JPS6373634A - Method for inspection of semiconductor element - Google Patents

Method for inspection of semiconductor element

Info

Publication number
JPS6373634A
JPS6373634A JP21715086A JP21715086A JPS6373634A JP S6373634 A JPS6373634 A JP S6373634A JP 21715086 A JP21715086 A JP 21715086A JP 21715086 A JP21715086 A JP 21715086A JP S6373634 A JPS6373634 A JP S6373634A
Authority
JP
Japan
Prior art keywords
layer
collector
region
measurement
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21715086A
Other languages
Japanese (ja)
Inventor
Noboru Tatefuru
立古 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21715086A priority Critical patent/JPS6373634A/en
Publication of JPS6373634A publication Critical patent/JPS6373634A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the work of characteristic inspection to be performed on a bipolar IC, to enhance the accuracy in measurement, and to improve the yield of production by a method wherein the collector layer of a semiconductor element and the scribe region which is the outer circumferential boundary of the element are short-circuited, the back surface of a semiconductor substrate is used as a collector electrode, and a measurement is performed using two measuring needles on the side of the surface of the substrate. CONSTITUTION:An oxide film 7 is removed in such a manner that the part, astriding the n<+> layer 5 which becomes a collector region and the scribe region A containing an isolation region 4, is exposed using photoresist technique for the purpose of emitter diffusion of a bipolar IC. Subsequently, SiO2 8 containing phosphorus oxide is deposited on the whole surface, and the n<+> diffusion layer 10, with which the collector n<+> layer 5 and the isolation p-layer 4 are short- circuited, is formed. The collector region 5 is electrically connected to the back surface of a wafer, and an hFE measurement can be performed by contacting two measuring needles for a base electrode and an emitter electrode on the wafer surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体素子の検査法、特にトランジスタを含む
IC,LSI等において、それら素子の電気的特性を効
率よく検査する技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for testing semiconductor devices, and particularly to a technique for efficiently testing the electrical characteristics of ICs, LSIs, and the like including transistors.

〔従来技術〕[Prior art]

IC,LSI等の半導体集積回路の高集穎化とともに、
高微細化が目ざましく進められており、ウェハプロセス
における評価・検査技術は重要となっている。
With the increasing integration of semiconductor integrated circuits such as ICs and LSIs,
As miniaturization is progressing at a rapid pace, evaluation and inspection technology in wafer processes has become important.

このウェハプロセスにおける評価項目として、洗浄、エ
ビタキ7ヤル、酸化、拡散、微細加工。
The evaluation items in this wafer process are cleaning, polishing, oxidation, diffusion, and microfabrication.

メタライズ等の各工程の検査があり、最後に総合特性と
して基本素子の電気的測定がある(工業調査会発行電子
材料1985年8月p23〜25)。
There are inspections of each process such as metallization, and finally electrical measurements of the basic elements as comprehensive characteristics (Kogyo Kenkyukai, Electronic Materials, August 1985, p. 23-25).

特に、TTL−ICではトランジスタ素子のh FE4
!性を制御するためにエミッタ拡散後に検査をしている
が、単体トランジスタに比べて検査方法が複雑で問題が
ある。゛ すなわち、本発明者等により検討されている技術であっ
て、TTL −ICのウェハプロセスでエミッタ拡散後
に、各ペレツトの一部の端に又は検査用ペレットの一部
として設けた検査用素子な抜き取り検査でそのhi’l
を測定することにより、ロフトの合否及び後続処理に対
するコントロール情報を得て〜・る。
In particular, in TTL-IC, hFE4 of the transistor element
! In order to control the characteristics, inspection is performed after emitter diffusion, but the inspection method is more complicated than that for single transistors, which poses a problem.゛In other words, this is a technology being considered by the present inventors, which involves a test element provided at the end of a part of each pellet or as a part of a test pellet after emitter diffusion in the TTL-IC wafer process. That hi'l in a random inspection
By measuring the loft, control information for loft pass/fail and subsequent processing can be obtained.

その一つの方法は、第8図に示すように半導体ウェハ1
の一主表面に検査用素子であるnpn)ランジスタを構
成するコレクタn+層5.ペースp層6.エミッタn+
層9をそれぞれ拡散により形成し、エミッタ拡散後に、
その検査用素子を含むウェハの一部のリンガラス及び酸
化膜(SiOm)7をエッチ除去して、コレクタ、ペー
ス、エミッタのそれぞれの3領域に対し測定針(CBE
)をマニュプレータにより接触させてhFIを測定する
One method is to use a semiconductor wafer 1 as shown in FIG.
collector n+ layer 5. which constitutes an npn) transistor which is an element for inspection on one main surface of the 5. Pace p layer6. Emitter n+
Each layer 9 is formed by diffusion, and after emitter diffusion,
A part of the phosphorus glass and oxide film (SiOm) 7 of the wafer containing the test element is removed by etching, and a measuring needle (CBE) is applied to each of the three regions of the collector, pace, and emitter.
) with a manipulator to measure hFI.

他の方法は、第9図に示すように、ウエノ・全面のリン
ガラスのみ除去して、予めペース領域6の一部にも同時
に形成したリン拡散層をペース電極ω)として、それら
のE−B、C−B接合部を酸化膜で保護した状態でhF
Mを測定する。
Another method, as shown in FIG. 9, is to remove only the phosphorus glass on the entire surface of the wafer, and use a phosphorus diffusion layer, which has also been formed in advance on a part of the paste region 6, as a paste electrode ω). hF with the B and C-B junctions protected by an oxide film.
Measure M.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したいずれの方法においても、コレクタ電極用測定
針はウェハ表面に位置し、すなわち、コレクタ、ペース
、エミッタの領域に対して3本の測定針を接触させる必
要がある。これら領域はせいぜい20〜30μm幅の小
さな面積であるため、ここに3本の針を同時に接触させ
る作業は習熟を要し1作業工数も大きくなり、測定され
た特性のばらつきが少なくなく、製品の歩留りも低いも
のとなった。
In any of the above-mentioned methods, the measuring needles for the collector electrode are located on the wafer surface, that is, it is necessary to bring the three measuring needles into contact with the collector, pace, and emitter regions. These regions are small areas with a width of 20 to 30 μm at most, so contacting these areas with three needles at the same time requires skill and requires a large number of man-hours, and there is considerable variation in the measured characteristics, resulting in poor quality of the product. The yield was also low.

本発明は上記した問題を克服するためになされたもので
、その目的とするところは測定時の針数な少なくするこ
とにより測定作業を簡単化し、測定精度を高め歩留りを
向上することにある。
The present invention has been made to overcome the above-mentioned problems, and its purpose is to simplify the measurement work by reducing the number of stitches during measurement, and to improve measurement accuracy and yield.

〔問題点を解決するための手段〕[Means for solving problems]

本願において開示される発明のうち、代表的なものの概
要を簡単に説明すれば下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、半導体基体(ウェハ)の−主表面の一部に検
査用の半導体素子を構成するコレクタ。
That is, a collector constitutes a semiconductor element for inspection on a part of the main surface of a semiconductor substrate (wafer).

ペース、エミッタ各拡散層を形成し、各領域に測定針を
接触させて、素子の電気的特性を測定するにあたって、
上記素子のコレクタ層と、素子の外周境界であるスクラ
イブ領域とを短絡し、上記半導体基体の裏面をコレクタ
電極として表面側では2本の測定針で測定を行うもので
ある。
When forming the paste and emitter diffusion layers and contacting each region with a measuring needle to measure the electrical characteristics of the element,
The collector layer of the element is short-circuited to the scribe area, which is the outer peripheral boundary of the element, and the back surface of the semiconductor substrate is used as a collector electrode, and the measurement is performed using two measuring needles on the front surface side.

〔作用〕[Effect]

上記した手段によれば、基体裏面をコレクタ電極とする
ことにより、上面に2針による測定ができ、作業が簡単
となることで測定精度の低下を防止でき、歩留りの向上
が期待できる。
According to the above-mentioned means, by using the back surface of the substrate as a collector electrode, measurement can be performed using two needles on the top surface, which simplifies the work, prevents a decrease in measurement accuracy, and can be expected to improve yield.

〔実施例〕〔Example〕

第1図乃至第4図は本発明の一実施例を示すものであっ
て、バイポーラICEおいて、半導体ウェハの一生面に
npn)ランジスタを形放し、その特性検査を行うプロ
セスの要部工程断面図である。
FIGS. 1 to 4 show an embodiment of the present invention, in which cross-sections of main steps of a process in which npn) transistors are released on the whole surface of a semiconductor wafer and their characteristics are inspected in bipolar ICE. It is a diagram.

以下図面を参照し、工程順に従って説明する。The following description will be made in accordance with the order of the steps with reference to the drawings.

(13通常のバイボー2ICのプロセスに従って、第1
図に示すように、p″″Si基板1の一生面上に一部に
n+埋込層2を介してエピタキシャルn″″Si層を形
成し、アイソレージ1ンp層4に囲まれた一つの島領域
を一つの半導体素子領域として、コレクタ取出しn十拡
散・層5を形成し、次いでペースp拡散層6を形成する
。同図の半導体素子は特性検査用素子(TEG)として
使用するものであり、このTEGは1つの半導体ペレッ
トの境界部であるスクライブ領域に近接してペレット当
り1個設けられる。
(13 Following the normal bi-bo 2 IC process, the first
As shown in the figure, an epitaxial n'''' Si layer is formed on a part of the whole surface of a p'''' Si substrate 1 through an n+ buried layer 2, and one layer surrounded by an isolation layer 1 and a p layer 4 is formed. Using the island region as one semiconductor element region, a collector extraction n+ diffusion layer 5 is formed, and then a pace p diffusion layer 6 is formed. The semiconductor element shown in the figure is used as a characteristic testing element (TEG), and one TEG is provided for each semiconductor pellet close to a scribe region that is a boundary between the semiconductor pellets.

(2)  エミッタ拡散のためにホトフシスト技術によ
り表面の酸化$7の一部を除去する際に第2図に示すよ
うに、上記TEGのコレクタ領域となるn+層5と一つ
のアイソレーション領域4を含むスクライブ領域大にま
たがる部分が露出するように酸化膜7を除去する。
(2) When removing a part of the oxidized layer 7 on the surface by photofusing technology for emitter diffusion, as shown in FIG. The oxide film 7 is removed so that a portion extending over a large scribe region including the oxide film 7 is exposed.

(31この後、全面にリン酸化物を含むS iol s
いわゆるリンガラス8をデポジットし、Siの露出する
部分にリンを拡散させ、第3図に示すようにエミッタn
+拡散層9を形成すると同時に、コレクタn 層5とア
イソレージ賞yp層4を短絡するn 拡散層10を形成
する。
(31 After this, S iol s containing phosphorus oxide on the entire surface
A so-called phosphorus glass 8 is deposited, phosphorus is diffused into the exposed portion of Si, and an emitter n is formed as shown in FIG.
+At the same time as forming the diffusion layer 9, an n diffusion layer 10 is formed to short-circuit the collector n layer 5 and the isolation layer 4.

エミッタ拡散法として一般にはPOC,I3.キャルア
ガスを使用するが、この場合、第5図に示すようにウェ
ハ表面裏面ともにエミッタと同一不純物によるn+拡散
層10が形成される。TEGは第6図、又は第7図に示
すようにスクライブ領域Aに近接して形成され、このス
クライブ領域大はウェハ周縁部まで銃いていることによ
り、TEGのコレクタ領域5はn+拡散されたスクライ
ブ領域を介してウェハ裏面に電気的に接続されることに
なる。
Emitter diffusion methods generally include POC, I3. A carrier gas is used, and in this case, as shown in FIG. 5, an n+ diffusion layer 10 made of the same impurity as the emitter is formed on both the front and back surfaces of the wafer. The TEG is formed close to the scribe area A as shown in FIG. 6 or 7, and this scribe area extends to the wafer periphery, so that the collector area 5 of the TEG is an n+ diffused scribe. It will be electrically connected to the backside of the wafer through the region.

(41シたがってエミッタ拡散後の特性検査にあたって
は、従来単体トランジスタの検査で行われたように、第
4図に示すごとく、コレクタ電極(C1はウェハ裏面と
接する試料台からとり、ウエノ・表面ではペース電極0
3)とエミッタ電極(pに対する2本の測定針を接恕さ
せればhF1測定が可能となる。
(41) Therefore, when testing the characteristics after emitter diffusion, as shown in Fig. Then pace electrode 0
3) and the emitter electrode (p), hF1 measurement becomes possible.

従来のバイポーラICでは測定針を3本使用し、それぞ
れ独立したマニーブレータ操作が必要であったが、上述
したように本発明では2本の測定針を用いることで作業
が簡単になった。又、2本をまとめて針先端間隔を調整
すれば、1つのマニエプレータ化することもでき、測定
の自動化も可能である。
Conventional bipolar ICs use three measuring needles, each requiring independent manibrator operation, but as described above, the present invention uses two measuring needles to simplify the work. Furthermore, by combining two needles and adjusting the distance between the tips of the needles, it is possible to form a single manipulator, and automation of measurement is also possible.

このような本発明によって、測定時の針の接触調整不足
に伴う測定精度の低下、すなわち、hFE不良の増加を
防止でき、その結果、特性ばらつき低減9歩留り向上が
期待できる。なお、コレクタ領域とスクライブ領域との
短絡作業は単にマスクの一部を変えてエミッタ拡散をそ
のまま利用すれば良く、工程の変化、増加なく実現でき
る。
According to the present invention, it is possible to prevent a decrease in measurement accuracy due to insufficient contact adjustment of the needle during measurement, that is, an increase in hFE defects, and as a result, it is expected to reduce characteristic variations and improve yield. Note that short-circuiting between the collector region and the scribe region can be accomplished by simply changing a part of the mask and using emitter diffusion as is, without changing or increasing the number of steps.

以上本発明者によってなされた発明を実施例にもとづき
具体的に説明したが、本発明は上記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることは〜・うまでもない。
Although the invention made by the present inventor has been specifically explained based on examples, the present invention is not limited to the above-mentioned examples, and various changes can be made without departing from the gist of the invention. It's no good.

本発明を適用して最も効果ある製品はLS−’ITL。The most effective product to which this invention is applied is LS-'ITL.

5−TTL 、N−TTLのごときディジタルIC’で
ある。
These are digital IC's such as 5-TTL and N-TTL.

本発明はこれ以外の半導体製品であるリニアICに適用
することもできる。
The present invention can also be applied to linear ICs that are other semiconductor products.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば、下記のとおりであ
る。
A brief explanation of the effects obtained by typical inventions disclosed in this application is as follows.

すなわち、バイポーラICの特性検査において作業を簡
単化し測定精度を高め歩留りを向上できる。
In other words, it is possible to simplify the work in testing the characteristics of bipolar ICs, improve measurement accuracy, and improve yield.

【図面の簡単な説明】 第1図乃至第4図は本発明による一笑施例を示すもので
あり、バイポーラICの製造プロセスにおける工程(検
査工程を含む)断面図である。 第5図はスクライブ領域にそってn 拡散層の形成され
る形態を示すウエノ・断面図である。 第6図及び第7図はウエノ・上の各ベレットにおけろス
クライブ領域とTEGの位置関係を示す平面図である。 第8図及び第9図はバイポーラICにおける特性検査形
態の従来例を示す断面図である。 1・・・p−3i基板(ウェハ)、2・・・n+埋込層
、3・・・エピタキシャルn”’5iffi、4・・・
アインレーションp層、5・・・コレクタn+拡散層、
6・・・ペースp拡散層、7・・・酸化膜、8・・・リ
ンガラス、9・・・エミッタn+拡散層、10・・・n
十拡散層、A・・・スクライブ領域。 代理人 弁理士  小 川 勝 男・、、第  4  
図 し 第  5  図 第  6  図 第  7  図
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 4 show an embodiment of the present invention, and are cross-sectional views of steps (including inspection steps) in a bipolar IC manufacturing process. FIG. 5 is a cross-sectional view showing the formation of the n-diffusion layer along the scribe region. FIGS. 6 and 7 are plan views showing the positional relationship between the scribe area and the TEG in each of the upper bullets. FIG. 8 and FIG. 9 are cross-sectional views showing conventional examples of characteristic testing methods for bipolar ICs. 1... p-3i substrate (wafer), 2... n+ buried layer, 3... epitaxial n"'5iffi, 4...
Ainlation p layer, 5... Collector n+ diffusion layer,
6...Pace p diffusion layer, 7...Oxide film, 8...Phosphorous glass, 9...Emitter n+diffusion layer, 10...n
10 diffusion layer, A... scribe area. Agent: Patent Attorney Katsuo Ogawa, 4th
Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1、半導体基体の一主表面の一部にバイポーラ半導体素
子を構成するコレクタ層、ベース層及びエミッタ層を拡
散により形成し、各領域表面に測定針を接触させて、こ
の半導体素子の電気的特性を測定するにあたって、上記
素子のコレクタ層と素子の境界部であるスクライブ領域
とを短絡し、上記半導体基体の裏面側をコレクタ電極と
して測定を行うことを特徴とする半導体素子の検査法。 2、上記半導体素子のコレクタ層とスクライブ領域との
短絡はエミッタ拡散時に上記2つの領域をまたがるよう
に高濃度不純物拡散を行う特許請求の範囲第1項に記載
の半導体素子の検査法。
[Claims] 1. A collector layer, a base layer, and an emitter layer constituting a bipolar semiconductor element are formed on a part of one main surface of a semiconductor substrate by diffusion, and a measuring needle is brought into contact with the surface of each region. A semiconductor device characterized in that, in measuring the electrical characteristics of a semiconductor device, the collector layer of the device is short-circuited to a scribe region that is a boundary between the devices, and the measurement is performed using the back side of the semiconductor substrate as a collector electrode. testing method. 2. The method for inspecting a semiconductor device according to claim 1, wherein the short circuit between the collector layer and the scribe region of the semiconductor device is achieved by diffusing impurities at a high concentration so as to straddle the two regions during emitter diffusion.
JP21715086A 1986-09-17 1986-09-17 Method for inspection of semiconductor element Pending JPS6373634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21715086A JPS6373634A (en) 1986-09-17 1986-09-17 Method for inspection of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21715086A JPS6373634A (en) 1986-09-17 1986-09-17 Method for inspection of semiconductor element

Publications (1)

Publication Number Publication Date
JPS6373634A true JPS6373634A (en) 1988-04-04

Family

ID=16699638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21715086A Pending JPS6373634A (en) 1986-09-17 1986-09-17 Method for inspection of semiconductor element

Country Status (1)

Country Link
JP (1) JPS6373634A (en)

Similar Documents

Publication Publication Date Title
US4413271A (en) Integrated circuit including test portion and method for making
US3440715A (en) Method of fabricating integrated circuits by controlled process
US3304594A (en) Method of making integrated circuit by controlled process
JPS6373634A (en) Method for inspection of semiconductor element
JPS60147154A (en) Resistance structure
JPS6387736A (en) Semiconductor device
JP2721607B2 (en) Semiconductor device and manufacturing method thereof
JP2002141474A (en) Planar semiconductor chip, testing method therefor and semiconductor wafer
JPS5871655A (en) Semiconductor device
JPS6148927A (en) Semiconductor device
JPH01225138A (en) Short-circuit monitor for semiconductor integrated circuit device
JPH06267878A (en) Manufacture of semiconductor integrated circuit device
JPH0691145B2 (en) Semiconductor wafer sorting method
JPS61237428A (en) Manufacture of semiconductor device
JPS588138B2 (en) Handout Taisouchino Seizouhouhou
JP2007281383A (en) Method of manufacturing semiconductor device
JPS6222448A (en) Wafer to which ic is formed
JP2649080B2 (en) Method of monitoring semiconductor device
JP2000223543A (en) Field pattern defect detection method in semiconductor production process
JPS5946098B2 (en) Manufacturing method of semiconductor device
JPH04330762A (en) Semiconductor integrated circuit
JPH0555341A (en) Semiconductor device
JPH0689902A (en) Manufacture of semiconductor device
JPS62219937A (en) Semiconductor wafer
JPH1050777A (en) Semiconductor device and production thereof