され得る。記録層はCrを10〜25
重量%含有するCo Cr合金を代表とするが、他に
Co CrにRe、W、Mo、Ta等を添加したものや
バリウムフエライト等も使用され得る。作製法は
スパツタ法か好ましいが、蒸着、イオンプレーテ
イングでもよい。又、軟磁性層と記録層の間に中
間層があつても、記録層上に適当な保護層があつ
てもよく、又、基板上に接着層があつてもよい。
要は軟磁性層と記録層を主要構成とする媒体であ
れば本発明が適用可能である。 以下に本発明の実施例を比較例と共に説明す
る。 まず、実施例に用いた巻取式の対向ターゲツト
スパツタ装置を説明する。該対向ターゲツトスパ
ツタ装置は、特開昭58−158380号公報等で公知の
対向テーゲツト式スパツタ法と同一原理に基づく
もので、長尺の基板フイルムの両面に二層膜媒体
を連続的に製造できるように第5図に示す構成と
なつている。すなわち、図の11,12は温度コ
ントロール可能なキヤン、13は巻出しロール、
14は巻取ロール、15はガイドロール、20は
真空槽、21はアルゴンガス導入系、22は排気
口である。Fは基板フイルムであり、P1〜P4
300mmW×150mmLのターゲツト2枚を対向させた
対向ターゲツト陰極で、遮蔽板Tにより不要部へ
の粒子飛散を防止してある。P1,P3は軟磁性層
用の合金ターゲツト、P2,P4は記録層用合金タ
ーゲツトを設置する。なお、対向ターゲツト式ス
パツタ法は前述の通り公知であり、付帯設備の真
空ポンプ,ターゲツト冷却水系統、ターゲツトへ
の電力供給電源及び配線系統は図示省略した。
又、そのスパツタ作用の説明も省略する。 上述の構成により二層膜媒体は以下のように作
成される。すなわち、基板フイルムFを巻出しロ
ール13にセツトしたフイルムロールより送り出
し、巻取ロール14に巻取る。この間にターゲツ
トP1,P2,P3,P4を全部動作させれば、一回で
両面二層膜媒体が得られる。又、P1,P3のみを
動作させて軟磁性層を形成した後、巻き戻しなが
らP2,P4のみを動作させて記録層を形成して両
面二層膜媒体を形成することもできる。このよう
に種々の態様で両面二層膜媒体を作成できるよう
になつている。 [実施例] 第5図に示した上述の対向ターゲツト式スパツ
タ装置を用い50μm厚さ、巾240mmの長尺の2軸
延伸PETフイルムを基板として用い、約0.44μm
のNi Fe Mo(Ni:79、Fe:16、Mo:5wt%)
合金薄膜と、約0.44μmのCo Cr(Cr:20wt%)合
金薄膜を両面に有する両面二層膜媒体を作成し
た。対向ターゲツトP1とP3はNi Fe Mo合金タ
ーゲツト(330mm×150mm)2枚を有する対向ター
ゲツトとし、P2とP4はCo Cr合金ターゲツト
(330mm×150mm)2枚を有する対向ターゲツトと
して、以下のように作成した。 すなわち、基板フイルムFを巻出しロール13
より繰出しながら90℃に保つたキヤン11,12
上を送行させながら対向ターゲツトP1とP3でア
ルゴンガス圧0.5Pa、平均堆積速度0.3μm/min
でスパツタを行いNi Fe Mo合金薄膜を両面に形
成し、巻取ロール14に巻取つた。しかる後にキ
ヤン11,12を150℃に保ち、全ロールを逆転
させ対向ターゲツトP2とP4でアルゴンガス圧
0.5Pa、平均堆積速度0.3μm/minでスパツタを
行いCoCr合金薄膜を該NiFeMo合金薄膜上に形
成し、巻出しロール13に巻取り両面二層膜媒体
を作製した。 以上の媒体を0.3インチ巾にスリツトし表−1
の条件で再生出力を調べたが、表裏共2KFRPI出
力が165〜215μVo−p、45KFRPI出力が55〜
60μVo−pであり良好であつた。 [比較例] 実施例に用いたのと同じPETフイルムを基板
フイルムFとして用い、基板フイルムFを巻出し
ロール13より繰り出しながら140℃に保つたキ
ヤン11,12を通過させ巻取ロール14に巻取
る間に、対向ターゲツトP1〜P4のすべてを動作
させてスパツタを行い一気に基板フイルムFの表
裏にCo Cr合金薄膜とNi Fe Mo合金薄膜よりな
る両面二層膜媒体を作製した。 キヤン11で作製した面にはオリゴマーの析
出・結晶化は認められなかつたが、記録再生出力
は実施例に比べ約4dB低下した。キヤン12で作
製した面にはオリゴマーが多発し、記録再生出力
は8dB以上低下し、さらに合金薄膜と基板フイル
ムとの接着性がわるく媒体の記録再生の繰返しに
対する耐久性がきわめてわるかつた。
[Table] Half-width of surface rocking curve Until now, not much attention has been paid to the magnetic properties (Hc, etc.) of the soft magnetic layer, but as shown in Figures 2 and 3, the substrate temperature T during the formation of the soft magnetic layer It was found that there is a clear relationship between the coercive force Hch of the soft magnetic layer and the reproduction output Ep of the double-layer film medium. That is, in order to obtain a good reproduction output Ep, it is necessary to form a soft magnetic film at a low substrate temperature T while preventing precipitation of volatility from the substrate. Volatile matter from the substrate includes substances adsorbed on the surface of the substrate such as moisture, but especially in double-sided media such as floppy disks that have magnetic layers on both sides, volatile matter is precipitated from the PET film of the substrate and crystallized on the surface. The oligomers, which are mainly composed of trimers, roughen the surface and become a big problem. In our research on oligomer analysis using PET in vacuum, we found that oligomer precipitation and
It was found that crystallization mainly occurs at the heated surface, that is, the surface in contact with the high temperature can, and its behavior is different from that in the atmosphere. In other words, when producing a medium that has a magnetic layer on only one side of the substrate, oligomers do not precipitate on the magnetic layer side of the substrate (or even if they precipitate, they sublimate immediately), and the magnetic properties of the soft magnetic layer differ slightly. Although it only damages the surface and does not roughen the surface, in media with magnetic layers on both sides,
During sputter film formation of the recording layer, oligomers precipitate and crystallize on the opposite surface, causing the opposite surface to become rough, which poses a serious problem. Incidentally, the precipitation of such oligomers varies by about 10 to 20 degrees Celsius depending on the stretching ratio and heat setting temperature in biaxially stretched PET films, and although it is slightly less in polyethylene naphthalate, it appears at approximately 120 degrees Celsius or higher, and especially at 140 degrees Celsius. Above this, it becomes noticeable. In a medium in which oligomers are precipitated, there is a problem that not only is the output reduced due to spacing loss, but also the adhesion and durability between the substrate and the alloy film formed thereon are deteriorated. The present invention has been made based on the above-mentioned knowledge, and therefore, it is possible to create a good polymer substrate having a soft magnetic layer with a low coercive force and with unimpaired surface properties. It is clear that a bilayer media is obtained. Furthermore, as shown in FIG. 4, which is suitable for a floppy disk, a soft magnetic layer S and a recording layer R are provided on both sides of the substrate F.
In a double-sided double-layer film medium provided with a soft magnetic layer S
By forming the recording layer R on both sides, a double-sided double-layer film medium of a polymer substrate with good characteristics on both sides can be obtained. Note that in the present invention, the substrate temperature refers to the temperature of a contact surface with the substrate, such as a cooling can or a substrate holder that regulates the temperature of the substrate. Further, the substrate of the present invention is made of an organic polymer film. As the organic polymer, known ones such as polyester and polyimide can be used, but polyester whose main constituent is ethylene terephthalate or ethylene naphthalate is preferred because it is inexpensive and has excellent mechanical properties such as surface properties and dimensional stability. Note that the soft magnetic layer of the present invention is made of Ni Fe alloy or Ni
The so-called permalloy made of Fe Mo alloy is a typical example, but there are also other permalloys whose main components are Co, Fe,
Amorphous alloys containing Zr, Nb, Ta, W, B, Si, etc. may also be used. Recording layer contains 10 to 25 Cr
Co Cr alloy containing % by weight is representative, but other
Co Cr with Re, W, Mo, Ta, etc. added thereto, barium ferrite, etc. may also be used. The manufacturing method is preferably a sputtering method, but vapor deposition or ion plating may also be used. Further, an intermediate layer may be provided between the soft magnetic layer and the recording layer, a suitable protective layer may be provided on the recording layer, and an adhesive layer may be provided on the substrate.
In short, the present invention is applicable to any medium whose main components are a soft magnetic layer and a recording layer. Examples of the present invention will be described below along with comparative examples. First, a winding-type opposed target sputtering device used in the examples will be explained. This facing target sputtering device is based on the same principle as the facing target sputtering method known in Japanese Patent Application Laid-Open No. 58-158380, etc., and is capable of continuously manufacturing two-layer film media on both sides of a long substrate film. The structure shown in FIG. 5 is used to make this possible. In other words, 11 and 12 in the figure are temperature controllable cans, 13 is an unwinding roll,
14 is a take-up roll, 15 is a guide roll, 20 is a vacuum chamber, 21 is an argon gas introduction system, and 22 is an exhaust port. F is the substrate film, P 1 to P 4 are
It is a facing target cathode with two 300 mmW x 150 mmL targets facing each other, and a shielding plate T prevents particles from scattering to unnecessary areas. P 1 and P 3 are alloy targets for the soft magnetic layer, and P 2 and P 4 are alloy targets for the recording layer. The opposed target sputtering method is well known as described above, and the accompanying equipment such as a vacuum pump, a target cooling water system, a power source for supplying power to the target, and a wiring system are not shown.
Further, a description of the sputtering effect will also be omitted. With the above configuration, a two-layer film medium is created as follows. That is, the substrate film F is fed out from a film roll set on the unwinding roll 13 and wound onto the take-up roll 14. If targets P 1 , P 2 , P 3 , and P 4 are all operated during this time, a double-sided double-layer film medium can be obtained in one operation. Alternatively, after forming a soft magnetic layer by operating only P 1 and P 3 , it is also possible to form a recording layer by operating only P 2 and P 4 while rewinding to form a double-sided double-layer film medium. . In this way, double-sided double-layer film media can be produced in various ways. [Example] Using the above-mentioned facing target type sputtering apparatus shown in FIG.
Ni Fe Mo (Ni: 79, Fe: 16, Mo: 5wt%)
A double-sided double-layer film medium having an alloy thin film and a Co Cr (Cr: 20 wt%) alloy thin film of approximately 0.44 μm on both sides was prepared. Opposing targets P 1 and P 3 are opposed targets with two Ni Fe Mo alloy targets (330 mm x 150 mm), P 2 and P 4 are opposed targets with two Co Cr alloy targets (330 mm x 150 mm), as follows. Created as follows. That is, the substrate film F is unwound from the roll 13.
Cans 11 and 12 kept at 90℃ while being fed out
Argon gas pressure is 0.5 Pa and average deposition rate is 0.3 μm/min for opposing targets P 1 and P 3 while the top is being fed.
Sputtering was performed to form a Ni Fe Mo alloy thin film on both sides, and the film was wound onto a take-up roll 14. After that, cans 11 and 12 are kept at 150℃, all rolls are reversed, and argon gas pressure is applied to opposing targets P 2 and P 4 .
A CoCr alloy thin film was formed on the NiFeMo alloy thin film by sputtering at 0.5 Pa and an average deposition rate of 0.3 μm/min, and the film was wound around an unwinding roll 13 to produce a double-sided double-layer film medium. Slit the above media into 0.3 inch width Table-1
I checked the playback output under the following conditions, and the 2KFRPI output on both front and back sides was 165 to 215μVo-p, and the 45KFRPI output was 55 to 215μVo-p.
It was 60 μVo-p, which was good. [Comparative Example] The same PET film used in the example was used as the substrate film F, and the substrate film F was fed out from the unwinding roll 13 while passing through the cans 11 and 12 kept at 140°C and wound on the take-up roll 14. During this time, all of the opposing targets P 1 to P 4 were operated to perform sputtering, and a double-sided double-layer film medium consisting of a Co Cr alloy thin film and a Ni Fe Mo alloy thin film was produced on both sides of the substrate film F at once. Although no oligomer precipitation or crystallization was observed on the surface prepared by Can 11, the recording/reproducing output was lowered by about 4 dB compared to the example. Oligomers were abundant on the surface prepared with Can 12, and the recording/reproducing output was reduced by more than 8 dB.Furthermore, the adhesion between the alloy thin film and the substrate film was poor, and the durability of the medium against repeated recording/reproducing was extremely poor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は基板温度TとCo Cr合金よりなる記録
層の垂直方向に測定した保磁力Hcvとの関係を示
すグラフ、第2図は基板温度TとNi Fe Mo合金
よりなる軟磁性層の保磁力Hchとの関係を示すグ
ラフ、第3図は軟磁性層の保磁力Hchと再生出力
Epとの関係を示すグラフ、第4図は垂直磁気記
録媒体の構成を示した断面図、第5図は巻取式の
連続対向ターゲツト式スパツタ装置の概略構成図
である。 Fは基板、Sは軟磁性層、Rは記録層、11,
12はキヤン、P1〜P4は対向ターゲツト陰極、
20は真空槽、21はアルゴンガス導入部、22
は排気口である。
Figure 1 is a graph showing the relationship between substrate temperature T and coercive force Hcv measured in the vertical direction of a recording layer made of a CoCr alloy, and Figure 2 is a graph showing the relationship between substrate temperature T and coercivity of a soft magnetic layer made of a Ni Fe Mo alloy. Graph showing the relationship with magnetic force Hch, Figure 3 shows the coercive force Hch of the soft magnetic layer and reproduction output
FIG. 4 is a cross-sectional view showing the structure of a perpendicular magnetic recording medium, and FIG. 5 is a schematic structural diagram of a winding continuous facing target sputtering apparatus. F is the substrate, S is the soft magnetic layer, R is the recording layer, 11,
12 is a can, P 1 to P 4 are opposing target cathodes,
20 is a vacuum chamber, 21 is an argon gas introduction part, 22
is an exhaust port.

Claims (1)

【特許請求の範囲】 1 可撓性の有機高分子基板の両面にNi、Feを
主成分とする合金膜からなる軟磁性層とCo系合
金膜よりなる記録層とを形成した垂直磁気記録媒
体を製造するに際し、前記軟磁性層を120℃以下
の基板温度で前記基板の両面に形成し、次いで前
記記録層を所定温度以上の基板温度で形成するこ
とを特徴とする垂直磁気記録媒体の製造方法。 2 前記基板がエチレンテレフタレートまたはエ
チレンナフタレートを主構成成分とするポリエス
テルからなる特許請求の範囲第1項記載の垂直磁
気記録媒体の製造方法。
[Claims] 1. A perpendicular magnetic recording medium in which a soft magnetic layer made of an alloy film mainly composed of Ni and Fe and a recording layer made of a Co-based alloy film are formed on both sides of a flexible organic polymer substrate. Manufacturing a perpendicular magnetic recording medium, characterized in that the soft magnetic layer is formed on both sides of the substrate at a substrate temperature of 120° C. or lower, and then the recording layer is formed at a substrate temperature of a predetermined temperature or higher. Method. 2. The method of manufacturing a perpendicular magnetic recording medium according to claim 1, wherein the substrate is made of polyester whose main component is ethylene terephthalate or ethylene naphthalate.
JP16051283A 1983-09-02 1983-09-02 Production of vertical magnetic recording medium Granted JPS6052930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16051283A JPS6052930A (en) 1983-09-02 1983-09-02 Production of vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16051283A JPS6052930A (en) 1983-09-02 1983-09-02 Production of vertical magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6052930A JPS6052930A (en) 1985-03-26
JPH0320816B2 true JPH0320816B2 (en) 1991-03-20

Family

ID=15716546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16051283A Granted JPS6052930A (en) 1983-09-02 1983-09-02 Production of vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6052930A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326828A (en) * 1986-07-18 1988-02-04 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
JPS63197027A (en) * 1987-02-12 1988-08-15 Tdk Corp Method and apparatus for producing perpendicular magnetic recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724022A (en) * 1980-07-16 1982-02-08 Toshiba Corp Production of magnetic recording substance
JPS5730118A (en) * 1980-07-30 1982-02-18 Matsushita Electric Ind Co Ltd Vertically magnetized medium and its manufacture
JPS57127929A (en) * 1981-01-29 1982-08-09 Matsushita Electric Ind Co Ltd Manufacture for magnetic recording medium
JPS5891A (en) * 1981-06-25 1983-01-05 Hitachi Plant Eng & Constr Co Ltd Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724022A (en) * 1980-07-16 1982-02-08 Toshiba Corp Production of magnetic recording substance
JPS5730118A (en) * 1980-07-30 1982-02-18 Matsushita Electric Ind Co Ltd Vertically magnetized medium and its manufacture
JPS57127929A (en) * 1981-01-29 1982-08-09 Matsushita Electric Ind Co Ltd Manufacture for magnetic recording medium
JPS5891A (en) * 1981-06-25 1983-01-05 Hitachi Plant Eng & Constr Co Ltd Heat exchanger

Also Published As

Publication number Publication date
JPS6052930A (en) 1985-03-26

Similar Documents

Publication Publication Date Title
JPH0262890B2 (en)
JPH0320816B2 (en)
JPS5877025A (en) Production of magnetic recording medium
JPH0581967B2 (en)
JPS63845B2 (en)
JP2758602B2 (en) Magnetic recording medium and method of manufacturing the same
JPH0548530B2 (en)
JP2843136B2 (en) CoCr perpendicular magnetic recording tape and method of manufacturing the same
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPS62162222A (en) Vertical magnetic recording medium and its production
JPS60113315A (en) Magnetic recording medium
JP2946748B2 (en) Manufacturing method of magnetic recording medium
JPS61284829A (en) Magnetic recording medium
JPH0196823A (en) Production of magnetic recording medium
JPH07122931B2 (en) Perpendicular magnetic recording medium
JPS59193528A (en) Magnetic recording medium and its production
JPH0823929B2 (en) Perpendicular magnetic recording media
JPH08129741A (en) Magnetic recording medium
JPH0142046B2 (en)
JPS6391822A (en) Perpendicular magnetic recording medium
JPS62175926A (en) Vertical magnetic recording medium and its production
JPH0757261A (en) Magnetic recording medium and magnetic head and its method and apparatus for production
JPH0991699A (en) Production of magnetic recording medium and magnetic recording medium
JPS6378341A (en) Production of magnetic recording medium
JPH0638286B2 (en) Perpendicular magnetic recording medium