JP3304382B2 - Magnetic recording medium and method of manufacturing the same - Google Patents

Magnetic recording medium and method of manufacturing the same

Info

Publication number
JP3304382B2
JP3304382B2 JP05329492A JP5329492A JP3304382B2 JP 3304382 B2 JP3304382 B2 JP 3304382B2 JP 05329492 A JP05329492 A JP 05329492A JP 5329492 A JP5329492 A JP 5329492A JP 3304382 B2 JP3304382 B2 JP 3304382B2
Authority
JP
Japan
Prior art keywords
magnetic
recording medium
magnetic recording
film
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05329492A
Other languages
Japanese (ja)
Other versions
JPH05258304A (en
Inventor
好文 松田
正昭 二本
信幸 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP05329492A priority Critical patent/JP3304382B2/en
Publication of JPH05258304A publication Critical patent/JPH05258304A/en
Application granted granted Critical
Publication of JP3304382B2 publication Critical patent/JP3304382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク,磁気テ
ープ,磁気カードその他の情報記録用媒体、特に高密度
の情報記録に適した磁気記録媒体及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic disk, a magnetic tape, a magnetic card and other information recording media, and more particularly to a magnetic recording medium suitable for high-density information recording and a method of manufacturing the same.

【0002】[0002]

【従来の技術】磁気記録用の薄膜媒体を形成する方法に
は、磁性膜の組成制御が容易であり、基板に対する膜の
密着性が良好、かつ量産性が高い等の特長から、スパッ
タリング法が現在主流である。スパッタリング法により
磁気記録媒体を作製する場合、数十mPaから数Paの
Ar等の不活性ガス雰囲気で成膜するので、不活性ガス
導入前に背圧は一般に1/104〜1/105Paまで排
気すれば十分と考えられ、実際に上記の背圧にして成膜
されている。
2. Description of the Related Art A sputtering method is used as a method for forming a thin film medium for magnetic recording because of its features such as easy control of the composition of a magnetic film, good adhesion of the film to a substrate, and high mass productivity. Currently mainstream. When a magnetic recording medium is manufactured by a sputtering method, a film is formed in an atmosphere of an inert gas such as Ar of several tens mPa to several Pa, so that the back pressure is generally 1/10 4 to 1/10 5 before introducing the inert gas. It is considered sufficient to evacuate to Pa, and the film is actually formed under the above back pressure.

【0003】しかし、スパッタリング法では、電子ビー
ム蒸着法に比べ、成膜時のガス圧を高くしなければなら
ないため、成膜中にArイオンやγ電子等の高エネルギ
粒子がチャンバ内壁から叩き出す不純物を膜中に取り込
みやすく結晶格子に欠陥を生じやすい。そこで、特開昭
63−225923号公報に記載のように、強磁性金属薄膜層の
析出速度を10000Å/s以上と高めることで不純物
の膜中への取り込みを減らす方法が提案されている。こ
の方法は、膜中に不純物が取り込まれる前に必要な分の
膜を成長させてしまおうとするものであるが、スパッタ
室内に元々存在する残留不純物量により膜中に取り込ま
れる不純物の量が決まるので、結晶性,磁気特性,記録
再生特性等の特性が均一な磁気記録媒体を再現性良く作
製することは困難である。
However, in the sputtering method, the gas pressure at the time of film formation must be higher than that of the electron beam evaporation method, so that high energy particles such as Ar ions and γ electrons are ejected from the inner wall of the chamber during the film formation. Impurities are easily taken into the film, and defects are easily generated in the crystal lattice. Therefore,
As described in JP-A-63-225923, a method of reducing the incorporation of impurities into a film by increasing the deposition rate of a ferromagnetic metal thin film layer to 10,000 ° / s or more has been proposed. In this method, a necessary amount of the film is grown before the impurity is taken into the film, but the amount of the impurity taken into the film is determined by the amount of the residual impurity originally existing in the sputtering chamber. Therefore, it is difficult to produce a magnetic recording medium having uniform characteristics such as crystallinity, magnetic characteristics, and recording / reproducing characteristics with good reproducibility.

【0004】[0004]

【発明が解決しようとする課題】本発明の主な目的は、
磁気記録用薄膜媒体の中でも特に不純物の影響を受けや
すいCo−Cr系合金磁性膜および、TiあるいはTi
を主成分とした合金下地膜やCrあるいCrを主成分と
した合金下地膜について、膜中に取り込まれる不純物を
極めて低減したスパッタリング法を提供することにあ
る。
SUMMARY OF THE INVENTION The main object of the present invention is to:
Co-Cr based alloy magnetic films which are particularly susceptible to impurities among magnetic recording thin film media, and Ti or Ti
It is an object of the present invention to provide a sputtering method in which impurities incorporated in the alloy underlayer containing Cr as a main component or Cr or Cr as a main component are extremely reduced.

【0005】本発明の他の目的は、成膜中の不純物を極
めて低減したスパッタリング法を用いて磁気記録媒体を
作製することにより、記録特性の向上に特に効果のある
磁性材料及びそれに加える添加元素を提供することにあ
る。
Another object of the present invention is to produce a magnetic recording medium by using a sputtering method in which impurities during film formation are extremely reduced, so that a magnetic material particularly effective in improving recording characteristics and an additive element added thereto. Is to provide.

【0006】[0006]

【課題を解決するための手段】本発明の主な目的は、ス
パッタリング装置において磁気記録用薄膜媒体を作製す
る際に、背圧を1/107Pa 以下の真空度にするスパ
ッタリング法により達成することができる。また上記、
本発明の他の目的は、上記スパッタリング法により作製
する磁気記録用薄膜媒体の磁性層をCoとCrから成る
合金とした垂直磁気記録媒体とすることにより達成でき
る。
The main object of the present invention is achieved by a sputtering method in which a back pressure is reduced to a degree of vacuum of 1/10 7 Pa or less when a thin film medium for magnetic recording is produced in a sputtering apparatus. be able to. Also,
Another object of the present invention can be achieved by using a perpendicular magnetic recording medium in which the magnetic layer of the magnetic recording thin film medium produced by the above-mentioned sputtering method is an alloy composed of Co and Cr.

【0007】また、CoとCrから成る合金にTa,P
t,W,V,Nb,Si,B,O,Niから選ばれた少
なくとも1種の元素を添加した磁性層を有する垂直磁気
記録媒体とすることが望ましい。
[0007] In addition, Ta, P
It is desirable to provide a perpendicular magnetic recording medium having a magnetic layer to which at least one element selected from t, W, V, Nb, Si, B, O, and Ni is added.

【0008】さらに、前記磁気記録用薄膜媒体の磁性層
を2層の積層膜とし、下部層をCoとCrから成る合金
にTa,V,Nb,Si,Oから選ばれた少なくとも1
種の元素を添加した磁性層,上部層を下部層より飽和磁
化,磁化容易軸方向の保磁力が共に大きい、CoとCr
から成る合金にPt,W,B,Niから選ばれた少なく
とも1種の元素を添加した磁性層を有する垂直磁気記録
媒体とすることがより望ましい。
Further, the magnetic layer of the magnetic recording thin film medium is a two-layer laminated film, and the lower layer is made of an alloy composed of Co and Cr and made of at least one selected from Ta, V, Nb, Si and O.
Co and Cr have higher saturation magnetization and higher coercive force in the easy axis direction than the lower layer and the magnetic layer to which the element is added.
More preferably, the perpendicular magnetic recording medium has a magnetic layer in which at least one element selected from Pt, W, B and Ni is added to an alloy comprising

【0009】また、以上の垂直磁気記録媒体の下地層と
してTi膜あるいはTiにTa,Nb,Cr,Pt,P
d,Vから選ばれた少なくとも1種の元素を添加した合
金膜を形成すると望ましい。また、前記下地層をCr膜
あるいはCrにTi,Ta,Nb,Cr,Vを添加した
合金膜にすると前記垂直磁気記録媒体はすべて磁化容易
軸が媒体の面内方向を向いた面内磁気記録媒体としても
良好な特性が得られる。
Further, as a base layer of the above-described perpendicular magnetic recording medium, a Ti film or Ti is formed of Ta, Nb, Cr, Pt, Pt.
It is desirable to form an alloy film to which at least one element selected from d and V is added. When the underlayer is a Cr film or an alloy film obtained by adding Ti, Ta, Nb, Cr, and V to Cr, all of the perpendicular magnetic recording media have an in-plane magnetic recording in which the axis of easy magnetization is directed to the in-plane direction of the medium. Good characteristics can be obtained as a medium.

【0010】[0010]

【作用】スパッタリング装置で磁気記録用薄膜媒体を作
製する際に、背圧を従来の1/104〜1/105Paに
対して本発明の1/107Pa 以下にすると、まずスパ
ッタ室の内壁に付着した不純物が大幅に減少する。これ
により、スパッタリング中に高エネルギ粒子によりスパ
ッタ室の内壁から叩き出される不純物も大きく減少す
る。さらに、スパッタ室外とスパッタ室内の圧力差が原
因でスパッタ室内に漏れ入ってくる大気も極端に減少す
るため、成膜した磁気記録媒体中に取り込まれる不純物
が大幅に減少する。以上の磁気記録媒体の製造方法に依
れば、面内磁気記録媒体用下地膜の主成分であるCrや
垂直磁気記録媒体用下地膜の主成分であるTiのような
ゲッタリング作用により不純物を取り込み易い元素や、
面内媒体および垂直媒体の両方の磁性層に用いられるC
o−Cr系の合金に対して不純物の混入による結晶性の
悪化を防ぐことができる。
When producing a thin film medium for magnetic recording with a sputtering apparatus, if the back pressure is set at 1/10 7 Pa of the present invention to 1/10 4 to 1/10 5 Pa of the prior art, first, the sputtering chamber The impurities attached to the inner wall of the metal are greatly reduced. Thus, impurities sputtered from the inner wall of the sputtering chamber by high-energy particles during sputtering are greatly reduced. Further, the air leaking into the sputter chamber due to the pressure difference between the outside of the sputter chamber and the sputter chamber is extremely reduced, so that impurities taken into the formed magnetic recording medium are significantly reduced. According to the method for manufacturing a magnetic recording medium described above, impurities are obtained by gettering action such as Cr, which is the main component of the underlayer for the longitudinal magnetic recording medium, and Ti, which is the main component of the underlayer for the perpendicular magnetic recording medium. Elements that are easy to take in,
C used for both in-plane media and perpendicular media magnetic layers
Deterioration of crystallinity due to contamination of the o-Cr alloy can be prevented.

【0011】図1にCo−20at%Cr垂直磁化膜を
スパッタリングにより成膜する際の背圧に対するCo−
20at%Crの002反射のc軸配向性(Δθ50)の
変化および出力半減線記録密度(D50)を示す。これに
よると、背圧が低いほど高いc軸配向性および高い記録
密度特性を示すことが分かる。この例のように、結晶性
の良い磁性膜より成る磁気記録媒体にあっては優れた記
録再生特性を示した。
FIG. 1 shows the relationship between the back pressure and the back pressure when a Co-20 at% Cr perpendicular magnetization film is formed by sputtering.
The change in the c-axis orientation (Δθ 50 ) of the 002 reflection of 20 at% Cr and the output half-line recording density (D 50 ) are shown. According to this, it can be seen that the lower the back pressure, the higher the c-axis orientation and the higher the recording density. As in this example, a magnetic recording medium composed of a magnetic film having good crystallinity exhibited excellent recording / reproducing characteristics.

【0012】[0012]

【実施例】【Example】

〈実施例1〉本発明の磁気記録媒体の断面図を示す図2
を参照しながら実施例1を説明する。インライン型の直
流マグネトロンスパッタ装置を使用し、先ず、ターボ分
子ポンプを直列2段に連結した真空排気系を用い、スパ
ッタ室内の背圧を7/108Paまで排気した後、アル
ゴンガスを0.2Pa まで導入してから、以下の手順に
従い磁気ディスクを作製する。強化ガラスから成る直径
95mm,厚さ1.27mmの円板状非磁性基板1の両面に
厚さ150nmのTi−15at%Ta下地層2,2′
を形成した後、Co−19at%Cr−2at%Taか
ら成る厚さ150nmの磁性層3,3′,厚さ10nmの
カーボン保護層4,4′を順次形成して磁気ディスクを
作製した。成膜条件は、基板温度を175℃と一定に
し、アルゴンガス圧は、下地層2,2′,磁性層3,
3′形成時に共に0.3Pa 、カーボン保護層4,4′
形成時に1.0Pa にした。ターゲット投入電力密度
は、すべて100kW/m2に維持した。
<Embodiment 1> FIG. 2 showing a sectional view of a magnetic recording medium of the present invention.
Example 1 will be described with reference to FIG. First, an in-line type DC magnetron sputtering apparatus was used. First, using a vacuum exhaust system in which two turbo molecular pumps were connected in series, the back pressure in the sputtering chamber was evacuated to 7/10 8 Pa, and argon gas was then pumped to 0.10 Pa. After introducing up to 2 Pa, a magnetic disk is manufactured according to the following procedure. A 150 nm thick Ti-15 at% Ta underlayer 2, 2 'on both surfaces of a disc-shaped non-magnetic substrate 1 made of tempered glass and having a diameter of 95 mm and a thickness of 1.27 mm.
Was formed, a 150 nm thick magnetic layer 3, 3 'made of Co-19 at% Cr-2 at% Ta, and a 10 nm thick carbon protective layer 4, 4' were sequentially formed to produce a magnetic disk. The film formation conditions were such that the substrate temperature was kept constant at 175 ° C., and the argon gas pressure was set to the underlayers 2 and 2 ′,
0.3 Pa at the time of forming 3 ', carbon protective layer 4, 4'
During the formation, the pressure was adjusted to 1.0 Pa. All target input power densities were maintained at 100 kW / m 2 .

【0013】〈比較例1〉インライン型の直流マグネト
ロンスパッタ装置を使用し、クライオポンプを用いスパ
ッタ室内の背圧を5/105Paまで排気した後、アル
ゴンガスを0.2Paまで導入してから成膜する以外は、
実施例1と同様の手順により別の磁気ディスクを作製し
た。
<Comparative Example 1> Using an in-line type DC magnetron sputtering apparatus, the back pressure in the sputtering chamber was evacuated to 5/10 5 Pa using a cryopump, and argon gas was introduced to 0.2 Pa. Except for filming,
Another magnetic disk was manufactured in the same procedure as in Example 1.

【0014】〈実施例2〉本発明の磁気記録媒体の断面
図を示す図3を参照しながら実施例2を説明する。イン
ライン型の直流マグネトロンスパッタ装置を使用し、先
ず、ターボ分子ポンプを直列2段に連結した真空排気系
を用い、スパッタ室内の背圧を8/109Paまで排気
した後、アルゴンガスを0.3Pa まで導入してから、
以下の手順に従い磁気ディスクを作製する。強化ガラス
から成る直径95mm,厚さ1.27mmの円板状非磁性基
板1の両面に厚さ125nmのTi−16at%Nb下
地層2,2′を形成した後、Co−19at%Cr−2
at%Taから成る厚さ75mmの磁性層3a,3a′、
Co−12.5at%Cr−7.5at%Ptから成る厚
さ75mmの磁性層3b,3b′厚さ10nmのカーボン
保護層4,4′を順次形成して磁気ディスクを作製し
た。成膜条件は、基板温度は200℃と一定にし、アル
ゴンガス圧は、下地層2,2′,磁性層3a,3a′,
3b,3b′形成時に共に0.3Pa,カーボン保護層
4,4′形成時に1.0Paにした。ターゲット投入電
力密度は、すべて120kW/m2に維持した。
Embodiment 2 Embodiment 2 will be described with reference to FIG. 3 which shows a sectional view of a magnetic recording medium of the present invention. First, using an in-line type DC magnetron sputtering apparatus, a vacuum exhaust system in which turbo molecular pumps are connected in two stages in series was used to evacuate the back pressure in the sputtering chamber to 8/10 9 Pa. After introducing up to 3Pa,
A magnetic disk is manufactured according to the following procedure. After forming a Ti-16 at% Nb underlayer 2, 2 'with a thickness of 125 nm on both sides of a disc-shaped non-magnetic substrate 1 made of tempered glass and having a diameter of 95 mm and a thickness of 1.27 mm, Co-19 at% Cr-2
75% thick magnetic layers 3a, 3a 'made of at% Ta,
Magnetic layers 3b and 3b 'made of Co-12.5 at% Cr-7.5 at% Pt and having a thickness of 75 mm were successively formed to form carbon protective layers 4 and 4' having a thickness of 10 nm to produce a magnetic disk. The film formation conditions were such that the substrate temperature was kept constant at 200 ° C., and the argon gas pressure was set to the underlayers 2 and 2 ′, the magnetic layers 3 a and 3 a ′,
The pressure was set to 0.3 Pa for both the layers 3b and 3b ', and to 1.0 Pa for the layers 4 and 4'. All target input power densities were maintained at 120 kW / m 2 .

【0015】〈比較例2〉インライン型の直流マグネト
ロンスパッタ装置を使用し、クライオポンプを用いスパ
ッタ室内の背圧を6/105Paまで排気した後、アル
ゴンガスを0.3Paまで導入してから成膜する以外は、
実施例2と同様の手順により別の磁気ディスクを作製し
た。
Comparative Example 2 After using a cryopump to evacuate the back pressure of the sputtering chamber to 6/10 5 Pa using an in-line type DC magnetron sputtering apparatus, the argon gas was introduced to 0.3 Pa, and then formed. Except for filming,
Another magnetic disk was manufactured in the same procedure as in Example 2.

【0016】〈実施例3〉本発明の磁気記録媒体の断面
図を示す図2を参照しながら実施例3を説明する。イン
ライン型の直流マグネトロンスパッタ装置を使用し、先
ず、ターボ分子ポンプを直列2段に連結した真空排気系
を用いスパッタ室内の背圧を6/108Paまで排気した
後、アルゴンガスを0.3Pa まで導入してから、以下
の手順に従い磁気ディスクを作製する。強化ガラスから
成る直径95mm,厚さ1.27mm の円板状非磁性基板1
の両面に厚さ150nmのCr下地層2,2′を形成し
た後、Co−14at%Cr−2at%Bから成る厚さ
150nmの磁性層3,3′、厚さ10nmのカーボン
保護層4,4′を順次形成して磁気ディスクを作製し
た。成膜条件は、基板温度は150℃と一定にし、アル
ゴンガス圧は、上記下地層2,2′,磁性層3,3′形
成時に共に0.4Pa 、上記カーボン保護層4,4′形
成時に1.0Pa にした。ターゲット投入電力密度は、
すべて100kW/m2に維持した。
<Embodiment 3> Embodiment 3 will be described with reference to FIG. 2 showing a sectional view of a magnetic recording medium of the present invention. First, a back pressure in the sputtering chamber was evacuated to 6/10 8 Pa using a vacuum evacuation system in which a turbo molecular pump was connected in two stages using an in-line type DC magnetron sputtering apparatus. Then, a magnetic disk is manufactured according to the following procedure. Disc-shaped non-magnetic substrate 1 made of tempered glass and having a diameter of 95 mm and a thickness of 1.27 mm
After forming a 150 nm thick Cr underlayer 2, 2 'on both sides of the film, a 150 nm thick magnetic layer 3, 3' made of Co-14 at% Cr-2 at% B, a 10 nm thick carbon protective layer 4, 4 'were sequentially formed to produce a magnetic disk. The film forming conditions are as follows: the substrate temperature is kept constant at 150 ° C .; the argon gas pressure is 0.4 Pa for forming the underlayers 2 and 2 ′ and the magnetic layers 3 and 3 ′; and the argon gas pressure is for forming the carbon protective layers 4 and 4 ′. The pressure was set to 1.0 Pa. The target input power density is
All were kept at 100 kW / m 2 .

【0017】〈比較例3〉インライン型の直流マグネト
ロンスパッタ装置を使用し、ターボ分子ポンプによりス
パッタ室内の背圧を4/105Paまで排気した後、ア
ルゴンガスを0.2Paまで導入してから成膜する以外
は、実施例3と同様の手順により別の磁気ディスクを作
製した。
<Comparative Example 3> Using a DC magnetron sputtering apparatus of an in-line type, the back pressure in the sputtering chamber was evacuated to 4/10 5 Pa by a turbo molecular pump, and then argon gas was introduced to 0.2 Pa. Another magnetic disk was manufactured in the same procedure as in Example 3 except that the film was formed.

【0018】〈実施例4〉本発明の磁気記録媒体の断面
図を示す図3を参照しながら実施例4を説明する。イン
ライン型の直流マグネトロンスパッタ装置を使用し、先
ず、ターボ分子ポンプを直列2段に連結した真空排気系
を用いスパッタ室内の背圧を6/109Paまで排気した
後、アルゴンガスを0.4Pa まで導入してから、以下
の手順に従い磁気ディスクを作製する。強化ガラスから
成る直径95mm,厚さ1.27mm の円板状非磁性基板1
の両面に厚さ125nmのCr下地層2,2′を形成し
た後、Co−14at%Cr−2at%Vから成る厚さ
15nmの磁性層3a,3a′、Co−12.5at%C
r−2at%Wから成る厚さ15nmの磁性層3b,3
b′、厚さ10nmのカーボン保護層4,4′を順次形
成して磁気ディスクを作製した。成膜条件としては、基
板温度は175℃と一定にし、アルゴンガス圧は、下地
層2,2′,磁性層3a、3a′,3b,3b′形成時
に共に0.3Pa,上記カーボン保護層4,4′形成時に
1.0Paにした。
Embodiment 4 Embodiment 4 will be described with reference to FIG. 3 which shows a sectional view of a magnetic recording medium according to the present invention. First, a back pressure in the sputtering chamber was evacuated to 6/10 9 Pa using an evacuation system in which a turbo molecular pump was connected in two stages using an in-line type DC magnetron sputtering apparatus. Then, a magnetic disk is manufactured according to the following procedure. Disc-shaped non-magnetic substrate 1 made of tempered glass and having a diameter of 95 mm and a thickness of 1.27 mm
After forming Cr underlayers 2 and 2 'with a thickness of 125 nm on both surfaces of the magnetic layer 3a, 3a' and 3a 'with a thickness of 15 nm made of Co-14 at% Cr-2 at% V and Co-12.5 at% C, respectively.
15 nm thick magnetic layers 3b, 3 made of r-2at% W
b ', carbon protective layers 4 and 4' having a thickness of 10 nm were sequentially formed to produce a magnetic disk. As the film forming conditions, the substrate temperature was kept constant at 175 ° C., and the argon gas pressure was 0.3 Pa for forming the underlayers 2, 2 ′ and the magnetic layers 3 a, 3 a ′, 3 b, 3 b ′. The pressure was adjusted to 1.0 Pa during the formation of 4 '.

【0019】ターゲット投入電力密度は、すべて120
kW/m2に維持した。
The target input power density is 120
kW / m 2 was maintained.

【0020】〈比較例4〉インライン型の直流マグネト
ロンスパッタ装置を使用し、ターボ分子ポンプを用いス
パッタ室内の背圧を5/106Paまで排気した後、ア
ルゴンガスを0.3Paまで導入してから成膜する以外
は、実施例4と同様の手順により別の磁気ディスクを作
製した。
Comparative Example 4 Using a DC magnetron sputtering apparatus of an in-line type, evacuating the back pressure in the sputtering chamber to 5/10 6 Pa using a turbo molecular pump, and then introducing argon gas to 0.3 Pa. Another magnetic disk was manufactured in the same procedure as in Example 4 except that the film was formed from.

【0021】上記の実施例1,2と比較例1,2の磁気
ディスクについて、磁性層の002反射のc軸配向性
(Δθ50)および出力半減線記録密度(D50),再生出
力,媒体S/N等の記録再生特性を表1に示す。また、
実施例3,4と比較例3,4の磁気ディスクについて、
保磁力角形比(S*)および出力半減線記録密度(D50),
再生出力,媒体ノイズ等の記録再生特性を表2に示す。
ここで、再生出力、媒体ノイズ及び媒体S/Nは比較例
1の測定値を基に規格化した。記録再生特性の評価は、
記録はギャップ長0.18μm の薄膜磁気ヘッド、再生
はMRヘッドを用いて、ヘッド浮上量を0.05μm に
設定して行った。再生出力は線記録密度を2kFCI、トラ
ック密度は15kTPIとして評価した。媒体ノイズは線記
録密度を100kFCI、トラック密度を15kTPIとして評
価した。
For the magnetic disks of Examples 1 and 2 and Comparative Examples 1 and 2, the c-axis orientation (Δθ 50 ) of the 002 reflection of the magnetic layer, the output half-line recording density (D 50 ), the reproduction output, and the medium Table 1 shows recording / reproducing characteristics such as S / N. Also,
Regarding the magnetic disks of Examples 3 and 4 and Comparative Examples 3 and 4,
Coercivity squareness ratio (S *) and output half-line recording density (D 50 )
Table 2 shows recording / reproducing characteristics such as reproducing output and medium noise.
Here, the reproduction output, the medium noise, and the medium S / N were normalized based on the measured values of Comparative Example 1. Evaluation of recording / reproducing characteristics
Recording was performed using a thin-film magnetic head having a gap length of 0.18 μm, and reproduction was performed using an MR head with the head flying height set to 0.05 μm. The reproduction output was evaluated with a linear recording density of 2 kFCI and a track density of 15 kTPI. The medium noise was evaluated with a linear recording density of 100 kFCI and a track density of 15 kTPI.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】表1,表2から分かるように、実施例1,
2,3,4はそれぞれに対応した比較例に対してD50
大幅に向上していると共に、再生出力が高まり媒体ノイ
ズが低減し媒体S/Nは大幅に増大した。
As can be seen from Tables 1 and 2, Examples 1 and 2
2,3,4 with the D 50 of the comparative example corresponding to each are greatly improved, reduced reproduction output increases the medium noise medium S / N is significantly increased.

【0025】実施例1及び実施例2において、下地層
2,2′にはTiに添加したTaの替わりにNb,C
r,Pt,Pd,V等を添加した場合にも同様の効果が
得られた。
In the first and second embodiments, the underlayers 2, 2 'are replaced by Nb, C instead of Ta added to Ti.
Similar effects were obtained when r, Pt, Pd, V, etc. were added.

【0026】また、実施例1及び実施例3において、磁
性層3,3′にはCoとCrから成る合金に添加したT
aの替わりにPt,W,V,Nb,Si,B,O,Ni
を添加した場合にも同様の効果が得られた。さらに、実
施例1及び実施例2において下地層と磁性層の間にNi
−Fe,Co−Ta−Zr等の軟磁性層を設けた垂直2
層膜媒体とすれば、垂直型磁気ヘッドとの組合せによ
り、より高い再生出力が得られる。
In the first and third embodiments, the magnetic layers 3 and 3 'are made of T added to an alloy composed of Co and Cr.
Pt, W, V, Nb, Si, B, O, Ni instead of a
The same effect was obtained also when adding. Further, in the first and second embodiments, Ni was added between the underlayer and the magnetic layer.
-2 provided with a soft magnetic layer of Fe, Co-Ta-Zr, etc.
With a layered medium, a higher reproduction output can be obtained by combination with a perpendicular magnetic head.

【0027】実施例2及び実施例4において、磁性層3
a,3a′にはCoとCrから成る合金に添加したTa
の替わりにV,Nb,Si,O等を添加し、磁性層3
b,3b′はCoとCrから成る合金に添加したPtの
替わりにW,B,Ni等を添加した場合にも同様の効果
が得られた。実施例3及び実施例4において、下地層
2,2′にはCr膜の替わりにCrにTi,Ta,N
b,Cr,Vを添加した合金膜にしても同様の効果が得
られた。
In the second and fourth embodiments, the magnetic layer 3
a and 3a 'include Ta added to an alloy composed of Co and Cr.
Instead of adding V, Nb, Si, O, etc., the magnetic layer 3
For b and 3b ', the same effect was obtained when W, B, Ni or the like was added instead of Pt added to the alloy composed of Co and Cr. In Example 3 and Example 4, Cr, Ti, Ta, N was used instead of the Cr film for the underlayers 2 and 2 '.
The same effect was obtained with an alloy film to which b, Cr, and V were added.

【0028】[0028]

【発明の効果】磁気記録媒体をスパッタリング法により
作製する際に背圧を1/107Pa 以下にすることで、
媒体中への不純物の混入を極端に減らすことができ、そ
の結果、従来の背圧を1/104Pa〜1/105Pa程
度としたスパッタリング法に比べ、磁気記録媒体を構成
する下地層や磁性層の結晶性を向上することができ、線
記録密度や媒体S/Nを大幅に改善することができ、こ
れらの特性を安定に再現性よく得ることができる。
When the magnetic recording medium is manufactured by the sputtering method, the back pressure is reduced to 1/10 7 Pa or less.
The mixing of impurities into the medium can be extremely reduced, and as a result, compared to the conventional sputtering method in which the back pressure is set to about 1/10 4 Pa to 1/10 5 Pa, the underlayer constituting the magnetic recording medium In addition, the crystallinity of the magnetic layer can be improved, the linear recording density and the medium S / N can be significantly improved, and these characteristics can be obtained stably with good reproducibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気記録媒体の製造方法の効果を示し
た説明図。
FIG. 1 is an explanatory view showing the effect of a method for manufacturing a magnetic recording medium according to the present invention.

【図2】本発明の磁気記録媒体の部分断面斜視図。FIG. 2 is a partial cross-sectional perspective view of the magnetic recording medium of the present invention.

【図3】本発明の磁気記録媒体の部分断面斜視図。FIG. 3 is a partial cross-sectional perspective view of the magnetic recording medium of the present invention.

【符号の説明】[Explanation of symbols]

1,1′…非磁性基板、2,2′…非磁性下地層、3,
3′…磁性層、3a,3a′…第1磁性層、3b,3
b′…第2磁性層、4,4′…保護層。
1, 1 ': non-magnetic substrate; 2, 2': non-magnetic underlayer;
3 ': magnetic layer, 3a, 3a': first magnetic layer, 3b, 3
b ': second magnetic layer, 4, 4' ... protective layer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲葉 信幸 東京都国分寺市東恋ケ窪1丁目280番地 株式会社 日立製作所 中央研究所内 (56)参考文献 特開 平2−218103(JP,A) 特開 昭64−36763(JP,A) 特開 平3−86914(JP,A) 特開 平3−168918(JP,A) 特開 昭63−201911(JP,A) 特開 平5−36054(JP,A) 特開 平5−109042(JP,A) 特公 昭61−36285(JP,B2) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Nobuyuki Inaba 1-280 Higashi Koigakubo, Kokubunji-shi, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd. (56) References JP-A-2-218103 (JP, A) JP-A Sho64 JP-A-3-36763 (JP, A) JP-A-3-86914 (JP, A) JP-A-3-168918 (JP, A) JP-A-63-201911 (JP, A) JP-A-5-36054 (JP, A) JP-A-5-109042 (JP, A) JP-B-61-36285 (JP, B2)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】背圧を1/10Pa以下の真空度にし、
その後不活性ガスの導入されたスパッタ室内で成膜を行
うことを特徴とするスパッタリング法による磁気記録媒
体の製造方法。
Claims: 1. A back pressure is reduced to a degree of vacuum of 1/10 7 Pa or less ,
Thereafter, a film is formed in a sputtering chamber into which an inert gas has been introduced.
A method of manufacturing a magnetic recording medium by a sputtering method.
【請求項2】磁性層の材料としてCoとCrを含む合金
を用いてスパッタリングを行い磁性層を形成することを
特徴とする請求項1に記載の垂直磁気記録媒体の製造方
法。
2. The method according to claim 1, wherein the magnetic layer is formed by sputtering using an alloy containing Co and Cr as a material of the magnetic layer.
【請求項3】磁性層の材料として、CoとCrを含む合
金に、Ta、Pt、W,V,Nb、Si、B、O,Ni
から選ばれる少なくとも1種の元素を添加した材料を用
いることを特徴とする請求項2に記載の垂直磁気記録媒
体の製造方法。
3. An alloy containing Co and Cr as a material of a magnetic layer is made of Ta, Pt, W, V, Nb, Si, B, O, Ni.
3. The method for manufacturing a perpendicular magnetic recording medium according to claim 2, wherein a material to which at least one element selected from the following is added is used.
JP05329492A 1992-03-12 1992-03-12 Magnetic recording medium and method of manufacturing the same Expired - Fee Related JP3304382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05329492A JP3304382B2 (en) 1992-03-12 1992-03-12 Magnetic recording medium and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05329492A JP3304382B2 (en) 1992-03-12 1992-03-12 Magnetic recording medium and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH05258304A JPH05258304A (en) 1993-10-08
JP3304382B2 true JP3304382B2 (en) 2002-07-22

Family

ID=12938710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05329492A Expired - Fee Related JP3304382B2 (en) 1992-03-12 1992-03-12 Magnetic recording medium and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3304382B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004079062A (en) 2002-08-15 2004-03-11 Fujitsu Ltd Magnetic recording medium

Also Published As

Publication number Publication date
JPH05258304A (en) 1993-10-08

Similar Documents

Publication Publication Date Title
JP2911782B2 (en) Magnetic recording medium and method of manufacturing the same
JP4716534B2 (en) Magnetic recording medium
JP2006127637A (en) Manufacturing method of perpendicular magnetic recording medium
JP2991672B2 (en) Magnetic recording media
JP3304382B2 (en) Magnetic recording medium and method of manufacturing the same
JP2519982B2 (en) Method for manufacturing in-plane magnetic recording medium
JP2911797B2 (en) Magnetic recording medium and method of manufacturing the same
EP1508895A1 (en) Information recording medium and information storage device
JP2920723B2 (en) Magnetic recording media
JPH0827927B2 (en) Magnetic recording media
JPH0268716A (en) Production of magnetic disk medium
JPH09265619A (en) Magnetic recording medium, its production and magnetic storage device
JP2989820B2 (en) Magnetic recording medium and method of manufacturing the same
JP2002203312A (en) Magnetic recording medium, its manufacturing method and device, and magnetic recording/reproducing device
JPH05303734A (en) Perpendicular magnetic recording medium
JPH05135343A (en) Magnetic recording medium
JPH1166533A (en) Magnetic recording medium
JP2989821B2 (en) Magnetic recording medium and method of manufacturing the same
JPH05325163A (en) Magnetic recording medium
JP2001134929A (en) Magnetic recording medium and magnetic recording device
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JPS6235605A (en) Magnetically soft thin film
JPH06349061A (en) Production of magnetic recording medium
JPH06282834A (en) Perpendicular magnetic recording medium and manufacture thereof
JP2001243620A (en) Magnetic recording medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees