JPS61269324A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61269324A
JPS61269324A JP11030785A JP11030785A JPS61269324A JP S61269324 A JPS61269324 A JP S61269324A JP 11030785 A JP11030785 A JP 11030785A JP 11030785 A JP11030785 A JP 11030785A JP S61269324 A JPS61269324 A JP S61269324A
Authority
JP
Japan
Prior art keywords
layer
type
substrate
conductivity type
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11030785A
Other languages
Japanese (ja)
Inventor
Noriaki Oka
岡 則昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11030785A priority Critical patent/JPS61269324A/en
Publication of JPS61269324A publication Critical patent/JPS61269324A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Abstract

PURPOSE:To measure and evaluate pickup resistance values at every chip quantatively by using a region consisting of two adjacent epitaxial-silicon layers as a P-type pickup region from a substrate and connecting the region by a P-type buried layer. CONSTITUTION:N<+> type introduction layers 12 and a P<+> type introduction layer 13 are formed to a P<-> type Si substrate 11. Si is grown on the whole surface in an epitaxial manner to shape an N<-> type Si layer 14 in low concentration. The surface of the Si layer is oxidized selectively to form oxide films 17 for isolation so as to reach buried layers 12, 13. P-type diffusion layers 19 are connected to the P-type buried layer 13. Electrodes 20 are employed as electrodes for a monitor element for measuring the resistance of lifting sections from the substrate.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体装置、特に酸化膜分離方式による半導体
集積回路における基板よシの引上げ部抵抗測定技術に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a technique for measuring the resistance of a pulled-up portion of a substrate in a semiconductor device, particularly in a semiconductor integrated circuit using an oxide film separation method.

〔背景技術〕[Background technology]

半導体集積回路(IC)のアイソレーシッン(素子分離
)は従来のpn接合分離から現在のLSIでは酸化膜分
離が実用されている。
Isolation (element isolation) for semiconductor integrated circuits (ICs) has changed from conventional pn junction isolation to oxide film isolation in current LSIs.

酸化膜分離では分離領域を半導体酸化物などの絶縁物と
することによって空乏層の進入に起因する分離不良が対
策されるとともに横方向で最小分離幅が得られるためア
イソレーション面積が低減され高集積化が可能となる。
In oxide film isolation, by using an insulating material such as a semiconductor oxide for the isolation region, poor isolation caused by the entry of depletion layers can be countered, and the minimum isolation width can be obtained in the lateral direction, reducing the isolation area and allowing for high integration. It becomes possible to

(工業調査会発行、「電子材料」誌、1982年7月号
、Pill)酸化膜分離プロセスでバイポーラICを製
造する場合、寄生NチャンネルMO8FETのスレッシ
ェホルド電圧を高かめるためチャネルストッパと呼ばれ
る拡散層を酸化分離膜直下の部分(基板と同じP型層)
を形成する必要があう、その製造方法としては、リーチ
ダウン方式とリーチアップ方式の2通シがある。リーチ
ダウン方式はP型不純物原子をP型基板上のnfiエピ
タキシャルSi層表面から導入してチャンネルストッパ
を形成する方式で、リーチアップ方式はP型基板にn型
エピタキシャルSi層を形成する前に所望部分にあらか
じめP型不純物原子を導入しておきn型エピタキシャル
Si層の成長と同時に上方へわき上らせる方式のである
(Published by Kogyo Kenkyukai, "Electronic Materials" magazine, July 1982 issue, Pill) When manufacturing bipolar ICs using the oxide film separation process, a diffusion layer called a channel stopper is used to increase the threshold voltage of the parasitic N-channel MO8FET. The part directly under the oxidation separation film (the same P-type layer as the substrate)
There are two methods for manufacturing it, a reach-down method and a reach-up method. The reach-down method is a method in which P-type impurity atoms are introduced from the surface of the NFI epitaxial Si layer on the P-type substrate to form a channel stopper, and the reach-up method is a method in which P-type impurity atoms are introduced from the surface of the NFI epitaxial Si layer on the P-type substrate to form a channel stopper. This is a method in which P-type impurity atoms are introduced into the region in advance and are caused to rise upward simultaneously with the growth of the n-type epitaxial Si layer.

本願出願人らは、超高速のバイポーラICたとえばエミ
ッタカップルドロジック(ECLと称す。)等を形成す
る場合において、リーチアップ方式を採用し、チャンネ
ルストッパを形成するプロセスを開発している。
The applicants of the present application have developed a process for forming a channel stopper by adopting a reach-up method when forming an ultra-high-speed bipolar IC, such as an emitter-coupled logic (ECL).

第9図は、本発明前に本願出願人にょシ開発された基板
を接地電位とするためのデバイス構造(以下この部分を
引き上げ部と称す。)を示す。すなわち、同図において
、1はP型8i基板(サブストレート)、2はn+型埋
込層、3はP+を埋込層、4はエピタキシャル成長させ
たSi層、4は上からの拡散と下のP+型埋込層3から
のわき上り拡散とで形成した引き上げ部P型層である。
FIG. 9 shows a device structure (hereinafter, this portion will be referred to as a pull-up portion) for bringing a substrate to a ground potential, which was developed by the applicant of the present invention prior to the present invention. That is, in the same figure, 1 is a P-type 8i substrate (substrate), 2 is an n+ type buried layer, 3 is a P+ buried layer, 4 is an epitaxially grown Si layer, and 4 is a diffusion layer from above and a bottom layer. This is a raised portion P type layer formed by upward diffusion from the P+ type buried layer 3.

5はアイソレーション酸化膜、6はnpn)ランジスタ
のコレクタ取出しのためのn+を層(CN)、7は同じ
くベースP型層、8はエミッタn+墓層である。P型層
4′はPW層7と同一工程で形成される。
5 is an isolation oxide film, 6 is an n+ layer (CN) for taking out the collector of the npn transistor, 7 is a base P type layer, and 8 is an emitter n+ grave layer. The P-type layer 4' is formed in the same process as the PW layer 7.

このような構造において、上記引き上げ部A−A’断面
の不純物濃度プロファイルは第10図のごとくなシ、一
部で低濃度の部分ができるために、基板よシの引き上げ
抵抗Rは大きくなる可能性があシ、この抵抗孔の電圧降
下により基板電位が接地電位よシわずかに上昇し、良好
なアイソレーションや素子特性が得られないことがわか
った。言い換えるならば抵抗孔の値は半導体装置の不良
を検出するのに極めて重要な値であることがわかった。
In such a structure, the impurity concentration profile of the above-mentioned pull-up section A-A' is as shown in Fig. 10. Since there are some low-concentration parts, the pull-up resistance R across the substrate can become large. However, it was found that the voltage drop across the resistor hole caused the substrate potential to rise slightly above the ground potential, making it impossible to obtain good isolation and device characteristics. In other words, it has been found that the resistance hole value is an extremely important value for detecting defects in semiconductor devices.

しかしながら従来構造においては、この抵抗孔の値を定
量的にモニタする手段はなく、完成品での不良発生によ
り歩留が低くコストの低下が達成できなかった。
However, in the conventional structure, there is no means to quantitatively monitor the value of the resistance hole, and due to the occurrence of defects in finished products, the yield is low and cost reductions cannot be achieved.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題を克服するためになされたものであ
って、その目的とするところは、基板よシの引き上抵抗
のモニターを可能とする半導体装置の構造を提供するこ
とにある。
The present invention has been made to overcome the above-mentioned problems, and its object is to provide a structure of a semiconductor device that makes it possible to monitor the pulling resistance across a substrate.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおシである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、P型シリコン基板上にエピタキシャル・シリ
コン層を成長させて、このシリコン層表面にシリコン酸
化膜からなる分離層とを形成し、この酸化膜分離層の下
にP型層を有する半導体装置において、上記酸化膜とP
型層とによって分離すした111合う2つのエピタキシ
ャル・シリコン層からなる領域を基板よシのP型引上げ
領域とし、この2つのP型領域を上記酸化膜直下に形成
したP型埋込層により接続することKよって引き上げ抵
抗測定用のモニターとするものであって、これにより、
チップごとに引き上げ抵抗値を定量的に測定し評価する
ことが可能になった。
That is, in a semiconductor device, an epitaxial silicon layer is grown on a P-type silicon substrate, a separation layer made of a silicon oxide film is formed on the surface of this silicon layer, and a P-type layer is formed under this oxide film separation layer. , the above oxide film and P
A region consisting of two epitaxial silicon layers separated by a mold layer is used as a P-type pull-up region from the substrate, and these two P-type regions are connected by a P-type buried layer formed directly under the oxide film. Therefore, it is used as a monitor for measuring pulling resistance, and thereby,
It has become possible to quantitatively measure and evaluate the pulling resistance value of each chip.

〔実施例〕〔Example〕

第1図乃至第6図は本発明の一実施例を示すものであっ
て、引き上げ抵抗測定用モニター素子を形成するプロセ
スの工程断面図である。
FIGS. 1 to 6 show an embodiment of the present invention, and are cross-sectional views of a process for forming a monitor element for measuring pulling resistance.

以下抵抗測定用モニター形成プロセスにそって工程順に
説明する。
The process for forming a monitor for resistance measurement will be explained in the order of steps below.

(1)  P−型8i基板11において、ホトレジスト
を利用した酸化膜(図示されない)をマスクにして埋込
層を形成する部分KSb、Bなどの不純物を順次導入し
てn+型導入層12及びP+型導入層13を形成する。
(1) In the P- type 8i substrate 11, using an oxide film (not shown) using photoresist as a mask, impurities such as KSb and B are sequentially introduced to form the buried layer to form the n+ type introduced layer 12 and the P+ type. A mold introduction layer 13 is formed.

(第1図) (2)全面にSiをエピタキシャル成長させ、低濃度の
n−型Si層14を1〜2μm程度の厚さに形成する。
(FIG. 1) (2) Si is epitaxially grown on the entire surface to form a low concentration n-type Si layer 14 with a thickness of about 1 to 2 μm.

これにより、前記不純物の導入された層は埋めこまれて
n+型埋込層12、P+型埋込層13となる。(第2図
) (3)Siの酸化膜(Sin、)、窒化膜(SisN4
)からなるマスク15を部分的に形成し、81層14の
表面を部分的にエッチして溝16をあける。(第3図) (4)上記マスク15を用いてSi層表面を選択酸化し
て分離用酸化膜17を埋込層12,13に達するように
形成する。次に、NPNトランジスタのコレクタとなる
n型層24を形成する。(第4図) (5)ホトレジストを利用してつくった高圧低温堆積酸
化膜18(ホトレジスト膜でも良い)をマスクにボロン
Bをイオン打込み乃至拡散してP型拡散層19をP型埋
込層13に接続するように形成する。このイオン打込み
工程は、NPN)ランジスタのベース22形成のための
イオン打込工程で形成してもよい。このようにすること
により、工程の増加させることなく形成できる。(第5
゛図)(6)P型層19の表面に生成された酸化膜に対
してコンタクトホトエッチを行ないNPNトランジスタ
のエミッタ部23を形成した後、電極部の酸化膜を選択
的に除去し、AIを蒸着し、ホトレジストを利用しAJ
パターニングを行って電極20を形成して、基板よ)の
引き上げ部抵抗測定用モニター素子を完成する。(第6
図) 第7図はP散拡散層、P+型埋込層の位置を示す平面図
で第6図は第7図におけるA−A’断面に対応する。
As a result, the impurity-introduced layer is buried to become an n+ type buried layer 12 and a P+ type buried layer 13. (Fig. 2) (3) Si oxide film (Sin), nitride film (SisN4)
), and the surface of the 81 layer 14 is partially etched to form a groove 16. (FIG. 3) (4) Using the mask 15, the surface of the Si layer is selectively oxidized to form an isolation oxide film 17 so as to reach the buried layers 12 and 13. Next, an n-type layer 24 that will become the collector of the NPN transistor is formed. (Figure 4) (5) Boron B is ion-implanted or diffused using a high-pressure, low-temperature deposited oxide film 18 (a photoresist film may be used) as a mask to convert the P-type diffused layer 19 into a P-type buried layer. 13. This ion implantation process may be an ion implantation process for forming the base 22 of an NPN transistor. By doing so, it can be formed without increasing the number of steps. (5th
(6) After contact photoetching is performed on the oxide film formed on the surface of the P-type layer 19 to form the emitter part 23 of the NPN transistor, the oxide film on the electrode part is selectively removed and the AI AJ is deposited using photoresist.
Patterning is performed to form electrodes 20, and a monitor element for measuring the resistance of the raised portion of the substrate is completed. (6th
FIG. 7 is a plan view showing the positions of the P diffused layer and the P+ type buried layer, and FIG. 6 corresponds to the AA' cross section in FIG. 7.

第8図は一つのチップ21におけるモニター素子部分を
示す全体平面図であって、同図の空白な部分にIC,L
SIなどの素子が形成される。
FIG. 8 is an overall plan view showing the monitor element part in one chip 21, and the blank part of the figure is an IC, L
Elements such as SI are formed.

〔発明の効果〕〔Effect of the invention〕

以上の実施例で述べた本発明によれば下記のように効果
が得られる。
According to the present invention described in the above embodiments, the following effects can be obtained.

上記モニター素子による基板よシの引き上げ抵抗の測定
は下記のように行われる。
The measurement of the pulling resistance across the substrate using the monitor element is performed as follows.

モニター素子の抵抗値几は、図6図及び第7図を参照し
、 R=几、十B! +Rs    (R+ =Rs  )
=21.+Rt (ただし、PSub upは基板引き上げ部比抵抗A8
ubは基板引き上げ部面積 Ppisoはpisoの比抵抗) ここでPSub upはBR(P型拡散ベース)濃度及
びエピタキシャル層の厚さ等で決まる。このため測定結
果がある基準値を満たされない場合、基板引き上げが不
十分とな多、チップもしくはウェハは不良品となること
がわかる。
For the resistance value of the monitor element, refer to FIGS. 6 and 7. R=几, 10B! +Rs (R+ =Rs)
=21. +Rt (However, PSub up is the specific resistance of the substrate pulling part A8
ub is the area of the substrate pulling part Ppiso is the specific resistance of piso) Here, Psub up is determined by the BR (P type diffusion base) concentration, the thickness of the epitaxial layer, etc. Therefore, if the measurement result does not satisfy a certain standard value, it can be seen that the substrate has not been lifted up enough and the chip or wafer is defective.

このようにモニター素子を用いて抵抗値Rを定量的に測
定、評価することにより、基板引き上げ抵抗が大きいこ
とによる、又はチャネルストッパの濃度不足による入力
ラッチアップ%IEEが異常に大きい等のチップやウェ
ハ製品の排除が可能となる。
By quantitatively measuring and evaluating the resistance value R using a monitor element in this way, it is possible to identify chips with abnormally large input latch-up %IEE due to large substrate pulling resistance or insufficient channel stopper concentration. It becomes possible to eliminate wafer products.

したがって本発明によれば、モニター素子の活用により
、ウェハ完成歩留シ又はペレット検査歩留シは低下する
が、完成品による不良発生を防止することができ、総原
価が約10%程度低減することが可能となる。
Therefore, according to the present invention, although the wafer completion yield or pellet inspection yield decreases by utilizing the monitor element, it is possible to prevent the occurrence of defects in finished products and reduce the total cost by about 10%. becomes possible.

〔利用分野〕[Application field]

本発明は酸化分離プロセスにおけるリーチアップ方式を
採用した半導体装置(IC,LSI)全般に適用するこ
とができる。
The present invention can be applied to all semiconductor devices (IC, LSI) that employ a reach-up method in an oxidation separation process.

本発明は上記以外に、P+型埋込層から基板よシの抵抗
を取り出す半導体製品一般に応用できる。
In addition to the above, the present invention can be applied to general semiconductor products in which the resistance of the substrate is taken out from the P+ type buried layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は本発明の一実施例を示す基板引き上
げ抵抗測定用モニターの製造プロセスの工程断面図であ
る。 第7図は第6図に対応する平面図である。 第8図はチップにおけるモニター素子位置の例を示す全
体平面図である。 第9図は従来の基板引上げ部の例を示す断面図である。 第10図は第9図におけるA−A’部部面面不純物プロ
ファイルの曲線図である。 11・・・P−型Si基板、12・・・n十型埋込層、
13・・・P+型埋込層、14・・・エピタキシャルS
i層、15・・・マスク、16・・・溝部、17・・・
分離用酸化膜、18・・・マスク% 19・・・P散拡
散層、20・・・AI!電極、21・・・チップ。 第   1  図 第  2  図 第  3  図 第  7  図 第  8  図
FIGS. 1 to 6 are cross-sectional views of a manufacturing process of a monitor for measuring substrate pulling resistance according to an embodiment of the present invention. FIG. 7 is a plan view corresponding to FIG. 6. FIG. 8 is an overall plan view showing an example of the position of the monitor element on the chip. FIG. 9 is a sectional view showing an example of a conventional substrate lifting section. FIG. 10 is a curve diagram of the surface impurity profile of the section AA' in FIG. 11...P- type Si substrate, 12...n-type buried layer,
13...P+ type buried layer, 14...Epitaxial S
i layer, 15... mask, 16... groove, 17...
Isolation oxide film, 18...mask% 19...P diffusion layer, 20...AI! Electrode, 21...chip. Figure 1 Figure 2 Figure 3 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1、第1導電型半導体基板と、この半導体基板の一主面
上にエピタキシャル成長させた半導体層とこの半導体層
の表面に部分的に形成した分離用酸化膜と、この分離用
酸化膜と半導体基板との間に形成した第1導電型埋込層
とを有する半導体装置であって、上記分離用酸化膜及び
第1導電型埋込層とによって分離されたエピタキシャル
半導体領域のうち隣り合う2つの半導体領域を第1導電
型領域としてこれらをその間の分離用酸化膜下に形成し
た第1導電型埋込層により電気的に接続して基板よりの
引上部抵抗測定用モニターとしたことを特徴とする半導
体装置。 2、上記第1導電型エピタキシャル半導体領域の下方は
第1導電型埋込層よりのわき上り拡散により第1導電型
層とされている特許請求の範囲第1項に記載の半導体装
置。
[Claims] 1. A first conductivity type semiconductor substrate, a semiconductor layer epitaxially grown on one main surface of this semiconductor substrate, an isolation oxide film partially formed on the surface of this semiconductor layer, and this isolation A semiconductor device comprising a first conductivity type buried layer formed between an isolation oxide film and a semiconductor substrate, the epitaxial semiconductor region being separated by the isolation oxide film and the first conductivity type buried layer. Two of the adjacent semiconductor regions are used as first conductivity type regions, and these are electrically connected by a first conductivity type buried layer formed under the isolation oxide film between them, thereby serving as a monitor for measuring the resistance of the upper part pulled up from the substrate. A semiconductor device characterized by: 2. The semiconductor device according to claim 1, wherein the lower part of the first conductivity type epitaxial semiconductor region is made into a first conductivity type layer by upward diffusion from the first conductivity type buried layer.
JP11030785A 1985-05-24 1985-05-24 Semiconductor device Pending JPS61269324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11030785A JPS61269324A (en) 1985-05-24 1985-05-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11030785A JPS61269324A (en) 1985-05-24 1985-05-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61269324A true JPS61269324A (en) 1986-11-28

Family

ID=14532383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11030785A Pending JPS61269324A (en) 1985-05-24 1985-05-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61269324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218145A (en) * 1989-02-20 1990-08-30 Matsushita Electron Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218145A (en) * 1989-02-20 1990-08-30 Matsushita Electron Corp Semiconductor device

Similar Documents

Publication Publication Date Title
US6524928B1 (en) Semiconductor device and method for manufacturing the same
KR910006672B1 (en) Semiconductor integrated circuit device and its manufacturing method
JP2689114B2 (en) Method for manufacturing semiconductor integrated circuit device
US3440715A (en) Method of fabricating integrated circuits by controlled process
US4595944A (en) Resistor structure for transistor having polysilicon base contacts
JPS61269324A (en) Semiconductor device
JP2721607B2 (en) Semiconductor device and manufacturing method thereof
JPS5871655A (en) Semiconductor device
JPS637665A (en) Lateral p-n-p transistor
JP3214457B2 (en) Method for manufacturing semiconductor device
JPS6124245A (en) Semiconductor device
JPS61220454A (en) Manufacture of semiconductor integrated circuit device
JPH0251269A (en) Semiconductor integrated circuit device and its manufacture
JPS59200459A (en) Complementary type semiconductor device and manufacture thereof
KR0161869B1 (en) A semiconductor device
JP2649080B2 (en) Method of monitoring semiconductor device
JPS5979543A (en) Semiconductor integrated circuit device
JPS6373634A (en) Method for inspection of semiconductor element
JPS63278244A (en) Semiconductor device
JPH0262046A (en) Semiconductor device
JPH0574791A (en) Semiconductor device
JPH02312273A (en) Semiconductor integrated circuit device and manufacture thereof
JPS618940A (en) Manufacture of semiconductor device
JPH03222355A (en) Semiconductor device
JPS6042845A (en) Manufacture of semiconductor integrated circuit device