JPS6014408B2 - Method for manufacturing magnetic recording media - Google Patents

Method for manufacturing magnetic recording media

Info

Publication number
JPS6014408B2
JPS6014408B2 JP8446478A JP8446478A JPS6014408B2 JP S6014408 B2 JPS6014408 B2 JP S6014408B2 JP 8446478 A JP8446478 A JP 8446478A JP 8446478 A JP8446478 A JP 8446478A JP S6014408 B2 JPS6014408 B2 JP S6014408B2
Authority
JP
Japan
Prior art keywords
magnetic recording
evaporation
manufacturing
base material
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8446478A
Other languages
Japanese (ja)
Other versions
JPS5512547A (en
Inventor
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8446478A priority Critical patent/JPS6014408B2/en
Publication of JPS5512547A publication Critical patent/JPS5512547A/en
Publication of JPS6014408B2 publication Critical patent/JPS6014408B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は、高密度記録に適する長尺の磁気記録媒体の製
法に関し、真空蒸着技術の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a long magnetic recording medium suitable for high-density recording, and relates to improvements in vacuum deposition technology.

種々の物質を薄膜化する技術として真空蒸着法、イオン
プレーティング法、スパッタリング法、湿式メッキ法、
気相蒸着法等の有用性は、既に知られている。
Vacuum evaporation method, ion plating method, sputtering method, wet plating method,
The usefulness of vapor phase deposition methods and the like is already known.

しかし、高密度磁気記録に不可欠の高い保磁力の強磁性
膜を、高分子成形物基村上に強い接着力で附し、かつ磁
気テープ使用量の急増に対応しうる最尺を安定に得る方
法として期待されているのは電子ビーム蒸着法等の真空
蒸着法であろう。
However, there is a method to attach a ferromagnetic film with a high coercive force, which is essential for high-density magnetic recording, to a polymer molded substrate with strong adhesive force, and to stably obtain the maximum length that can cope with the rapid increase in the amount of magnetic tape used. Vacuum evaporation methods such as electron beam evaporation are expected to be the most promising.

しかし、これまでこの分野で開示されている技術は量産
性の点で不充分である。すなわち最も安定に高い保磁力
を得る方法は、特公昭41−19総計号公報に開示され
ているいわゆる斜方蒸着法である。
However, the techniques disclosed so far in this field are insufficient in terms of mass production. That is, the method for most stably obtaining a high coercive force is the so-called oblique evaporation method disclosed in Japanese Patent Publication No. 1984-19 Sokei.

これは基村にたてた法線と蒸気流のなす角で示される入
射角が45o以上であることを必要とするもので、蒸着
効率が2〜3%と低く改良が期待されている。
This requires that the angle of incidence, expressed by the angle between the normal to the base and the vapor flow, be 45 degrees or more, and the vapor deposition efficiency is as low as 2 to 3%, and improvements are expected.

本発明は、この点に鑑み、先に本発明者が提案した特腰
昭52−74702号の技術にさらに改良を加え、磁性
層の多層構成をとった時に特に性能向上につながる方法
を提案するものである。
In view of this point, the present invention further improves the technique previously proposed by the present inventor in Tokkoshi No. 74702/1982, and proposes a method that particularly leads to improved performance when a multilayer structure of magnetic layers is used. It is something.

本発明を実施するための装置を第1図に示し、以下それ
に沿って本発明の詳細を説明する。
An apparatus for carrying out the present invention is shown in FIG. 1, and the details of the present invention will be explained below in accordance therewith.

真空槽1の内部は、真空排気系2により連続的に排気さ
れ真空雰囲気が保持される。ここで真空雰囲気の意味す
るところは、前記の状態と同様に、さらに外部より可変
IJーク弁3の調節により、不活性気体、反応性気体等
の導入を行い、特定の気体の分圧を大きくした状態も含
んでいる。
The inside of the vacuum chamber 1 is continuously evacuated by a vacuum exhaust system 2 to maintain a vacuum atmosphere. Here, what is meant by vacuum atmosphere is that, in the same way as in the above state, inert gas, reactive gas, etc. are introduced from the outside by adjusting the variable IJ valve 3, and the partial pressure of a specific gas is adjusted. It also includes an enlarged state.

真空雰囲気内に円筒状回転キャン4の周側面に沿って移
動する高分子成形物からなる基材5を配設する。
A base material 5 made of a polymer molded product is placed in a vacuum atmosphere and moves along the circumferential side of the cylindrical rotary can 4.

基材5はA方向に移動する場合、捲き出し軸6に装着さ
れ、蒸着後捲き取り軸7で捲き取られる。勿論、磁性層
の多層構成を連続して得る場合、キャンと蒸発源を複数
個配設した場合の捲き出し、捲き取りの関係は、当然そ
れに応じた変形をとるもので当業者にとって一般的であ
り、本発明を限定するものでないのは明白である。
When the base material 5 moves in the A direction, it is mounted on a winding shaft 6 and is rolled up on a winding shaft 7 after vapor deposition. Of course, when a multilayer structure of magnetic layers is obtained continuously, the relationship between unwinding and unwinding when a plurality of cans and evaporation sources are arranged will naturally change accordingly, and is common knowledge to those skilled in the art. However, it is clear that this does not limit the present invention.

本発明に適した蒸発源は、電子ビーム蒸発源であり、第
1図にはそれを模式的に示したが、これにこだわるもの
ではなく、他の方式であっても差し支えない。
An evaporation source suitable for the present invention is an electron beam evaporation source, which is schematically shown in FIG. 1, but it is not limited to this, and other systems may be used.

水冷鋼ハース8に装填された蒸発物質9は蝿子発生源1
0からの加速電子により衝撃加熱される。
The evaporated substance 9 loaded into the water-cooled steel hearth 8 is a fly source 1
Impact heating is caused by accelerated electrons from zero.

勿論、ライナー技術の使用を妨げるものではないし、電
子銃の方式も自由である。電子衝撃加熱により得た蒸気
流11は、蒸発面がキャンを見込む角度内にある(破線
で補助的に示した。
Of course, this does not preclude the use of liner technology, and the method of electron gun is also free. The vapor flow 11 obtained by electron impact heating has an evaporation surface within an angle looking into the can (auxiliary indicated by a broken line).

)蒸気流の限定されたもので構成されると同時に、蒸発
面にたてた法線(電子エネルギー密度が高い場合一種の
孔はり現象が起き蒸発面は曲面となることがあるが、こ
れも平面に投影して考えるものとする。)g2とキャン
の回転軸の中心軸ぎとが一致しないでずらした状態が保
持されていることが本発明の重要要素である。さらに言
及すれば、回転方向がA方向である時、蒸発源のずれは
好ましくは第1図に矢印Bで示した方向であるのがよい
。12は蒸気流の限定を行うための防看板で多くの場合
水冷されて配設される。
) The vapor flow is limited, and at the same time, the normal line to the evaporation surface is (This is assumed to be considered by projecting it onto a plane.) An important element of the present invention is that g2 and the center axis of the rotation axis of the can are not coincident with each other but are maintained in a shifted state. More specifically, when the direction of rotation is direction A, the displacement of the evaporation source is preferably in the direction indicated by arrow B in FIG. Reference numeral 12 denotes a barrier signboard for restricting the flow of steam, which is often water-cooled.

なお、入射角がao〜a,の範囲となる訳であるが、少
くともa,はすでに開示された斜方黍着の450より小
さいものでないと本発明の有用性が低下するが、後述の
例でも理解されるようにこの要求は充分満たしているも
のである。
Incidentally, the angle of incidence is in the range ao to a, and the usefulness of the present invention will be reduced unless a is at least smaller than 450 of the already disclosed diagonal welding. As can be seen from the example, this requirement is fully met.

他の実施態様として第2図に示した製造装置もあげられ
る。
Another embodiment is the manufacturing apparatus shown in FIG. 2.

これは基村5を反転し、A方向の時はハース8′を、A
′方向の時はハース8″の蒸気流により強磁性層を形成
することで効率を高めることができるものである。なお
、第2図で第1図に対応する部分には同一番号にダッシ
ュを付して示している。本発明の効果の第1は、高い保
磁力を高速で得られることにあり、特公昭41−193
8y号公報に開示される70比史のFe膜をうるのに、
蒸着効率が15〜30%に改善できることが挙げられる
This reverses Motomura 5, and when it is in the A direction, Haas 8', A
' direction, the efficiency can be increased by forming a ferromagnetic layer by the steam flow of the hearth 8''. Note that parts in Figure 2 that correspond to Figure 1 have the same numbers with a dash. The first effect of the present invention is that a high coercive force can be obtained at high speed.
To obtain the Fe film with a ratio of 70 disclosed in Publication No. 8y,
It is mentioned that the vapor deposition efficiency can be improved to 15 to 30%.

鉄族元素単体では、本発明によれば、限定角8,カギF
eで−50〜一1oo(マイナスとは、第1図でoo
=900から00までを由とし、それより逆に接線成分
に至るまでを指す)、Coで−200〜−100、Ni
で0〜100の各領域で600〜8000eを達成でき
る。
According to the present invention, the iron group element alone has a limiting angle of 8 and a key F.
-50 to -1oo for e (minus means oo in Figure 1)
=900 to 00, and conversely refers to the tangential component), -200 to -100 for Co, Ni
600-8000e can be achieved in each range of 0-100.

ただし、これらのいずれの場合も、徴量の酸素を関与さ
せることが重要である。
However, in all of these cases, it is important to involve sufficient amounts of oxygen.

真空度にして1×10‐5Torr〜1×10−4To
nの範囲が好ましい。この領域でイオンプレーティング
をしても本発明の効果を減ずるものではなく、変形した
実施態様に含まれる。またSi、V等の他の元素の添加
、または鉄族元素間の合金等、通常用いられる強磁性材
料のいずれを用いても条件を最適化することで、高い保
磁力が得られることが多い。例えばCo99%Sil%
を電子ビーム(1皿V、1腿W)加熱し、平均2kの/
mjnで基材としてポリエチレンテレフタレートフィル
ム(1帆厚)にあらかじめSiを1×10‐5Tomの
酸素中で350A蒸着したものに蒸着した場合、100
0A〜1200Aの磁性層厚み範囲で、保磁力は0,=
=00の時、4×10‐5Ton(全て02分圧)で7
8比だ、7 ×10‐5Tonで弘00e、7×10‐
5〜1×10‐4Tomでは940〜95のeであり、
o,=150 の時、4xlo‐5Torrで搬はお、
7×10‐5Torrで10300e、8×10‐5T
onで11000e、8 × 10‐5Tom〜2 ×
10‐4Torrで1100〜113止だの各高い値を
示すものである。
Vacuum level: 1 x 10-5 Torr to 1 x 10-4 To
A range of n is preferred. Ion plating in this region does not diminish the effectiveness of the invention and is included in the modified embodiments. In addition, high coercive force can often be obtained by optimizing the conditions using any of the commonly used ferromagnetic materials, such as the addition of other elements such as Si and V, or alloys between iron group elements. . For example, Co99%Sil%
is heated with an electron beam (1 dish V, 1 thigh W), and an average of 2k/
When using mjn as a base material, Si is deposited on a polyethylene terephthalate film (1 film thickness) that has been evaporated at 350 A in 1 x 10-5 Tom of oxygen.
In the magnetic layer thickness range of 0A to 1200A, the coercive force is 0,=
= 00, 4×10-5Ton (all 02 partial pressure) is 7
8 ratio, 7 × 10-5Ton, Hiro00e, 7 × 10-
5~1×10-4 Tom is 940~95 e,
When o,=150, the transport at 4xlo-5Torr is
10300e at 7×10-5 Torr, 8×10-5T
11000e on, 8 x 10-5 Tom ~ 2 x
It shows high values of 1100 to 113 at 10-4 Torr.

第2の効果は金属薄膜形磁気記録媒体にあって、高感度
化を図るために用いられる多層化構成において発揮され
る。
The second effect is exhibited in metal thin film magnetic recording media in a multilayer structure used to increase sensitivity.

すなわち第3図に示したように、基材5上に、非磁性層
13,14,15と強磁性層16,17,18を交互に
積層した磁気記録媒体を製造する場合(勿論、保護層、
背面層の付与層数等は限定されるものではない)、高周
波城でのS/N比を大きくとるよう構成し、製造するこ
とが重要である。先に本発明者が提案した特顔昭52一
74702号の技術により多層構成したもの(以下これ
を従来品とする)に比べて、多層化に関してさらに効果
的であることを第4図は示している。
That is, as shown in FIG. 3, when manufacturing a magnetic recording medium in which nonmagnetic layers 13, 14, 15 and ferromagnetic layers 16, 17, 18 are alternately laminated on a base material 5 (of course, a protective layer is ,
(There is no limit to the number of layers provided on the back layer, etc.), and it is important to configure and manufacture the device so as to have a large S/N ratio at high frequency. Fig. 4 shows that this product is more effective in terms of multi-layer structure than the multi-layer structure using the technology of Tokugan Sho 52-74702 previously proposed by the present inventor (hereinafter referred to as the conventional product). ing.

すなわち第4図は記録ヘッド(磁気ギャップ5〆肌)で
テープ速度4.75cm/Sにて、郎Hzを記録した時
の再生レベルを相対感度比較したものである。用いた記
録媒体は、限定角−5oで製造したCo98%Ni2%
膜400△、W膜(非磁性層)350A、1坪厚のポリ
エチレンテレフタレートフィルム基材(表面相度、平均
粗さ0.0かm)を順次多層化したものと、限定角なし
(十90o 〜一900全部用いた場合)のものである
。層数は磁性層の数で示してある。この値は、市販の商
品質の塗布形コンパクトカセットテープに比べて待顔昭
52−74702号による従来品で1.3倍、本発明品
で2.ぴ音の感度を与えるもので、その時の雑音レベル
は、市販品に比べ2〜4服低い値を示しており、S/N
比の改善は明白であった。以上のように本発明の製造方
法によれば、高保磁力を有する磁気記録媒体を効率よく
得ることができるものである。
That is, FIG. 4 is a comparison of the relative sensitivity of the reproduction level when recording at 2 Hz at a tape speed of 4.75 cm/s with a recording head (magnetic gap of 5 degrees). The recording medium used was Co98%Ni2% manufactured with a limiting angle of -5o.
Film 400△, W film (non-magnetic layer) 350A, 1 tsubo thick polyethylene terephthalate film base material (surface roughness, average roughness 0.0 mm) were sequentially multilayered, and a film with no limiting angle (190° ~1900). The number of layers is indicated by the number of magnetic layers. This value is 1.3 times higher for the conventional product manufactured by Machigao No. 52-74702 and 2.0 times higher for the product of the present invention than commercially available commercial quality coated compact cassette tapes. The noise level at that time is 2 to 4 times lower than commercially available products, and the S/N is low.
The improvement in the ratio was obvious. As described above, according to the manufacturing method of the present invention, a magnetic recording medium having a high coercive force can be efficiently obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法を実施するための装層の概略
断面正面図、第2図は同装置の要部の他の例の断面正面
図、第3図は本発明によって得られた磁気記録媒体の−
実施例の断面図、第4図は磁気記録媒体の相対感度特性
図である。 1・・・・・・真空槽、4・・・・・・円筒状キャン、
5・・・・・・基材、9,9′,9″・・・・・・蒸発
物質、11,11′,1 1″・・・・・・蒸気流、1
3,14,15・・・・・・非磁性層、16,17,1
8・…・・強磁性層。 第1図 第2図 第3図 第4図
FIG. 1 is a schematic cross-sectional front view of a layer for carrying out the manufacturing method of the present invention, FIG. 2 is a cross-sectional front view of another example of the main part of the same device, and FIG. - of magnetic recording media
FIG. 4, a cross-sectional view of the embodiment, is a relative sensitivity characteristic diagram of the magnetic recording medium. 1... Vacuum chamber, 4... Cylindrical can,
5... Base material, 9, 9', 9''... Evaporated substance, 11, 11', 1 1''... Vapor flow, 1
3, 14, 15...Nonmagnetic layer, 16, 17, 1
8...Ferromagnetic layer. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 真空雰囲気内で高分子成形物を基材とし、その基材
を円筒状キヤンの周側面に沿って移動させながら基材上
に強磁性層を形成する磁気記録媒体の製造方法にあって
、強磁性材料を蒸発物質とする蒸発源の蒸発面の中心に
たてた法線と円筒状キヤンの回転軸とを一致させずにず
らした状態になるように蒸発源を配設し、蒸発物質を加
熱気化させて得た蒸気流の限定された入射角成分により
強磁性層を形成することを特徴とする磁気記録媒体の製
造方法。
1. A method for manufacturing a magnetic recording medium in which a ferromagnetic layer is formed on a polymer molded material as a base material while moving the base material along the circumferential side of a cylindrical can in a vacuum atmosphere, The evaporation source is arranged so that the normal line drawn to the center of the evaporation surface of the evaporation surface of the evaporation source, which uses a ferromagnetic material as the evaporation substance, is not aligned with the rotation axis of the cylindrical can, but is shifted. 1. A method for manufacturing a magnetic recording medium, comprising forming a ferromagnetic layer using a limited incident angle component of a vapor flow obtained by heating and vaporizing.
JP8446478A 1978-07-10 1978-07-10 Method for manufacturing magnetic recording media Expired JPS6014408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8446478A JPS6014408B2 (en) 1978-07-10 1978-07-10 Method for manufacturing magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8446478A JPS6014408B2 (en) 1978-07-10 1978-07-10 Method for manufacturing magnetic recording media

Publications (2)

Publication Number Publication Date
JPS5512547A JPS5512547A (en) 1980-01-29
JPS6014408B2 true JPS6014408B2 (en) 1985-04-13

Family

ID=13831338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8446478A Expired JPS6014408B2 (en) 1978-07-10 1978-07-10 Method for manufacturing magnetic recording media

Country Status (1)

Country Link
JP (1) JPS6014408B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894133A (en) * 1981-11-28 1983-06-04 Hitachi Condenser Co Ltd Manufacturing equipment of magnetic recording medium
JPS58121134A (en) * 1982-01-12 1983-07-19 Matsushita Electric Ind Co Ltd Production of magnetic recording medium
JPS59148137A (en) * 1983-02-14 1984-08-24 Fuji Photo Film Co Ltd Production of magnetic recording medium
CN101932748B (en) * 2008-02-08 2012-02-22 松下电器产业株式会社 Method for forming deposited film

Also Published As

Publication number Publication date
JPS5512547A (en) 1980-01-29

Similar Documents

Publication Publication Date Title
US4673610A (en) Magnetic recording medium having iron nitride recording layer
JPS6014408B2 (en) Method for manufacturing magnetic recording media
JPS58158030A (en) Magnetic recording medium
JPH0896339A (en) Magnetic recording medium
JPS5948450B2 (en) Method for manufacturing magnetic recording media
JP2639065B2 (en) Manufacturing method of magnetic recording media
JPS6043915B2 (en) Vacuum deposition method
JPH11335838A (en) Production of metallic vapor deposited film type magnetic recording medium and apparatus for its production
JPH0676281A (en) Magnetic recording medium and method and device for producing the same
JP2883334B2 (en) Manufacturing method of magnetic recording medium
JPH07192259A (en) Production of magnetic recording medium
JPS6045271B2 (en) Vacuum deposition equipment
JPS60164930A (en) Production of magnetic recording medium
JPS6236285B2 (en)
JPH0457213A (en) Magnetic recording medium
JPS63251934A (en) Production of magnetic recording medium
JPH0817050A (en) Magnetic recording medium
JPH06103571A (en) Production of magnetic recording medium
JPH0935265A (en) Production of magnetic recording medium
JPH0853755A (en) Production of highly functional thin film
JPH07121872A (en) Production of magnetic recording medium
JPH0442730B2 (en)
JPH0548530B2 (en)
JPH04188432A (en) Manufacture of magnetic recording medium
JPH07220272A (en) Production of magnetic recording medium and device therefor