JPS6124245A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6124245A
JPS6124245A JP14428284A JP14428284A JPS6124245A JP S6124245 A JPS6124245 A JP S6124245A JP 14428284 A JP14428284 A JP 14428284A JP 14428284 A JP14428284 A JP 14428284A JP S6124245 A JPS6124245 A JP S6124245A
Authority
JP
Japan
Prior art keywords
contact
openings
single crystal
buried layers
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14428284A
Other languages
Japanese (ja)
Inventor
Shigeru Kawamata
川又 繁
Yoshitaka Sugawara
良孝 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14428284A priority Critical patent/JPS6124245A/en
Publication of JPS6124245A publication Critical patent/JPS6124245A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76297Dielectric isolation using EPIC techniques, i.e. epitaxial passivated integrated circuit

Abstract

PURPOSE:To eliminate any irregularly high series resistance between wirings and n<+> buried layers with the buried layers and contact highly concentrated layers overlapped one another by a method wherein diffusion openings to form contact highly concentrated impurity regions are provided from nearly central positions in an insulation separating region. CONSTITUTION:A dielectric separating substrate 10 is thermally oxidized to form a passivating oxide film 8. Firstly the positions of an emitter 9 and a collector 11 of a pnp transistor are made into openings by photoetching process and then boron is diffused in the openings to form respective functional regions. Secondly the other openings 16 for diffusion are formed to provide n<+> contact regions 12 coming into ohmic contact with n<+> buried layers 4 to be an n base and a cross- under wiring 18. The buried layers 4 and the contact regions 12 shall be overlapped one another no minimize the series resistance between them within the openings 16. In order to attain to this purpose, the diffusion openings 16 may be formed within the range from the minimum to the maximum dispersion of the exposed positions of buried layers 4.

Description

【発明の詳細な説明】 〔発明のオリ用分野〕 本発明は高集積化半導体装置に係り、特に、誘電体分離
用絶縁膜を介して多結晶シリコン支持体に支持された複
数の単結晶シリコン領域(島)をもつ誘電体分離基板を
用いた高耐圧の半導体装置に関する。
[Detailed Description of the Invention] [Original Field of the Invention] The present invention relates to a highly integrated semiconductor device, and particularly relates to a plurality of single crystal silicon devices supported on a polycrystalline silicon support via a dielectric isolation insulating film. This invention relates to a high voltage semiconductor device using a dielectric isolation substrate having regions (islands).

〔発明の背景〕[Background of the invention]

半導体技術の進歩に伴い、従来個別素子で構成していた
高耐圧回路を集積化した高耐圧ICの開発が活発化して
いる。このような高耐圧半導体装置の素子間の絶縁分離
には誘電体分離技術が好適である。誘電体分離はpn接
合分離に比べて製法が煩雑である反面、寄生効果を回路
上支障のない程度に低減できる利点がある。
BACKGROUND OF THE INVENTION As semiconductor technology advances, development of high voltage ICs that integrate high voltage circuits that were conventionally composed of individual elements is becoming more active. Dielectric isolation technology is suitable for insulation isolation between elements of such a high voltage semiconductor device. Although dielectric isolation is more complicated to manufacture than pn junction isolation, it has the advantage of being able to reduce parasitic effects to a level that does not interfere with the circuit.

従来技術を第3図で説明する。一般に誘電体分離基板l
Oには誘電体膜5に接して単結晶シリコン島7に高不純
物濃度から成る埋込み層4が形成される。埋込み層4の
主な目的は電界効果によるテヤネ°ルの発生の防止と機
能素子の特性の改善である。埋込み層4を外部と導通を
とるため、埋込み層4の一部に孔全設け、オーミックコ
ンタクトを得るための高濃度不純物領域12を設ける。
The prior art will be explained with reference to FIG. Generally dielectric isolation substrate
A buried layer 4 having a high impurity concentration is formed on the monocrystalline silicon island 7 in contact with the dielectric film 5. The main purpose of the buried layer 4 is to prevent the occurrence of tear channels due to electric field effects and to improve the characteristics of the functional element. In order to conduct the buried layer 4 with the outside, all holes are provided in a part of the buried layer 4, and a high concentration impurity region 12 is provided to obtain an ohmic contact.

誘電体分離基板lOは研削や研摩等の機械加工で造られ
るが加工精度により研摩量が異な、す、単結晶シリコン
島7の厚さが変動する。このため誘電体分離基板10t
−造る過程で形成される埋込み層4は主表面に露出する
位置が不定になる。埋込み#4にオーミックコンタクト
用の高不純物濃度領域12’に設けるための拡散用孔の
形成位置は研摩量やホトエツチング時のアライメントず
れ等を想定し設けられるが埋込み層4上に孔が一致しな
い場合がある。
The dielectric isolation substrate 10 is manufactured by mechanical processing such as grinding and polishing, but the amount of polishing varies depending on the processing precision, and the thickness of the single crystal silicon island 7 varies. Therefore, the dielectric isolation substrate 10t
- The position of the buried layer 4 formed in the manufacturing process at which it is exposed on the main surface is undefined. The formation position of the diffusion hole to be provided in the high impurity concentration region 12' for ohmic contact in embedding #4 is determined by assuming the amount of polishing and misalignment during photoetching, but if the hole does not match on the embedding layer 4. There is.

第3図に示すように、埋込み層4と高不純物濃度領域1
2が離れてしまうと直列抵抗が介在することになり、素
子の特性が著しく低下する。また、加工精度によって離
れる距離が異なり不定のため特性が太きくばらつく問題
がめった。
As shown in FIG. 3, a buried layer 4 and a high impurity concentration region 1
If 2 is separated, a series resistance will be present, and the characteristics of the device will be significantly degraded. In addition, because the separation distance varies depending on the processing accuracy and is not constant, there is a problem that the characteristics vary widely.

〔発明の目的〕[Purpose of the invention]

本発明の目的は絶縁分離用誘電体膜に接して設けられた
埋込み層の作用をより効果的に発揮させることにより、
ばらつき幅の小さい特性の良好な半導体装置を提供する
にある。
The purpose of the present invention is to more effectively exhibit the effect of a buried layer provided in contact with a dielectric film for insulation isolation.
It is an object of the present invention to provide a semiconductor device having good characteristics with a small variation width.

〔発明の概要〕[Summary of the invention]

本発明はコンタクト用高濃度不純物領域を形成するため
の拡散用孔を絶縁分離領域(分離溝)の約中心から設け
ることにより、高濃度不純物領域かつ埋込+11と確実
に重なり合うようにしたことを特徴とする。
In the present invention, by providing a diffusion hole for forming a high concentration impurity region for contact from approximately the center of the insulation isolation region (separation trench), it is ensured that it overlaps with the high concentration impurity region and the buried +11. Features.

〔発明の実施例〕[Embodiments of the invention]

第4図は本発明の詳細な説明するための誘電体分離基板
の製造方法の略図である。同図(a)に示すようにn形
単結晶シリコンlk酸化し、表面に酸化膜2を形成する
。次にΦ)に示すようにホトエツチングで酸化膜2を部
分的に開孔し、残りの酸化膜を保護マスクとしてアルカ
リ系エッチャントに工りV字形の分離溝3を形成する。
FIG. 4 is a schematic diagram of a method for manufacturing a dielectric isolation substrate for explaining the present invention in detail. As shown in FIG. 5A, n-type single crystal silicon is oxidized to form an oxide film 2 on the surface. Next, as shown in Φ), the oxide film 2 is partially opened by photoetching, and the remaining oxide film is used as a protective mask and etched with an alkaline etchant to form a V-shaped separation groove 3.

次に、酸化膜2を除去し、(C)に示すように拡散、ま
たは、イオン打込み法によりn+埋込み層4を形成する
Next, the oxide film 2 is removed, and an n+ buried layer 4 is formed by diffusion or ion implantation as shown in (C).

その後、酸化により誘電体分離用の酸化膜5を形成する
。さらに、その上に(d)に示すように、支持体となる
多結晶シリコン6を形成する。次に(e)に示すように
、多結晶シリコン6を研削6Aして基板の平行を出し、
単結晶シリコンl’を研削IAする。最終的には鏡面研
摩lCにより1つの単結晶シリコン島7が酸化膜5及び
多結晶シリコン6′f:介して他の単結晶シリコン島7
から分離する。このようにして誘電体分離基板lOは完
成する。ところが研摩時の加工精度によってクエハ及び
ロット内で研摩量が異なるため主表面に露出する部分の
寸法にばらつきケ生じる。絶縁分離幅Wでは1〜40μ
mの範囲でばらついている。このため、分離用誘電体膜
5に接して設けられるn+埋込み層4の主表面に露出す
る位置も変動し不定になる。
Thereafter, an oxide film 5 for dielectric isolation is formed by oxidation. Furthermore, as shown in (d), polycrystalline silicon 6 serving as a support is formed thereon. Next, as shown in (e), the polycrystalline silicon 6 is ground 6A to make the substrate parallel.
Single crystal silicon l' is ground by IA. Finally, by mirror polishing IC, one single crystal silicon island 7 is formed into another single crystal silicon island 7 via oxide film 5 and polycrystalline silicon 6'f.
Separate from. In this way, the dielectric isolation substrate IO is completed. However, the amount of polishing differs between wafers and lots depending on the processing accuracy during polishing, resulting in variations in the dimensions of the portion exposed on the main surface. Insulation separation width W is 1 to 40μ
It varies within a range of m. Therefore, the exposed position on the main surface of the n+ buried layer 4 provided in contact with the isolation dielectric film 5 also changes and becomes unstable.

後工程でこのn1埋込み層4にコンタクトラとるために
高濃度不純物領域12に形成することになるが、この時
、n0埋込み層4の露出位置にかかわらず副領域が重な
り合うように構成しなければならない。
In a later process, a high concentration impurity region 12 will be formed to make contact with this n1 buried layer 4, but at this time, the sub-regions must be configured so that they overlap regardless of the exposed position of the n0 buried layer 4. No.

第1図は本発明の一実施例を示す。完成した誘電体分離
基板10の単結晶シリコン島7には各々機能素子が形成
される。埋込み層4は各機能素子を構成する一部として
用いられるがここではpnpトランジスタ17とクロス
アンダ−配線IF5例に述べる。まず、誘電体分離基板
lOt熱酸化してバツンベーション用酸化膜8を形成す
る。次にホトエツチングでI)III) )ランジスタ
のエミッタ9とコレクタ11の位置に開孔し、ボロンを
拡散してそれぞれの機能領域を形成する。次に、nベー
スとクロスアンダ−配線18となるn+埋込み層4にオ
ーミックコンタクトをとるためにコンタクト用n+領域
12を設ける拡散用開孔16を形成する。開孔16は、
n+埋込み層4とコンタクト用n+領域12間の直列抵
抗が小さくなる工う両領域が重なり合わなければならな
い。このためにに拡散開孔16はn1埋込み層4の露出
位置のばらつきの最小から最大にわたって形成すれば良
い。
FIG. 1 shows an embodiment of the invention. Functional elements are formed on each single crystal silicon island 7 of the completed dielectric isolation substrate 10. Although the buried layer 4 is used as a part of each functional element, an example of a PNP transistor 17 and a cross-under wiring IF 5 will be described here. First, the dielectric isolation substrate lOt is thermally oxidized to form the oxide film 8 for bombardment. Next, holes are formed by photoetching at the positions of the emitter 9 and collector 11 of the transistor (I), III), and boron is diffused to form the respective functional regions. Next, a diffusion hole 16 is formed to provide an n+ region 12 for contact in order to make ohmic contact with the n+ buried layer 4 which will become the cross-under wiring 18 with the n base. The opening 16 is
In order to reduce the series resistance between the n+ buried layer 4 and the contact n+ region 12, both regions must overlap. To this end, the diffusion holes 16 may be formed over the minimum to maximum variation in the exposed position of the n1 buried layer 4.

分離溝中心15からばらつき幅の最小寸法は酸化膜5の
厚さの約2μmで、最大は研摩散の最大の約20μmで
ある。従って、孔16は2μmから20μmにn+埋込
み/i!4の拡散幅約lOμmを加えた30μmにわた
って形成する。この工うにすれば、誘電体分離基板lO
の加工精度のばらつきに関係なく孔16の位置は必ずn
+埋込与層4上に構成される。その後、孔16にリンを
拡散しコンタクト用n0領域12t−形成する。次に、
電極配線13をとり出すコンタクト窓14に30μm’
(c−基点に分離溝中心15に向って開孔しAt等から
成る配線13を形成する。このようにして本発明を適用
した半導体装置が得られる。本発明によればpnpトt
ンジスタではnベース抵抗が小さくなるため電流増幅率
が高くなり、特に、大電流領域での改善が大幅でめった
。また、特性のばらつき幅の小さいトランジスタが得ら
れた。クロスアンダ−配線は回路上支障のない抵抗値で
、かつ、ばらつきのないものが効率良く得られた。
The minimum dimension of the variation width from the separation groove center 15 is about 2 μm, which is the thickness of the oxide film 5, and the maximum is about 20 μm, which is the maximum of the polishing scattering. Therefore, the holes 16 are from 2 μm to 20 μm with n+ filling/i! It is formed over a length of 30 μm, which is the sum of the diffusion width of 4 and about 10 μm. If you do this, the dielectric isolation substrate lO
Regardless of variations in machining accuracy, the position of the hole 16 is always n
+Constructed on the embedded layer 4. Thereafter, phosphorus is diffused into the hole 16 to form a contact n0 region 12t. next,
30 μm' in the contact window 14 from which the electrode wiring 13 is taken out.
(A hole is opened toward the center 15 of the isolation trench at the c-base point, and a wiring 13 made of At or the like is formed. In this way, a semiconductor device to which the present invention is applied is obtained. According to the present invention, a semiconductor device to which the present invention is applied is obtained.
In transistors, the current amplification factor increases because the n-base resistance becomes smaller, and the improvement was particularly significant in the large current region. Furthermore, a transistor with small variation in characteristics was obtained. The cross-under wiring had a resistance value that did not cause any problems on the circuit, and a uniform resistance value was efficiently obtained.

第2図は本発明の他の実施例を示す。隣接する複数の単
結晶シリコン島7,7′にn1埋込み層4が設けられ、
かつ、その両方にコンタクト用n4領域12Th形成す
るときの実施例である。拡散用開孔16は隣接する単結
晶シリコン島7゜7′のコンタクト用n0領域12t−
設ける位置にまたがって形成される。その後、リンを拡
散してn1領域12を形成する。単結晶シリコン島7と
7′のコンタクト用n4領域12は分離用酸化膜5で相
互に絶縁分離されるので導通することはない。従って、
誘電体分離基板10の加工精度によってn4埋込み層4
の露出位置がばらついてもコンタクト用n3領域12は
必ず重なり合うことになる。本実施例では隣−接する二
個の単結晶シリコン島7について述べたがこの”限りで
はなく複数の島12で、かつ、複数の場所に実施するこ
ともできる。
FIG. 2 shows another embodiment of the invention. An n1 buried layer 4 is provided on a plurality of adjacent single crystal silicon islands 7, 7',
This is an example in which an n4 region 12Th for contact is formed on both of them. The diffusion hole 16 is located in the contact n0 region 12t- of the adjacent single crystal silicon island 7°7'.
It is formed across the positions where it is provided. Thereafter, phosphorus is diffused to form the n1 region 12. Since the contact n4 regions 12 of the single crystal silicon islands 7 and 7' are insulated and separated from each other by the isolation oxide film 5, there is no conduction. Therefore,
Depending on the processing accuracy of the dielectric isolation substrate 10, the N4 buried layer 4
Even if the exposed positions of the contacts vary, the contact n3 regions 12 will always overlap. In this embodiment, two adjacent single-crystal silicon islands 7 have been described, but the present invention is not limited to this, and the present invention can be implemented using a plurality of islands 12 and at a plurality of locations.

以上の実施例ではn1埋込み層4にコンタクト用n+領
域12t−設ける場合に限定して述べたが、本発明は分
離用酸化膜5に接して、あるいは、その近くに単結晶シ
リコン島7の主表面から形成する拡散領域の開孔を設け
る方法としても適用できる。また、外部配線に引き出す
コンタクト用の孔の形成方法としても応用できる。
In the above embodiments, the description has been limited to the case where the contact n+ region 12t- is provided in the n1 buried layer 4, but the present invention also provides the main structure of the single crystal silicon island 7 in contact with or near the isolation oxide film 5. It can also be applied as a method of providing openings in the diffusion region formed from the surface. It can also be applied as a method for forming holes for contacts leading to external wiring.

なお、図中3は分離溝、6は多結晶シリコン、11はP
コレクタである。
In the figure, 3 is an isolation trench, 6 is polycrystalline silicon, and 11 is P.
is a collector.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、埋込4層とコンタクト用高濃度層が重
なり合うため配線とn+埋込、47−間に不規則な高い
直列抵抗がなくなる。その結果、機能素子の緒特性のば
らつき幅が小さくなり、特性値も改善される。このため
、ばらつきを見込んだ回路設計をする必要がなくなり、
デバイスの性能向上がはかれ、また、高集積化がはかれ
る。
According to the present invention, since the buried 4 layers and the contact high concentration layer overlap, irregular high series resistance between the wiring and the n+ buried layer and the 47- layer is eliminated. As a result, the width of variation in the characteristics of the functional elements is reduced, and the characteristic values are also improved. This eliminates the need to design circuits that take into account variations.
Device performance will be improved and higher integration will be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例金示す図、第2図は  ”本
発明の他の実施例を示す図、第3図は従来技術全説明す
るための略図、第4図は゛本発明を説明するための訪電
体分離基′板の製造方法を示す図である。 l・・・n形単結晶シリコン、3・・・分離溝、4・・
・n1埋込み層、5・・・分離用酸化膜、6・・・多結
晶シリコン、7・・・単結晶シリコン島、lO・・・誘
電体分離基板、12・・・コンタクト用n0領域、13
・・・At配置、15・・・分離溝中心、16・・・拡
散用開孔、17・・・pnpトランジスタ、18・・・
クロスアンダ−配舒1m 11           /if Zm
Fig. 1 is a diagram showing one embodiment of the present invention, Fig. 2 is a diagram showing another embodiment of the present invention, Fig. 3 is a schematic diagram for explaining the entire prior art, and Fig. 4 is a diagram showing the embodiment of the present invention. It is a diagram showing a manufacturing method of a current visitor separation substrate for explanation. l...N-type single crystal silicon, 3... Isolation groove, 4...
- n1 buried layer, 5... oxide film for isolation, 6... polycrystalline silicon, 7... single crystal silicon island, lO... dielectric isolation substrate, 12... n0 region for contact, 13
...At arrangement, 15...Center of separation groove, 16...Diffusion opening, 17...PNP transistor, 18...
Cross under distribution 1m 11 /if Zm

Claims (1)

【特許請求の範囲】 1、一対の略平行な主表面をもち、一方の前記主表面に
は単結晶シリコン島と絶縁分離用誘電体膜及び多結晶シ
リコンが露出し、前記一方の主表面はパッシベーション
膜で被覆され、前記他方の主表面には前記多結晶シリコ
ンが露出し、且つ、前記各単結晶シリコン島は前記絶縁
分離用誘電体膜を介して前記多結晶シリコンに埋設され
、前記単結晶シリコン島には機能素子が形成され、前記
一方の主表面から前記機能素子の配線が引き出され、前
記パッシベーション膜を介して前記主表面上に各々延在
するように構成された半導体装置において、 前記単結晶シリコン島には前記絶縁分離用誘電体膜に接
して、その内側に高濃度不純物の埋込み領域が形成され
、前記埋込み領域は前記一方の主表面に露出し、この露
出部から配線を引き出すためのコンタクト用高濃度不純
物領域を形成する拡散用孔を前記一方の主表面に露出し
た絶縁分離領域の略中心から前記単結晶シリコン島に向
つて設けたことを特徴とする半導体装置。 2、特許請求の範囲第1項において、 前記拡散用孔を隣接する前記単結晶シリコン島間の前記
一方の主表面に跨つて設けたことを特徴とする半導体装
置。
[Claims] 1. A pair of substantially parallel main surfaces, a single crystal silicon island, a dielectric film for insulation isolation, and polycrystalline silicon are exposed on one of the main surfaces; The polycrystalline silicon is covered with a passivation film, the polycrystalline silicon is exposed on the other main surface, and each of the single-crystalline silicon islands is embedded in the polycrystalline silicon via the dielectric film for isolation, and the single-crystalline silicon is In a semiconductor device configured such that a functional element is formed on a crystalline silicon island, and wiring of the functional element is drawn out from the one main surface and extends on the main surface via the passivation film, A buried region of high concentration impurity is formed inside the single crystal silicon island in contact with the dielectric film for isolation, and the buried region is exposed on the one main surface, and wiring is routed from this exposed portion. A semiconductor device characterized in that a diffusion hole forming a high concentration impurity region for a contact to be drawn out is provided from approximately the center of the insulation isolation region exposed on the one main surface toward the single crystal silicon island. 2. The semiconductor device according to claim 1, wherein the diffusion hole is provided across the one main surface between the adjacent single crystal silicon islands.
JP14428284A 1984-07-13 1984-07-13 Semiconductor device Pending JPS6124245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14428284A JPS6124245A (en) 1984-07-13 1984-07-13 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14428284A JPS6124245A (en) 1984-07-13 1984-07-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6124245A true JPS6124245A (en) 1986-02-01

Family

ID=15358450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14428284A Pending JPS6124245A (en) 1984-07-13 1984-07-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6124245A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107312A (en) * 1989-09-11 1992-04-21 Harris Corporation Method of isolating a top gate of a MESFET and the resulting device
JP2007069537A (en) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd Decorating method for vehicle component, and vehicle component
JP2009166599A (en) * 2008-01-15 2009-07-30 Toyoda Gosei Co Ltd Console box

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5107312A (en) * 1989-09-11 1992-04-21 Harris Corporation Method of isolating a top gate of a MESFET and the resulting device
JP2007069537A (en) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd Decorating method for vehicle component, and vehicle component
JP2009166599A (en) * 2008-01-15 2009-07-30 Toyoda Gosei Co Ltd Console box

Similar Documents

Publication Publication Date Title
US4041518A (en) MIS semiconductor device and method of manufacturing the same
US4888304A (en) Method of manufacturing an soi-type semiconductor device
US4239559A (en) Method for fabricating a semiconductor device by controlled diffusion between adjacent layers
EP0176747A1 (en) Silicon semiconductor substrate with an insulating layer embedded therein and method for forming the same
EP0615286B1 (en) Semiconductor device provided with isolation region
US4161745A (en) Semiconductor device having non-metallic connection zones
US4148054A (en) Method of manufacturing a semiconductor device and device manufactured by using the method
US3789503A (en) Insulated gate type field effect device and method of making the same
JPS6159852A (en) Manufacture of semiconductor device
JP3006425B2 (en) Semiconductor device and manufacturing method thereof
US4261003A (en) Integrated circuit structures with full dielectric isolation and a novel method for fabrication thereof
US4544941A (en) Semiconductor device having multiple conductive layers and the method of manufacturing the semiconductor device
JPS6124245A (en) Semiconductor device
KR100268634B1 (en) Semiconductor device for soi structure having lead conductor suitable for fine patterning
JP3340177B2 (en) Field-effect transistor
JP2760401B2 (en) Dielectric separation substrate and semiconductor device
JP2509708B2 (en) SOI type semiconductor device and manufacturing method thereof
USRE34025E (en) Semiconductor device with isolation between MOSFET and control circuit
JP3242478B2 (en) High voltage semiconductor device
JPS6089957A (en) Complementary semiconductor device
JPH10173040A (en) Semiconductor integrated circuit device
JP3194286B2 (en) Manufacturing method of bipolar transistor
JPS6134971A (en) Semiconductor device
JPH09219493A (en) Resistance element, manufacture thereof and semiconductor device integrated therewith
JPS6113383B2 (en)