JPH0268716A - Production of magnetic disk medium - Google Patents
Production of magnetic disk mediumInfo
- Publication number
- JPH0268716A JPH0268716A JP22049188A JP22049188A JPH0268716A JP H0268716 A JPH0268716 A JP H0268716A JP 22049188 A JP22049188 A JP 22049188A JP 22049188 A JP22049188 A JP 22049188A JP H0268716 A JPH0268716 A JP H0268716A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- alloy
- sputtering
- diameter
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 88
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000000758 substrate Substances 0.000 claims abstract description 52
- 238000004544 sputter deposition Methods 0.000 claims abstract description 32
- 229910000531 Co alloy Inorganic materials 0.000 claims abstract description 31
- 229910000599 Cr alloy Inorganic materials 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000005477 sputtering target Methods 0.000 claims abstract 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 230000003628 erosive effect Effects 0.000 abstract description 9
- 239000010408 film Substances 0.000 description 24
- 239000002245 particle Substances 0.000 description 22
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 238000007747 plating Methods 0.000 description 7
- 230000004907 flux Effects 0.000 description 6
- 239000010409 thin film Substances 0.000 description 6
- 230000005294 ferromagnetic effect Effects 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005415 magnetization Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229910001339 C alloy Inorganic materials 0.000 description 1
- 229910018104 Ni-P Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- 229910018536 Ni—P Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005381 magnetic domain Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000010702 perfluoropolyether Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は磁気ディスク媒体の製造方法に関し、特にCo
系合金強磁性薄膜とCrを主成分とする下地薄膜とから
成る磁気記録媒体において高保磁力(≧11000e)
で、高い線記録密度を有し、かつ記録再生時の雑音が少
ない優れた記録再生特性を有する磁気ディスク媒体の製
造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a magnetic disk medium, and in particular to a method for manufacturing a magnetic disk medium.
High coercive force (≧11000e) in a magnetic recording medium consisting of a ferromagnetic thin film based on a ferromagnetic alloy and an underlying thin film mainly composed of Cr.
The present invention relates to a method of manufacturing a magnetic disk medium having a high linear recording density and excellent recording and reproducing characteristics with little noise during recording and reproducing.
磁気ディスク用記録媒体は当初T酸化鉄粒子をAj’基
板上に塗布したものが実用化され、現在においても相当
数が実用に供されているが、近年はメツキ法及びスパッ
タ法により成膜された合金強磁性体による連続媒体が進
出している。特に口径5.25インチφ以下の小口径磁
気ディスクの分野においては、上記連続媒体が全使用量
の半数以上を占めるに至っている。この傾向はますます
助長されると共に、小口径磁気ディスクを使用する小型
ドライブ装置の設計方針が軽薄短小化に向うと共に、高
記録容量を必要とする様になり、磁気ディスク媒体の線
記録密度向上が要求されている。従来量産されている磁
気ディスク媒体の保磁力は塗布媒体で600〜7000
e、メツキ及びスパッタ媒体で800〜9500eが主
流であり、開発段階のもので1000〜15000eの
ものは、今後の磁気ヘッドの高出力化が進展すると共に
実用領域に達し得るレベルの媒体であり、幾多の事例が
報告されている。Recording media for magnetic disks were first put into practical use by coating T iron oxide particles on an Aj' substrate, and a considerable number of them are still in use today, but in recent years, films have been formed by plating and sputtering methods. Continuous media made of ferromagnetic alloys are now being developed. Particularly in the field of small-diameter magnetic disks with a diameter of 5.25 inches or less, the above-mentioned continuous media now account for more than half of the total usage. This trend is becoming more and more popular, and the design policy for small drive devices that use small-diameter magnetic disks is becoming lighter, thinner, and smaller. At the same time, high recording capacity is required, and the linear recording density of magnetic disk media is increasing. is required. The coercive force of conventional mass-produced magnetic disk media is 600 to 7000 for coated media.
800 to 9500e is the mainstream for e, plating and sputtering media, and those in the development stage of 1000 to 15000e are media that can reach the practical level as the output of magnetic heads progresses in the future. Numerous cases have been reported.
高保磁力磁気記録媒体として提案されているCo合金/
Crスパッタ媒体は、NiP/A1基板の表面を研磨テ
ープで円周方向に研磨して円周方向のテクスチャー(溝
構造)を形成し、その上に先ずCr層を形成する。基板
とCo合金層の間にCr層が介在することによって、C
o合金層の保磁力が向上しかつ角型比が大きくなるから
である。Co alloy proposed as a high coercivity magnetic recording medium/
In the Cr sputtering medium, the surface of the NiP/A1 substrate is polished in the circumferential direction with a polishing tape to form a circumferential texture (groove structure), and a Cr layer is first formed thereon. By interposing the Cr layer between the substrate and the Co alloy layer, C
This is because the coercive force of the o alloy layer is improved and the squareness ratio is increased.
このCr下地層のスパッタでは、スパッタ粒子を斜入射
させて、円周方向のテクスチャーによるシャドウィング
効果を利用して、溝の方向即ち円周方向に沿った形状に
Cr層(下地層)薄膜を成長させる。そして、その上層
に同じく斜入射効果を与える方法でCo系合金強磁性薄
膜の粒子又は粒子群を円周方向に沿って長平方向に配向
する様に沈着させて、円周方向に形状異方性にもとづく
強い一軸磁気異方性を有する磁気ディスク媒体が実用に
供せられている。円周方向のテクスチャーは、ヘッドス
ライダ−とディスク媒体との接触による媒体表面の摩耗
や損傷を極小化するために形成されるが、このテクスチ
ャーを利用して上記の如く磁性層に形状異方性を与えて
円周方向に高い磁気異方性を得るようにされているので
ある。In this sputtering of the Cr underlayer, sputtered particles are incident obliquely and the shadowing effect of the texture in the circumferential direction is used to form a thin Cr layer (underlying layer) in a shape along the groove direction, that is, the circumferential direction. Make it grow. Then, particles or particle groups of a Co-based alloy ferromagnetic thin film are deposited on the upper layer using a method that also gives the oblique incidence effect so as to be oriented in the elongated direction along the circumferential direction, thereby creating shape anisotropy in the circumferential direction. Magnetic disk media with strong uniaxial magnetic anisotropy based on the above are in practical use. The texture in the circumferential direction is formed to minimize wear and damage on the media surface due to contact between the head slider and the disk media, and this texture is used to create shape anisotropy in the magnetic layer as described above. This gives high magnetic anisotropy in the circumferential direction.
上記の如き磁気ディスクでは、円周方向テクスチャーと
Cr下地層の形成によって高い保磁力と高い角型化が実
現されるが、円周方向に細長い針状の形状異方性を有し
、そのため円周方向に強い一軸磁気異方性を有する強磁
性薄膜が形成されている。このような磁気ディスクの円
周方向及び半径方向の磁気履歴曲線の例を第8図に示す
。In magnetic disks such as those described above, high coercive force and high angularity are achieved by forming a circumferential texture and a Cr underlayer. A ferromagnetic thin film having strong uniaxial magnetic anisotropy in the circumferential direction is formed. An example of magnetic history curves in the circumferential direction and the radial direction of such a magnetic disk is shown in FIG.
この様な媒体においては、磁気記録する際の磁化遷移領
域における磁区構造の入り込みが複雑になり、再生時に
ノイズ発生の原因と成り得る。In such a medium, the intrusion of the magnetic domain structure in the magnetization transition region during magnetic recording becomes complicated, which may cause noise generation during reproduction.
また従来の構造では高保磁力(≧11000e)を得る
ためには、形状異方性を更に強めるため磁性薄膜のアス
ペクト比を高める必要があり、そのため基板上の溝間隔
を狭めなければならない。しかしこの事は磁気ディスク
のC3S (コンタクト・スタート・ストップ)性能の
低下を招き、かつ量産効率を損なうので好ましくない。Furthermore, in the conventional structure, in order to obtain a high coercive force (≧11000e), it is necessary to increase the aspect ratio of the magnetic thin film in order to further strengthen the shape anisotropy, and therefore the groove spacing on the substrate must be narrowed. However, this is undesirable because it causes a decrease in the C3S (contact start/stop) performance of the magnetic disk and impairs mass production efficiency.
そこで、本発明は、磁気記録媒体の高密度化に対応して
、高保磁力(≧11000e)でかつ低ノイズの高性能
磁気記録媒体を提供することを目的とする。Therefore, an object of the present invention is to provide a high-performance magnetic recording medium with high coercive force (≧11000e) and low noise in response to the increasing density of magnetic recording media.
本発明は、上記目的を達成するために、基板上にCr又
はCr合金下地層を成膜し、その上にCO合金磁性層を
成膜し、さらに必要に応じてその上に非磁性層、炭素膜
などを成膜して磁気ディスク媒体を製造する方法を提供
する。この方法では、Cr又はCr合金下地層及びCo
合金磁性層を基牟反とスパフタターゲソトを30〜15
0朧l好ましくは40〜110龍の間隔で同心円位置に
平行に静止する状態で配置してスパッタ成膜し、上記C
r又はCr合金下地層を成膜するに当たっては、ターゲ
ットが表面積の80%以上の円環状侵蝕領域を有し、か
つその円環状侵蝕領域の内径が基板径の40%以下で外
径が基板径より大きい条件下でスパッタ成膜し、上記C
o合金磁性層を成膜するに当たっては、ターゲットが表
面積の60%以下の円環状侵蝕領域を有し、かつその円
環状侵蝕領域の内径が基板径の80%以上で外径が基板
径より大きい条件下でスパッタ成膜する。In order to achieve the above object, the present invention forms a Cr or Cr alloy underlayer on a substrate, forms a CO alloy magnetic layer thereon, and further forms a nonmagnetic layer thereon as necessary. A method of manufacturing a magnetic disk medium by forming a carbon film or the like is provided. In this method, a Cr or Cr alloy underlayer and a Co
The base material of the alloy magnetic layer and the spaft target material are 30 to 15
The film is formed by sputtering by arranging them in a stationary state in parallel in concentric circles at an interval of preferably 40 to 110 mm, and forming the film by sputtering.
When forming an r or Cr alloy base layer, the target has an annular eroded area that is 80% or more of the surface area, and the inner diameter of the annular eroded area is 40% or less of the substrate diameter and the outer diameter is the substrate diameter. The above C
o When forming the alloy magnetic layer, the target must have an annular eroded region of 60% or less of the surface area, and the inner diameter of the annular eroded region is 80% or more of the substrate diameter and the outer diameter is larger than the substrate diameter. Sputter film deposition under these conditions.
この方法の特徴は、上記の如き侵蝕領域を有するターゲ
ットを用いて、Cr又はCr合金下地層の成膜に当たっ
ては主に垂直入射によるスパッタ成膜を行い、Co合金
磁性層の成膜に当たっては斜め入射によるスパッタ成膜
を行うことにある。The feature of this method is that using a target with the above-mentioned corroded area, the Cr or Cr alloy underlayer is mainly formed by vertical incidence sputtering, and the Co alloy magnetic layer is formed by sputtering at an angle. The purpose of this method is to perform sputtering film formation using incident radiation.
Cr又はCr合金下地層を垂直入射スパッタ成膜するこ
とによって、Cr又はCr合金下地層は柱状に発達し、
かつ成子面においてCr粒子の体心立方格子(BCC)
結晶相の(110)面が発達する。By depositing the Cr or Cr alloy base layer by vertical incidence sputtering, the Cr or Cr alloy base layer develops into a columnar shape.
and a body-centered cubic lattice (BCC) of Cr particles in the gerontological plane.
The (110) plane of the crystalline phase develops.
このような形で良く成長したCr又はCr合金下地層上
にCo合金磁性層をエピタキシャル成長させると、良く
成長したCr又はCr合金粒子上へCo合金が更に上積
みされる形で成長し、膜面上の曲部分又は開部分がより
強調された独立晶として成長する。こうして得られる磁
性層は高保磁力であると共に異方性(形状及び磁気異方
性)がないものとなり、高保磁力でかつ記録再生時のノ
イズが低下するので高記録密度媒体として好適なものと
なる。When a Co alloy magnetic layer is epitaxially grown on a well-grown Cr or Cr alloy underlayer in this manner, the Co alloy grows in such a way that it is further layered on top of the well-grown Cr or Cr alloy particles, and the film surface is The curved or open portions of the crystals grow as independent crystals that are more accentuated. The magnetic layer thus obtained has a high coercive force and no anisotropy (shape and magnetic anisotropy), making it suitable as a high-density recording medium as it has a high coercive force and reduces noise during recording and reproduction. .
因みに、本発明の方法で得られる磁気ディスク媒体のC
o合金磁性層の構造は、限定するわけではないが、膜面
に垂直な方向より観察される構造が平均粒径1100n
以下の粒子の集合体であり、かつ個々の粒子はそれによ
って形成される成子面に垂直方向の凹凸の平均の大きさ
が上記平均粒径寸法以下の寸法であり、かつ該粒子は互
いに隣接する粒子と少なくとも0.5nmの距離をもっ
て隔てられた構造であるといえる。そして、保磁力Hc
が11000e以上、異方性として円周方向の角型比と
半径方向の角型比との間の比が0.8〜1.1の範囲内
である磁気ディスクを製造することができる。Incidentally, C of the magnetic disk medium obtained by the method of the present invention
o The structure of the alloy magnetic layer is not limited, but the structure observed from the direction perpendicular to the film surface has an average grain size of 1100 nm.
It is an aggregate of the following particles, and the average size of the unevenness in the direction perpendicular to the germinating surface formed by the individual particles is less than or equal to the above average particle size, and the particles are adjacent to each other. It can be said that the structure is separated from the particles by a distance of at least 0.5 nm. And coercive force Hc
It is possible to manufacture a magnetic disk having an anisotropy of 11000e or more and a ratio between the circumferential squareness ratio and the radial squareness ratio within the range of 0.8 to 1.1.
また、ノイズ特性としては記録再生周波数5 MHzに
おけるノイズと信号出力の比(−dB)が35以上を実
現することができる。Further, as for noise characteristics, a ratio (-dB) of noise to signal output at a recording/reproducing frequency of 5 MHz can be achieved at 35 or more.
本発明の磁気ディスク媒体の典型的な製造方法について
説明する。第1図はスパッタ装置の概略図、第2図及び
第3図はそれぞれCr又はCr合金層及びCo合金層の
スパッタ成膜の条件を説明する図、第4図は典型的な磁
気ディスクの概略図である。A typical manufacturing method of the magnetic disk medium of the present invention will be described. Figure 1 is a schematic diagram of a sputtering apparatus, Figures 2 and 3 are diagrams explaining the conditions for sputtering a Cr or Cr alloy layer and a Co alloy layer, respectively, and Figure 4 is a schematic diagram of a typical magnetic disk. It is a diagram.
第1図において、基板1とターゲット2はスパッタ室3
内に平行に配置され、高周波電力又は直流電力4が印加
できるようになっている。マグネトロンスパッタ装置の
場合にはターゲット2下の陰極5は高速マグネトロン電
極として構成される。In FIG. 1, a substrate 1 and a target 2 are connected to a sputtering chamber 3.
They are arranged in parallel inside each other so that high frequency power or DC power 4 can be applied thereto. In the case of a magnetron sputtering device, the cathode 5 below the target 2 is configured as a high-speed magnetron electrode.
本発明の方法には円環状侵蝕領域を上記の如く規定する
ためにマグネトロンスパッタ装置が最適である。スパッ
タ室3は真空排気6され、また基板1とターゲット2の
間にはシャッター7が設けられる。A magnetron sputtering device is most suitable for the method of the present invention in order to define the annular eroded region as described above. The sputtering chamber 3 is evacuated 6, and a shutter 7 is provided between the substrate 1 and the target 2.
基板11はA1合金又は純A!が代表的であるが、ポリ
カーボネート、ポリエチルアミドなどの硬質プラスチッ
クスからなってもよい。基板の寸法は特に限定されない
が、本発明は特に5インチ、3.5゛インチなどの小型
ディスクに有利に適用される。厚さは通常1.2〜1.
9鰭程度であり、表面は鏡面仕上げされる。The substrate 11 is made of A1 alloy or pure A! is typical, but it may also be made of hard plastics such as polycarbonate and polyethylamide. Although the dimensions of the substrate are not particularly limited, the present invention is particularly advantageously applied to small disks such as 5 inches and 3.5 inches. The thickness is usually 1.2 to 1.
It has about 9 fins and has a mirror-finished surface.
好ましくは、基板11の表面には、非磁性層又は磁性層
の付着を良くし、耐食性を持たせるために、無電解めっ
きでNi −Pなどの下地めっき層12を厚さ10〜2
0側程度形成する。さらに、この下地めっき処理した基
板にテープ研磨法等でほぼ同心円状(ら旋状でもよい)
のテクスチャー(a構造)を形成する。これはディスク
回転時にヘッドに浮力を与えるために必要であり、表面
粗さで表現して、最大表面粗さR−、400〜550人
、平均表面粗さR160〜80人が好ましい。表面粗さ
があまり大きいとヘッドの浮上性が悪くなり、一方表面
粗さが小さすぎるとヘッドとの接触による媒体やヘッド
の摩耗や損傷が激しくなる。Preferably, a base plating layer 12 such as Ni-P is formed on the surface of the substrate 11 by electroless plating to a thickness of 10 to 2.
Form about 0 side. Furthermore, on this base plated substrate, a tape polishing method or the like is applied to form a substantially concentric circle (or a spiral shape).
A texture (a structure) is formed. This is necessary to give buoyancy to the head when the disk rotates, and expressed in terms of surface roughness, preferably a maximum surface roughness R- of 400 to 550 and an average surface roughness R of 160 to 80. If the surface roughness is too large, the flying ability of the head will be poor, while if the surface roughness is too small, the media and head will be subject to severe wear and damage due to contact with the head.
同心円状テクスチャーを形成した下地めっき層12上に
は、CO合金磁性層14をエピタキシャル成長させるた
めの中間層としてCr又はCr合金下地層13を形成す
る。スパッタ法では(110)面が基板面に平行に配向
して結晶成長し、その断面構造はコラム状になることが
知られている。本発明では、このCr又はCr合金下地
層13をスパッタ成膜するに当たって基板11に対して
主に垂直入射させる。そのために、第2図を参照すると
、スパッタ室3内にCr又はCr合金ターゲット1を下
地めっきとテクスチャー形成を終えた基板2と対向して
、基板寸法に応じて30〜150鶴、好ましくは40〜
110fl程度の間隔に配置し、ターゲット1の円環状
侵蝕領域(ターゲットがスパッタされてターゲット構成
材料が飛び出すために侵蝕されるターゲットの領域)8
が次の条件を満たすようなスパッタ条件下で成膜する。A Cr or Cr alloy underlayer 13 is formed as an intermediate layer for epitaxially growing the CO alloy magnetic layer 14 on the underplating layer 12 having a concentric texture. It is known that in the sputtering method, crystals grow with the (110) plane oriented parallel to the substrate surface, resulting in a column-shaped cross-sectional structure. In the present invention, when forming this Cr or Cr alloy base layer 13 by sputtering, the incidence is mainly perpendicular to the substrate 11. To this end, referring to FIG. 2, a Cr or Cr alloy target 1 is placed in a sputtering chamber 3 facing a substrate 2 that has undergone undercoat plating and texture formation, and is placed in a sputtering chamber 3 for 30-150 mm, preferably 40 mm, depending on the dimensions of the substrate. ~
Annular erosion areas of the target 1 (areas of the target that are eroded because target constituent materials fly out when the target is sputtered) 8 are arranged at intervals of about 110 fl.
The film is formed under sputtering conditions that satisfy the following conditions.
すなわち、侵蝕領域8の内周部が基板2の中心から半径
の40%以内にあり、侵蝕領域8の外周は基板2の外周
より外側にあり、かつターゲットの全面積(基板と対向
する面の面積)に対して侵蝕領域8の面積が80%以上
である。これによってCr又はCr合金が基板に対して
実質的に垂直入射し、Cr又はCr合金の(110)面
がより完全に成長する。スパッタ条件は通常使用されて
いる公知の範囲で良く、たとえばアルゴン圧力1〜l
Q flTorr、電力は2〜10km程度で良い。C
r又はCr合金下地層13の厚さは1000〜3000
人の範囲が好ましい。Cr又はCr合金下地層13の厚
さが増すほどCo合金磁性層14の保磁力が増加する傾
向にあるが、最終的には飽和するので、所望の効果を得
るには上記範囲の厚さが好適である。That is, the inner periphery of the eroded region 8 is within 40% of the radius from the center of the substrate 2, the outer periphery of the eroded region 8 is outside the outer periphery of the substrate 2, and the entire area of the target (the surface facing the substrate) is The area of the eroded region 8 is 80% or more of the area (area). This causes the Cr or Cr alloy to be incident substantially perpendicularly to the substrate, allowing the (110) plane of the Cr or Cr alloy to grow more completely. The sputtering conditions may be within the commonly used range, such as an argon pressure of 1 to 1 liters.
Q flTorr, the electric power is good for about 2 to 10 km. C
The thickness of the r or Cr alloy base layer 13 is 1000 to 3000
A range of people is preferred. The coercive force of the Co alloy magnetic layer 14 tends to increase as the thickness of the Cr or Cr alloy underlayer 13 increases, but it eventually reaches saturation, so the thickness within the above range is required to obtain the desired effect. suitable.
Cr又はCr合金下地層13を成膜後、CO合金磁性層
14を成膜する。代表的なCo合金磁性材料はCo −
Ni−Crからなり、Ni 10〜30atm%、Cr
5〜10 atm%である。Cr又はCr合金下地層
上に形成したCo合金磁性層は高保磁力、高記録密度で
あることが知られているが、本発明ではこれを上記の如
<Cr又はCr合金下地層をワイドエロージョンターゲ
ットによるスパッタで成膜後に、下記の如くナローエロ
ージョンターゲットを用いて斜め入射でスパッタ成膜し
てC。After forming the Cr or Cr alloy underlayer 13, the CO alloy magnetic layer 14 is formed. A typical Co alloy magnetic material is Co −
Consisting of Ni-Cr, Ni 10-30 atm%, Cr
It is 5 to 10 atm%. It is known that a Co alloy magnetic layer formed on a Cr or Cr alloy underlayer has a high coercive force and a high recording density. After forming a film by sputtering with C, a film was formed by sputtering with oblique incidence using a narrow erosion target as shown below.
合金をCr又はCr合金下地結晶に対応して独立品とし
て成長させる。ここにナローエロージョンターゲットと
は、第3図を参照すると、40〜110■lのターゲッ
ト1と基板2の距離においてターゲット15の円環状侵
蝕領域9の内周部が基板2の中心から半径の80%より
外側で基板2の外周より内側にあり、エロージョン領域
9の外周は基板2の外周より外側にあり、かつターゲッ
ト1の全面積に対する侵蝕領域9の面積が60%以下で
ある場合をいう。スパッタ条件はCrの場合と同じで良
い。The alloy is grown as a stand-alone product corresponding to the Cr or Cr alloy substrate. Referring to FIG. 3, the term "narrow erosion target" means that at a distance between target 1 and substrate 2 of 40 to 110 μl, the inner periphery of the annular erosion area 9 of target 15 is 80 mm in radius from the center of substrate 2. % and inside the outer periphery of the substrate 2, the outer periphery of the erosion region 9 is outside the outer periphery of the substrate 2, and the area of the erosion region 9 with respect to the total area of the target 1 is 60% or less. The sputtering conditions may be the same as those for Cr.
このような斜入射を先の垂直入射のC「又はCr合金下
地層と組み合わせることによって、高保磁力、高密度記
録特性であり、かつ低ノイズ特性の磁気ディスク媒体を
実現することができる。これは、このような成膜法の組
み合わせによってC。By combining such oblique incidence with the above-mentioned perpendicular incidence C or Cr alloy underlayer, a magnetic disk medium with high coercive force, high density recording characteristics, and low noise characteristics can be realized. , C by a combination of such film-forming methods.
合金層が独立晶として良好に成長し、かつ磁気異方性の
ないCo合金磁性層が形成されるためと考えられる。こ
のCo合金磁性層14は、−船釣に、前述の如く、成子
面内の平均粒子径が1100n以下、成子面に垂直な凹
凸の平均が該平均粒子径より小さく、成子面内の個々の
粒子が少なくとも0.5 nmの隔たりを有する構造と
なる。Co合金磁性層4えって低下するからである。This is thought to be because the alloy layer grows well as an independent crystal, and a Co alloy magnetic layer without magnetic anisotropy is formed. As described above, this Co alloy magnetic layer 14 has an average particle diameter of 1100 nm or less in the Nariko plane, an average of the unevenness perpendicular to the Nariko plane is smaller than the average particle diameter, and individual particles in the Nariko plane. This results in a structure in which the particles are separated by at least 0.5 nm. This is because the Co alloy magnetic layer 4 deteriorates even more.
Co11性層4上には、必要に応じて、保護膜5を形成
する。この保護膜としては、カーボン蒸着膜(3QO〜
400人)とその上のパーフルオロポリエーテル膜(2
0〜40人)等が通常用いられる。A protective film 5 is formed on the Co11 layer 4, if necessary. As this protective film, a carbon vapor deposited film (3QO~
400 people) and a perfluoropolyether film (2
0 to 40 people) etc. are usually used.
以下に本発明の実施例について詳細に述べる。 Examples of the present invention will be described in detail below.
外径13011φ、内径40u+φ、厚さ1.90m重
のA1基板上にNiPメツキ(18〜20廁厚)を施こ
し、NiPメツキ層を約3趨機械研磨加工して鏡面仕上
げした。〔テクスチャー加工は平均粗さ(R,)20〜
30人、最大粗さ(R□、)100〜200人程度はど
こす〕このような磁気ディスク用基板に対し、スパッタ
法により、下地層(Cr金属薄膜)を膜厚さ1000〜
3000nm厚さに成膜する。この成膜条件はArガス
圧力3〜10 mTorr(好ましくは6 mTorr
)、DC電力2.5〜6KW、ターゲットとサブストレ
ート(T/S)間の距離70鶴で、円形ターゲットと基
板は互いに静止して同心円位置に対向させている。NiP plating (18 to 20 m thick) was applied to an A1 substrate having an outer diameter of 13011φ, an inner diameter of 40u+φ, and a thickness of 1.90m, and the NiP plating layer was mechanically polished in about 3 directions to give a mirror finish. [Texture processing has an average roughness (R,) of 20~
30 people, and the maximum roughness (R□) is about 100 to 200 people] On such a magnetic disk substrate, a base layer (Cr metal thin film) is coated to a thickness of 1000 to 1000 by sputtering.
A film is formed to a thickness of 3000 nm. The film forming conditions are Ar gas pressure of 3 to 10 mTorr (preferably 6 mTorr).
), a DC power of 2.5 to 6 KW, a distance of 70 mm between the target and the substrate (T/S), and the circular target and the substrate are stationary and facing each other in a concentric position.
このターゲット(直径200nφ)のカソードはターゲ
ットの円環状侵蝕領域が85%でその内径が基板面の中
心径の30%になって、基板面に向って垂直に飛来する
成分が大部分を占める様に設計したカソードを用いた。The cathode of this target (diameter 200nφ) has an annular eroded area of 85% and its inner diameter is 30% of the center diameter of the substrate surface, and it appears that the majority of the components are flying perpendicularly toward the substrate surface. A cathode designed in this way was used.
次に下地層上にCo 30 atm%Ni −7,5
atm%Cr合金磁性層をスパッタ法で成膜する。この
合金磁性層の成膜に当たっては、成膜条件としてArガ
ス圧力3〜10 mTorr(好ましくは6 mTor
r)、DC電力2.5〜6KW、T/S間距離50龍で
、円形ターゲットと基板は互いに静止して同心円位置に
対向させている。ターゲット(直径20(bmφ)のカ
ソードは円環状侵蝕領域が40%でその中心径が基板径
の80%以上になる様に設計したカソードである。Next, Co 30 atm%Ni -7,5 was applied on the base layer.
An atm% Cr alloy magnetic layer is formed by sputtering. In forming this alloy magnetic layer, the film forming conditions are Ar gas pressure of 3 to 10 mTorr (preferably 6 mTorr).
r), DC power is 2.5 to 6 KW, T/S distance is 50 Yen, and the circular target and the substrate are stationary and facing each other in concentric positions. The cathode of the target (diameter 20 (bmφ)) was designed so that the annular eroded area was 40% and the center diameter was 80% or more of the substrate diameter.
このようにして、基板温度と各々の膜厚を表1に示すよ
うに変化させて成膜し、磁気ディスクを作製した。In this way, films were formed while changing the substrate temperature and each film thickness as shown in Table 1, and a magnetic disk was manufactured.
このような方法で得た磁気ディスクの表面構造を日立製
作所製走査電子顕微鏡(S−900型)を用いて観察し
た反射電子像を第5図に示す。Co合金の粒子が独立し
て成長している様子が見られる。FIG. 5 shows a backscattered electron image of the surface structure of the magnetic disk obtained by such a method, which was observed using a scanning electron microscope (Model S-900, manufactured by Hitachi, Ltd.). It can be seen that the Co alloy particles are growing independently.
Co合金粒子の平均粒径は20nm、粒子間隙は平均1
nmで0.5〜5nI11に分布していた。Co合金粒
子の膜面に垂直な方向の凹凸は断面構造で調べて、5〜
10nmとなっていた。The average particle size of Co alloy particles is 20 nm, and the average particle gap is 1
It was distributed in 0.5-5nI11 in nm. The unevenness in the direction perpendicular to the film surface of the Co alloy particles was investigated by the cross-sectional structure, and
It was 10 nm.
比較のために、上記実施例と同様の磁気ディスクを作製
し、但しCr下地層とCo合金磁性層を従来法の成膜条
件(両方とも斜め入射)で行い、円周方向に異方性を付
与した。For comparison, a magnetic disk similar to that of the above example was fabricated, except that the Cr underlayer and Co alloy magnetic layer were formed under conventional film formation conditions (both oblique incidence) to create anisotropy in the circumferential direction. Granted.
第6図は、この比較例の磁気ディスクの表面構造を示す
第5図と同様の写真である。Co合金粒子が独立せず、
やや小さめであり、そして粒子間にもCo合金がびっし
りと充満しているのが見られる。FIG. 6 is a photograph similar to FIG. 5 showing the surface structure of the magnetic disk of this comparative example. Co alloy particles are not independent,
It is somewhat small, and it can be seen that the spaces between the particles are also densely filled with Co alloy.
これらの実施例及び比較例の磁気ディスクの静磁力特性
、記録再生特性、周波数特性及びノイズ特性について評
価した。静磁力特性はVSM (振動試料型磁力計)を
用いて測定し、記録再生特性等はスペクトルアナライザ
ーを用いて測定した。The magnetostatic force characteristics, recording/reproducing characteristics, frequency characteristics, and noise characteristics of the magnetic disks of these Examples and Comparative Examples were evaluated. The magnetostatic force characteristics were measured using a VSM (vibrating sample magnetometer), and the recording and reproducing characteristics were measured using a spectrum analyzer.
なお、測定条件としては、周波数範囲は零から10MH
zまで;分解周波数は30Kt(z、ノイズ比測定入力
信号5MHz;測定ヘッドはモノリシック型メタルイン
ギャップ(MIG)ヘッド、トラック巾TW=1.6m
+、ギャップ巾G L = 0.7 廂;測定位置はデ
ィスク中心より30.4Mm、ディスク回転数は360
0rpm ;書込電流35m八とした。The measurement conditions include a frequency range of 0 to 10 MHz.
up to z; resolution frequency is 30Kt (z, noise ratio measurement input signal 5MHz; measurement head is monolithic metal-in-gap (MIG) head, track width TW = 1.6m
+, gap width GL = 0.7 feet; measurement position is 30.4 mm from the disk center, disk rotation speed is 360
0 rpm; write current was 35m8.
表1に結果を示す。Table 1 shows the results.
表1におけるl)〜14)の説明を下記に付す。Explanations of l) to 14) in Table 1 are given below.
1)保磁力Hc (Oe) :
ディスクの円周方向に測定した値を示す。10000e
以上を目標とし、この値が高いほど記録密度を高めるこ
とができる。1) Coercive force Hc (Oe): Shows the value measured in the circumferential direction of the disk. 10000e
The above is the goal, and the higher this value is, the higher the recording density can be.
2)残留磁束密度Br・δ(G・μ):ここでは残留磁
束密度Brに膜厚δを掛けたもので評価したので(ガウ
ス)×(マイクロメートル)の単位を持つ。この値が大
きいほど出力が大きくなり好ましい。2) Residual magnetic flux density Br·δ (G·μ): Here, the residual magnetic flux density Br was evaluated by multiplying the film thickness δ, so it has a unit of (Gauss)×(micrometer). The larger this value is, the greater the output is, which is preferable.
3)磁気異方性(Br/Bs戸/ (Br / Bs)
’ :残留磁束密度Br/飽和磁束密度BsO比(角
型比)を円周方向と半径方向についてそれぞれ測定し、
その比をもって磁気異方性を評価した。この値が1に近
いほど等方性である。等方性であるほど、ノイズが少な
くなることが後述する如く確認されており、好ましい。3) Magnetic anisotropy (Br/Bs/(Br/Bs)
': Measure the residual magnetic flux density Br/saturation magnetic flux density BsO ratio (square ratio) in the circumferential direction and the radial direction, respectively,
Magnetic anisotropy was evaluated based on the ratio. The closer this value is to 1, the more isotropic it is. As will be described later, it has been confirmed that the more isotropic the material is, the less noise it produces, which is preferable.
4)外周部OR:
外径130鶴φのディスクの中心から60.91mの位
置をもって外周部(0(1j6rradius)とした
。4) Outer periphery OR: The position 60.91 m from the center of the disk with an outer diameter of 130 φ was defined as the outer periphery (0 (1j6rradius)).
5)内周部■R:
外径130 nφのディスクの中心から30.4mlの
位置をもって内周部(inner radius)とし
た。5) Inner radius ■R: The position 30.4 ml from the center of the disk with an outer diameter of 130 nφ was defined as the inner radius.
6)トラック平均出力TAA LFI(mV) :1
.25M1!zの信号(LFI)のトランク平均出力。6) Track average output TAA LFI (mV): 1
.. 25M1! Trunk average power of the signal (LFI) of z.
7)トラック平均出力TAA HFI(mV) :2
.50M1lzの信号(HFI)のトラック平均出力。7) Track average output TAA HFI (mV): 2
.. Track average output of 50M1lz signal (HFI).
8)分解能RES (%):
TAA HF + / TAA LF Iをパーセント
表示する。この値が大きいほどく100%に近いほど)
、LF、とIIFのTAAO差が小さいほど、分解能
は良好であるといえる。8) Resolution RES (%): Displays TAA HF + / TAA LF I as a percentage. The larger this value is, the closer it is to 100%)
It can be said that the smaller the TAAO difference between , LF, and IIF, the better the resolution.
9)重ね書き特性をO/W(−dB) :LFIの信号
を記録した後さらにその上にHFIの信号を記録したと
きの出力を再生した場合に、後の信号と先の信号との比
として評価する。この値は絶対値が大きいほど重ね書き
特性は良好である。9) O/W (-dB) for overwriting characteristics: When reproducing the output when recording an LFI signal and then recording an HFI signal on top of it, the ratio of the later signal to the previous signal. Evaluate as. The larger the absolute value of this value is, the better the overwriting characteristics are.
10)70%減衰周波数り、。:
孤立波(0,75MHz)の出力の70%の出力になる
ときの周波数(第1O図参照)。10) 70% attenuation frequency. : Frequency at which the output is 70% of the output of a solitary wave (0.75 MHz) (see Figure 1O).
11) D?。線記録密度LD(KFCPI) :D
7゜の周波数に対する線記録密度。単位は1インチ当た
りの磁束反転数(Kilo Flux Change
PerInch)である。11) D? . Linear recording density LD (KFCPI) :D
Linear recording density for a frequency of 7°. The unit is the number of magnetic flux reversals per inch (Kilo Flux Change).
PerInch).
12)50%減衰周波数り、。:
孤立波(0,75MHz)の出力の50%の出力になる
ときの周波数(第10図参照)。12) 50% attenuation frequency. : Frequency at which the output is 50% of the output of a solitary wave (0.75 MHz) (see Figure 10).
13) Ds。線記録密度LD(KFCPI) :D
5゜の周波数に対する線記録密度。13) Ds. Linear recording density LD (KFCPI) :D
Linear recording density for a frequency of 5°.
14)ノイズ比5NR15,0Mtlz(−dB)
:5、QMHzの信号の出力における信号とノイズの比
を対数表示したもので、この値が大きい方が雑音が小さ
い。14) Noise ratio 5NR15,0Mtlz (-dB)
:5, QMHz is a logarithmic representation of the signal-to-noise ratio at the output of the signal; the larger the value, the smaller the noise.
第7図に実施例(試料2)の磁気ディスクの円周方向及
び半径方向の磁化履歴曲線を示す。第8図に示した比較
例(試料1)の対応する磁化履歴曲線と比べると、本発
明の磁気ディスクが異方性を持たないことくしかし保磁
力は大きいこと)がわかる。FIG. 7 shows magnetization history curves in the circumferential direction and the radial direction of the magnetic disk of Example (Sample 2). When compared with the corresponding magnetization hysteresis curve of the comparative example (sample 1) shown in FIG. 8, it can be seen that the magnetic disk of the present invention does not have anisotropy but has a large coercive force.
第9図は実施例(試料2)の磁気ディスクに5MHzの
信号を入力しない時と入力した時の出力を周波数に関し
て表わしたものであり、第9図は比較例(試料1)の対
応する図である。これらの図を比較すると、従来の異方
性の磁気ディスクでは、信号を入力したときに、低周波
領域で媒体ノイズ成分が大きく増加するが、実施例の等
方性の磁気ディスクでは、信号入力時にも、媒体ノイズ
成分の増加が小さい。Figure 9 shows the output in terms of frequency when a 5 MHz signal is not input to the magnetic disk of the example (sample 2) and when it is input, and Figure 9 is a corresponding diagram of the comparative example (sample 1). It is. Comparing these figures, it can be seen that with a conventional anisotropic magnetic disk, when a signal is input, the medium noise component increases significantly in the low frequency region, but with the isotropic magnetic disk of the example, when a signal is input Sometimes, the increase in media noise components is small.
第11図は実施例(試料2)と従来例(試料1)の磁気
ディスクの出力の周波数特性を示すものである。同図よ
り、比較例の方が実施例よりも周波数の上昇とともに出
力がより早く低下することが認められる。FIG. 11 shows the frequency characteristics of the output of the magnetic disks of the embodiment (sample 2) and the conventional example (sample 1). From the figure, it is recognized that the output of the comparative example decreases more quickly as the frequency increases than the example.
本発明の方法によれば、基板上のCr又はCr合金下地
層上にCo合金磁性層を形成して成る磁気ディスク媒体
であって、高保磁力(11000e以上)でかつ記録再
生時のノイズを抑制することができる、高記録密度化に
有用な磁気ディスク媒体が得られる。According to the method of the present invention, there is provided a magnetic disk medium in which a Co alloy magnetic layer is formed on a Cr or Cr alloy underlayer on a substrate, which has a high coercive force (11000e or more) and suppresses noise during recording and reproduction. A magnetic disk medium useful for increasing recording density can be obtained.
第1図は本発明の方法を実施するスパッタ装置を示す模
式図、第2図はCr又はCr合金下地層の成膜条件を説
明する図、第3図はCo合金磁性層の成膜条件を説明す
る図、第4図は本発明の実施例の磁気ディスクの構成を
示す模式図、第5図及び第6図は実施例及び比較例の磁
気ディスクのCo合金磁性層の金属組織の電子顕微鏡写
真、第7図及び第8図は実施例及び比較例の磁気ディス
クの円周方向及び半径方向の磁化腹歴曲線、第9図及び
第10図は実施例及び比較例の磁気ディスクのノイズ特
性を示す図、第11図は実施例及び比較例の磁気ディス
クの出力の周波数特性を示す図である。
■・・・基板、 2・・・ターゲット、3
・・・円環状侵蝕領域、 4・・・高周波電力源、5・
・・陰極、 6・・・真空系、7・・・シ
ャッター 11・・・基板、12・・・下地めっ
き層、
13・・・Cr又はCr合金下地層、
14・・・Co合金磁性層、15・・・保護膜。FIG. 1 is a schematic diagram showing a sputtering apparatus for carrying out the method of the present invention, FIG. 2 is a diagram illustrating the deposition conditions for a Cr or Cr alloy underlayer, and FIG. 3 is a diagram explaining the deposition conditions for a Co alloy magnetic layer. 4 is a schematic diagram showing the structure of a magnetic disk according to an example of the present invention, and FIGS. 5 and 6 are electron micrographs of the metal structure of the Co alloy magnetic layer of the magnetic disk of the example and comparative example. The photographs, Figures 7 and 8 are circumferential and radial magnetization antinode curves of the magnetic disks of the example and comparative example, and Figures 9 and 10 are the noise characteristics of the magnetic disks of the example and comparative example. FIG. 11 is a diagram showing the frequency characteristics of the output of the magnetic disks of the example and the comparative example. ■...Substrate, 2...Target, 3
...Annular erosion area, 4.High frequency power source, 5.
... Cathode, 6... Vacuum system, 7... Shutter 11... Substrate, 12... Base plating layer, 13... Cr or Cr alloy base layer, 14... Co alloy magnetic layer, 15...Protective film.
Claims (1)
にCo合金磁性層を成膜し、さらに必要に応じてその上
に非磁性層、炭素膜などを成膜して磁気ディスク媒体を
製造する方法において、上記Cr又はCr合金下地層及
びCo合金磁性層は基板とスパッタターゲットを30〜
150mmの間隔で同心円位置に平行に静止する状態で
配置してスパッタ成膜し、上記Cr又はCr合金下地層
を成膜するに当たっては、ターゲットが表面積の80%
以上の円環状侵蝕領域を有し、かつその円環状侵蝕領域
の内径が基板径の40%以下で外径が基板径より大きい
条件下でスパッタ成膜し、上記Co合金磁性層を成膜す
るに当たっては、ターゲットが表面積の60%以下の円
環状侵蝕領域を有し、かつその円環状侵蝕領域の内径が
基板径の80%以上で外径が基板径より大きい条件下で
スパッタ成膜することを特徴とする磁気ディスク媒体の
製造方法。1. Form a Cr or Cr alloy underlayer on a substrate, form a Co alloy magnetic layer on top of it, and further form a nonmagnetic layer, carbon film, etc. on top of it as necessary to form a magnetic disk. In the method for manufacturing a medium, the Cr or Cr alloy underlayer and the Co alloy magnetic layer are separated from the substrate and the sputtering target by 30 to 30°C.
When forming the Cr or Cr alloy base layer by sputtering the film by placing it stationary in parallel at concentric circles with an interval of 150 mm, the target has a surface area of 80% of the surface area.
The Co alloy magnetic layer is formed by sputtering under the conditions that the annular eroded area has the above-mentioned annular eroded area, and the inner diameter of the annular eroded area is 40% or less of the substrate diameter, and the outer diameter is larger than the substrate diameter. In this case, the sputtering film must be formed under the conditions that the target has an annular eroded area of 60% or less of the surface area, the inner diameter of the annular eroded area is 80% or more of the substrate diameter, and the outer diameter is larger than the substrate diameter. A method of manufacturing a magnetic disk medium characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63220491A JP2625169B2 (en) | 1988-09-05 | 1988-09-05 | Method of manufacturing magnetic disk medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63220491A JP2625169B2 (en) | 1988-09-05 | 1988-09-05 | Method of manufacturing magnetic disk medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0268716A true JPH0268716A (en) | 1990-03-08 |
JP2625169B2 JP2625169B2 (en) | 1997-07-02 |
Family
ID=16751895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63220491A Expired - Fee Related JP2625169B2 (en) | 1988-09-05 | 1988-09-05 | Method of manufacturing magnetic disk medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2625169B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04276314A (en) * | 1991-01-11 | 1992-10-01 | Internatl Business Mach Corp <Ibm> | Manufacturing process of thin-film magnetic recording disk and manufacturing process of cobalt alloy magnetic recording disk |
JP2004086968A (en) * | 2002-08-26 | 2004-03-18 | Sharp Corp | Magnetic recording medium |
WO2004051630A1 (en) * | 2002-12-02 | 2004-06-17 | Fujitsu Limited | Polycrystalline structure film, magnetic recording medium and magnetic storage |
US7482069B2 (en) | 2002-12-02 | 2009-01-27 | Fujitsu Limited | Polycrystalline structure film having inclined lattice surfaces |
CN107004429A (en) * | 2014-11-18 | 2017-08-01 | 索尼公司 | Magnetic recording media |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6282517A (en) * | 1985-10-07 | 1987-04-16 | Victor Co Of Japan Ltd | Production of magnetic disk |
-
1988
- 1988-09-05 JP JP63220491A patent/JP2625169B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6282517A (en) * | 1985-10-07 | 1987-04-16 | Victor Co Of Japan Ltd | Production of magnetic disk |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04276314A (en) * | 1991-01-11 | 1992-10-01 | Internatl Business Mach Corp <Ibm> | Manufacturing process of thin-film magnetic recording disk and manufacturing process of cobalt alloy magnetic recording disk |
JP2004086968A (en) * | 2002-08-26 | 2004-03-18 | Sharp Corp | Magnetic recording medium |
WO2004051630A1 (en) * | 2002-12-02 | 2004-06-17 | Fujitsu Limited | Polycrystalline structure film, magnetic recording medium and magnetic storage |
US7482069B2 (en) | 2002-12-02 | 2009-01-27 | Fujitsu Limited | Polycrystalline structure film having inclined lattice surfaces |
CN107004429A (en) * | 2014-11-18 | 2017-08-01 | 索尼公司 | Magnetic recording media |
Also Published As
Publication number | Publication date |
---|---|
JP2625169B2 (en) | 1997-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3809418B2 (en) | Magnetic recording medium and magnetic recording apparatus | |
US5815343A (en) | Magnetic recording medium, process for producing the same and magnetic recording system | |
JP3143611B2 (en) | Ultrathin nucleation layer for magnetic thin film media and method of making the layer | |
US6667118B1 (en) | Texture-induced magnetic anisotropy of soft underlayers for perpendicular recording media | |
US5858566A (en) | Seeded underlayer in magnetic thin films | |
JP2004296030A (en) | Perpendicular magnetic recording medium and its manufacturing method | |
JP2002208129A (en) | Magnetic recording medium, its manufacturing method and magnetic recording device | |
US5853847A (en) | Magnetic recording medium and its manufacture | |
KR100637107B1 (en) | Magnetic recording medium, method of producing magnetic recording medium and magnetic storage apparatus | |
US6077603A (en) | Seeded underlayer in magnetic thin films | |
US6042939A (en) | Magnetic recording medium and method of manufacturing the same | |
JP2697227B2 (en) | Magnetic recording medium and method of manufacturing the same | |
JP2625169B2 (en) | Method of manufacturing magnetic disk medium | |
JP4391010B2 (en) | Magnetic recording medium, method for manufacturing the same, and magnetic recording apparatus | |
JP3663289B2 (en) | Magnetic recording medium and magnetic storage device | |
JP2003077121A (en) | Magnetic recording medium and manufacturing method therefor | |
US20050042481A1 (en) | Information recording medium with improved perpendicular magnetic anisotropy | |
EP0971340A1 (en) | Magnetic recording medium | |
JPH0268711A (en) | Magnetic recording medium | |
JP2749046B2 (en) | Magnetic recording medium for longitudinal recording and magnetic recording apparatus for longitudinal recording using the same | |
JPH03165315A (en) | Magnetic recording medium and production thereof | |
JP2006040410A (en) | Method for manufacturing magnetic recording medium | |
JP2001243618A (en) | Magnetic recording medium, its manufacturing method sputtering target and magnetic recording/reproducing device | |
JPH05234069A (en) | Thin film-magnetic disk | |
WO1998044491A1 (en) | Magnetic recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |