JPS6148927A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6148927A
JPS6148927A JP59170691A JP17069184A JPS6148927A JP S6148927 A JPS6148927 A JP S6148927A JP 59170691 A JP59170691 A JP 59170691A JP 17069184 A JP17069184 A JP 17069184A JP S6148927 A JPS6148927 A JP S6148927A
Authority
JP
Japan
Prior art keywords
gate
diffusion
diffusion layer
diffusion region
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59170691A
Other languages
Japanese (ja)
Other versions
JPH0586858B2 (en
Inventor
Masaharu Yamamoto
雅晴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP59170691A priority Critical patent/JPS6148927A/en
Publication of JPS6148927A publication Critical patent/JPS6148927A/en
Publication of JPH0586858B2 publication Critical patent/JPH0586858B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Wire Bonding (AREA)

Abstract

PURPOSE:To facilitate inspection of articles to be inspected using a tester and so forth by allowing electrical detection of an effective channel length, a gate length and difference in alignment between its gate mask and its diffusion mask from resistances of its diffusion layer and its gate material of a same MOS-type transistor. CONSTITUTION:A measuring pattern is provided, which has current conduction electrodes 10 and 11 and voltage measuring terminals 17 and 18 for measuring voltage drops across both terminals of the electrodes disposed at respective both ends of a source diffusion region 26, a drain diffusion region 27 and a gate material member 24 constituting a MOS transistor. A measuring pattern is, also, provided, which has current conduction terminals 30 and 31 and voltage measuring terminals 33 and 34 disposed at both ends of a diffusion region all over the surface 37 formed by introducing the same diffusion seed with the same area as the MOS transistor all over its surface. Electrode patterns for measuring layer resistance are provided, extending them to the gate material member 24 and the diffusion layer all over the surface 37.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は個別半導体素子として形成されたMOSトラン
ジスタあるいはMO5形大規模集積回路(LSI)の中
に作り込まれたMOSトランジスタの特性を評価するた
めの手段を付加して有する半導体装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a method for evaluating the characteristics of MOS transistors formed as individual semiconductor elements or MOS transistors built into an MO5 type large-scale integrated circuit (LSI). The present invention relates to a semiconductor device having additional means.

従来例の構成とその問題点 大規模集積回路の微細化が進み、2〜3μm1またはそ
れ以下のゲート長を有するMo8トランジスタが集積化
されるにいたっている。ゲート長が短かくなると短チャ
ンネル効果が生じ、閾値電圧の設定がむずかしくなる。
Conventional Structures and Problems The miniaturization of large-scale integrated circuits has progressed, and Mo8 transistors having gate lengths of 2 to 3 μm or less have been integrated. As the gate length becomes shorter, a short channel effect occurs, making it difficult to set the threshold voltage.

このような大規模集積回路において、高い製造歩留りを
維持するためには全製造工程終了後のゲート長寸法、ソ
ース・トンイン拡散層の横方向拡散広がり分を差し引い
た実効チャンネル長、ゲートマスクと拡散領域マスクと
の合わせずれなどを把握しておく必要がある。
In order to maintain a high manufacturing yield in such large-scale integrated circuits, it is necessary to maintain the gate length dimension after all manufacturing steps, the effective channel length after subtracting the lateral diffusion spread of the source/ton-in diffusion layer, the gate mask and diffusion. It is necessary to understand misalignment with the area mask.

第1図は実効チャンネル長をMo5 トランジスタ特性
から求める従来例の原理を示したものである。第1図の
説明をJiG、J、CHE/RNらの文献(IEEE 
ELli:CTR0N DEv工CE LETTER5
VOL、EDL−1,尻9 1980)に従って行なう
FIG. 1 shows the principle of a conventional example in which the effective channel length is determined from the characteristics of a Mo5 transistor. The explanation of Figure 1 is given in the literature by JiG, J, CHE/RN et al.
ELli:CTR0N DEv Engineering CE LETTER5
VOL, EDL-1, Shiri 9 1980).

MoSトランジスタのリニア領域におけるI −V特性
から、ドレイン電流Idとドレイン抵抗R0は、となる
From the IV characteristics in the linear region of the MoS transistor, the drain current Id and drain resistance R0 are as follows.

ここで 工dニドレイン・ソース電流 vdニドレイン・ソース電圧 v9二ゲート・ソース電圧 vt:ゲート閾値電圧 μ :チャンネル中のキャリアの易動 度 COx:ゲート酸化膜容量 Le:実効チャンネル長 Wo:実効チャンネル幅 Rc:チャンネル抵抗 である。Here, d drain source current vd drain source voltage v9 dual gate source voltage vt: gate threshold voltage μ: Mobility of carrier in channel Every time COx: Gate oxide film capacitance Le: Effective channel length Wo: Effective channel width Rc: Channel resistance It is.

さらに、 W、:WM−ΔW L、==Ly−ΔL R工= R,+ Ro から測定されるドレイン抵抗RT!1はRm= R,十
A (LM−ΔL) 人  = (μCox  Wa (Vg −Vt  −
台v(1)11−’・・・・・・(1)式 ここで WM:マスク上のチャンネル幅LM : −7
、<り上のチャンネル長ΔW = WM −Wo ΔL二LM −L。
Furthermore, the drain resistance RT measured from W,:WM-ΔWL,==Ly-ΔLR=R,+Ro! 1 is Rm = R, 10A (LM - ΔL) Person = (μCox Wa (Vg -Vt -
Base v(1)11-'...Equation (1) where WM: Channel width on mask LM: -7
, < channel length ΔW = WM −Wo ΔL2LM −L.

Re:外部抵抗 である。Re: external resistance It is.

実効チャンネル長り。を出すためには、(1)式の関係
を用いる。測定されるドレイン抵抗Rmとマスク上のチ
ャ/ネル長1.Mとの関係はリニアにな吻璽中測定され
たドレイン抵抗Rmである。直線の傾きt、b、aは、
(1)式のゲート・ソース電圧vqを変える事によシ任
意に変化させることができる。
Effective channel length. In order to obtain , use the relationship in equation (1). Measured drain resistance Rm and channel/channel length on mask 1. The relationship with M is the drain resistance Rm measured during the proboscis. The slopes of the straight line t, b, and a are
It can be changed arbitrarily by changing the gate-source voltage vq in equation (1).

傾きをa、b、cの様に変化させるとドレイン・ソース
電圧Vdが一定の場合、(ΔLp ”e )  の点が
交点として求まる。ΔLが求まると、実効チャンネル長
Lθはマスク上の寸法LMからLe= LM−ΔL として求める事が出来る。
When the slope is changed as shown in a, b, and c, and the drain-source voltage Vd is constant, the point (ΔLp ``e ) is found as an intersection point. Once ΔL is found, the effective channel length Lθ is determined by the dimension LM on the mask. It can be obtained from Le=LM-ΔL.

以上の様に従来の方法によると、実効チャンネル長Le
は数種のトランジスタ特性を求め、この特性から間接的
に求めなくてはならない。したがって、製造工程の中で
、テスタなどにより、自動化して測定を行なうのは容易
では彦い。
As described above, according to the conventional method, the effective channel length Le
must be determined indirectly from several transistor characteristics. Therefore, it is not easy to automate measurements using a tester or the like during the manufacturing process.

また、この方法にくらべてより直接的な測定方法として
、走査電子顕微鏡観察による方法がある。
Further, as a more direct measurement method than this method, there is a method using scanning electron microscopy.

この方法では、拡散層、ゲート長寸法を直接的に正確に
計れるが測定のために試料を破濃しなくてはならない。
With this method, the diffusion layer and gate length dimensions can be directly and accurately measured, but the sample must be deconcentrated for measurement.

また、測定に先だって、試料の特定の場所を正確に骨間
したのち、この部分にエツチング処理を施さなければな
らず、製造工程において、大ユの検査および評価を自動
的に、しかも短時間に行なうことは困難である。このよ
うに、従来の測定方法には、半導体装置の生産の場で採
用することが容易ではない問題があった。
In addition, prior to measurement, it is necessary to accurately locate a specific location on the sample and then perform etching on this area. It is difficult to do. As described above, the conventional measurement method has a problem that makes it difficult to adopt it in the production of semiconductor devices.

さらに従来方法ではゲート長寸法、ゲートマスクと、拡
散領域のマスクとのアライメントずれの検出は同一のト
ランジスタからは測定不可能であった。
Furthermore, in the conventional method, it has been impossible to detect the gate length dimension and the misalignment between the gate mask and the mask of the diffusion region from the same transistor.

発明の目的 本発明の目的は、同一のMO3型トランジスタの拡散層
の抵抗、ゲート材質の抵抗から実効チャンネル長、ゲー
ト長寸法、ゲートマスクと拡散マスクとのアライメント
ずれを電気的に検出可能とし、テスターなどの検査器に
よる検査が容易にできる半導体装置を提供するものであ
る。
OBJECTS OF THE INVENTION An object of the present invention is to electrically detect the effective channel length, gate length dimension, and misalignment between the gate mask and the diffusion mask from the resistance of the diffusion layer and the resistance of the gate material of the same MO3 type transistor. The present invention provides a semiconductor device that can be easily tested using an inspection device such as a tester.

発明の構成 本発明の半導体装置は同一のMO5型トランジスタ内の
実効チャンネル長、ゲート長、ゲートマスクと拡散領域
マスクとの合わせずれの寸法を電気的に測定するため同
一のMO8型トランジスタの領域内のソース拡散領域、
ドレイン拡散領域、ゲート材質部のそれぞれの両端に電
流通電用電極とその両端間で発生する電圧降下分を測定
するための電圧測定用端子とが付設された測定パターン
と、それと同一の面積で同一の拡散種の拡散領域、すな
わちゲート部の下部にまでソース・ドレイン拡散層が全
面に形成された拡散領域の両端に電流通電用端子と電圧
測定用端子とが付設された測定用パターン、さらにゲー
ト材質、および拡散層の層抵抗測定用の7−17.チー
ポウ(Van da Pauw )パターンにより構成
されている。
Structure of the Invention The semiconductor device of the present invention electrically measures the effective channel length, gate length, and misalignment between the gate mask and the diffusion region mask in the same MO5 transistor. source diffusion region,
A measurement pattern with a current-carrying electrode and a voltage measurement terminal for measuring the voltage drop that occurs between both ends of the drain diffusion region and the gate material, and a measurement pattern with the same area and the same pattern. A measurement pattern with current carrying terminals and voltage measurement terminals attached to both ends of the diffusion region of the diffusion species, that is, the diffusion region in which the source/drain diffusion layer is formed all over the bottom of the gate part, and the gate 7-17 for measuring the material and layer resistance of the diffusion layer. It is composed of a Van da Pauw pattern.

実施例の説明 第2図(&) 、 (b)は本発明の寸法測定方法の原
理を説明するための半導体装置要部のパターン平面図と
側断面図である。半導体基板1に周辺部が厚い醇化膜で
分離された長さW、幅がそれぞれD’ 、LDの同一の
形状を有する2つの画定領域2,3を形成する。領域3
にはゲート酸化膜を形成し、ゲート長りのゲート材4を
配置する。そして、領域2には、直接、拡散層5を、ま
た、領域3には、ゲート材4あるいはゲート材4の上に
形成される任意のマスキング材で、セルファラインさレ
タソースtドレイン拡散層6,7を、それぞれ、形成す
る。ゲート材4のみでソース、ドレイン拡散層6゜7が
セルファラインされた場合、拡散層の横方内拡がり部分
8が、両側に、それぞれ、長さΔl/2で形成される。
DESCRIPTION OF EMBODIMENTS FIGS. 2(&) and 2(b) are a pattern plan view and a side sectional view of a main part of a semiconductor device for explaining the principle of the dimension measuring method of the present invention. Two defined regions 2 and 3 having the same shape with a length W and widths D' and LD, respectively, are formed on a semiconductor substrate 1, separated by a thick fused film at the periphery. Area 3
A gate oxide film is formed on and a gate material 4 having the length of the gate is arranged. Then, in the region 2, a diffusion layer 5 is directly formed, and in the region 3, a self-aligned leta-source T-drain diffusion layer 6, 7, respectively. When the source and drain diffusion layers 6.7 are self-lined using only the gate material 4, laterally inward expanding portions 8 of the diffusion layers are formed on both sides with a length Δl/2.

そこで、この場合の実効チャンネル長 LE は L  E:L  −Δ β             
         ・・・ ・・(2)で表わされる、 一方、ソース、ドレイ/拡散層6,7の両端間の距離L
Dは全面に拡散層が形成された場合の拡散層5の幅LD
’と同等になるため、 LD’:LD と々る。ソース、ドレイン拡散層6,7の拡散層幅をL
l、L2とすると実効チャンネル長LEばLE==LD
−(Ll +L2) =LD’−(L1+L2)     ・・・・・・(3
)となり、実効チャンネル長は、LD’ 、 Lj 、
L2のそれぞれの拡散層幅を測定すれば計算する事が可
能となる。これらは拡散層の層抵抗Rsとそれぞれの拡
散層5,6.7の両端の抵抗値R(n) 、拡散層長さ
Wから L(n) = Rs W / R(n)       
   −−(4)で表わされる。ただし、nは拡散層5
,6.7の各位置に対応する。
Therefore, the effective channel length LE in this case is L E:L −Δ β
On the other hand, the distance L between both ends of the source and drain/diffusion layers 6 and 7 is expressed by (2)
D is the width LD of the diffusion layer 5 when the diffusion layer is formed on the entire surface
Since it is equivalent to ', LD': LD is reached. The diffusion layer width of the source and drain diffusion layers 6 and 7 is L
If l and L2, then effective channel length LE is LE==LD
-(Ll +L2) =LD'-(L1+L2) ......(3
), and the effective channel length is LD', Lj,
Calculations can be made by measuring the width of each diffusion layer of L2. These are the layer resistance Rs of the diffusion layer, the resistance value R(n) at both ends of each diffusion layer 5, 6.7, and the diffusion layer length W to L(n) = Rs W / R(n)
--Represented by (4). However, n is the diffusion layer 5
, 6.7.

次に領域3とゲート4とのマスク合わせずれ、ΔMは、 ΔM=L1−L2 から導ける。Next, the mask misalignment between region 3 and gate 4, ΔM, is ΔM=L1-L2 It can be derived from

ゲート長寸法りは、ゲート4の両端の抵抗値とゲート4
のシート抵抗Rsから(4)式を用いて求められる。
The gate length is determined by the resistance value at both ends of gate 4 and gate 4.
It is determined from the sheet resistance Rs using equation (4).

次に上記の原理に基づいて、実際に実施したパターンの
1例について第3図を用いて説明する。
Next, an example of a pattern actually implemented based on the above principle will be explained using FIG. 3.

第2図の原理図における領域3とゲート4は、第3図に
おいて領域25とゲート24に相当する。
Region 3 and gate 4 in the principle diagram of FIG. 2 correspond to region 25 and gate 24 in FIG. 3.

第2図の原理図における、領域2は、第3図において領
域37に相当する。       8 ・領域乏5と領
域37の幅はマスクにおいて等しくし、LD1=LD2
とする。
Region 2 in the principle diagram of FIG. 2 corresponds to region 37 in FIG. 3. 8 - The widths of the region 37 and the region 37 are made equal in the mask, and LD1=LD2
shall be.

10.11,1了、18はゲート材24に付設した電極
であり、ゲート材24のシート抵抗R8゜を求めるだめ
のものであり、 ”FISG :電極10.11間へ印加する定電流vR
AG :電極17,18間での測定電圧とすると、ゲー
ト材24の層抵抗Rscはπ となる。
10.11, 1, and 18 are electrodes attached to the gate material 24, and are used to determine the sheet resistance R8° of the gate material 24. "FISG: Constant current vR applied between electrodes 10.11
AG: When the voltage is measured between the electrodes 17 and 18, the layer resistance Rsc of the gate material 24 is π.

同様に、30,31.33.34は拡散領域37に付設
された電極であり、拡散層38,26゜27の層抵抗R
50を求めるだめのものであり、”RAD :電極30
,31間に印加する定電流v0.:電衡33.34間で
の測定電圧とすると、拡散層抵抗R0は、 π と々る。
Similarly, 30, 31, 33, 34 are electrodes attached to the diffusion region 37, and the layer resistance R of the diffusion layers 38, 26°27
50, and "RAD: Electrode 30
, 31, a constant current v0. : If the measured voltage is between 33 and 34, the diffusion layer resistance R0 reaches π.

電極1.1 、 ’16,19 、2.3はゲート材2
4に付設された電極であり、ゲート材24のゲート長L
、を電気的に求めるためのものであり、工。L:電極1
1.16間に印加する定電流v、L:電極19.23間
で測定される電圧W3:電極19,23がゲート材24
に直接接触している電極間の距離 とすると、ゲート長り、は LG= Rs、x W3 x IGL/ V、L−0−
(6)と表わされる。
Electrodes 1.1, '16,19, 2.3 are gate material 2
4, and the gate length L of the gate material 24
It is used to electrically determine , and is an engineering method. L: Electrode 1
1. Constant current v, L applied between electrodes 19 and 23: Voltage W3 measured between electrodes 19 and 23: Gate material 24
The gate length is LG= Rs, x W3 x IGL/V, L-0-
It is expressed as (6).

電極31.32,35.36は、拡散領域37に付設さ
れた電極であり、拡散層38の拡散層幅LDを求めるた
めのものであシ、 ”DL :電極31.32間に印加する定電流vDL 
:電極35.36間で測定される電圧W2:電極35.
36が拡散領域37と直接接触している電極間の距離 とすると、拡散層38の拡散層幅LDはL D = R
,Dx W2 X IDL / VDLと表わされる。
The electrodes 31, 32, 35, 36 are electrodes attached to the diffusion region 37, and are used to determine the diffusion layer width LD of the diffusion layer 38. DL: constant voltage applied between the electrodes 31, 32 Current vDL
: Voltage W2 measured between electrodes 35.36: Electrodes 35.36.
If 36 is the distance between the electrodes that are in direct contact with the diffusion region 37, then the diffusion layer width LD of the diffusion layer 38 is L D = R
, Dx W2 X IDL/VDL.

電極12,13,14,15は領域25中の一方の拡散
層27に付設された電極であり、拡散層27の拡散層幅
L1を求めるためのものであり、”+o、+ :電極1
2.16間に印加する定電流vDX、、:電極13.1
4間で測定される電圧W1 :電極13.14が拡散層
27と直接接触している電極間の距離 とすると、拡散層27の拡散H幅L1はL 1 ” R
2OX W I X IDI、 + / VDL 。
The electrodes 12, 13, 14, and 15 are electrodes attached to one diffusion layer 27 in the region 25, and are used to determine the diffusion layer width L1 of the diffusion layer 27, and "+o, +: electrode 1
Constant current vDX applied between 2.16 and : electrodes 13.1
Voltage W1 measured between the electrodes 13 and 14 is the distance between the electrodes where they are in direct contact with the diffusion layer 27, then the diffusion H width L1 of the diffusion layer 27 is L 1 '' R
2OX W I X IDI, + / VDL.

と表わされる。It is expressed as

電極20,21.22.15は領域26中の他方の拡散
層26に付設された電極であり、拡散層26の拡散層@
L2を求めるためのものであシ、よりI、2 :電極2
0.15間に印加する定電流vILL□:電極21,2
2間で測定される電圧W1 :電極21.22が拡散層
26と直接接触している電極間の距離 とすると、拡散層26の拡散層幅L2は、L 2 =R
sD X W 1 X Xot、2 / VDL2と表
わされ、実効チャンネル長LXは、LΣ:L)−(L1
+L2) =Rs D X (W2 X I(I L / vob
w”+ X 101.+/ V’o!、+ −Wl X
 IDI、2/ VDL2)・・・・・・(6) となる。
The electrodes 20, 21, 22, 15 are electrodes attached to the other diffusion layer 26 in the region 26, and the diffusion layer @ of the diffusion layer 26 is
This is for finding L2, so I,2: Electrode 2
Constant current vILL□ applied between 0.15: electrodes 21, 2
Voltage W1 measured between 2: the distance between the electrodes 21 and 22 in direct contact with the diffusion layer 26, the diffusion layer width L2 of the diffusion layer 26 is L 2 = R
It is expressed as sD X W 1 X Xot, 2 / VDL2, and the effective channel length LX is L
+L2) = Rs D X (W2 X I(I L / vob
w"+ X 101.+/ V'o!, + -Wl X
IDI, 2/VDL2) (6).

領域26とゲート24とのマスク合わせずれΔMは、 ΔM==L1−L2 = WI X(”+st、+ / vt+t、+ −”
DL2/ vIIL2 :)・−(7)と表わせる。
The mask misalignment ΔM between the region 26 and the gate 24 is as follows: ΔM==L1-L2=WIX("+st,+/vt+t,+-"
It can be expressed as DL2/vIIL2:)・−(7).

以上、述べた様に同一のトランジスク構造におけるゲー
ト長寸法り、実効チャンネル長LE、拡散領域マスクと
ゲートマスクとの合わせずれΔMはそれぞれ(6) 、
 (6) 、 (7)式で表わせる事が分かる。
As mentioned above, in the same transistor structure, the gate length, effective channel length LE, and misalignment ΔM between the diffusion region mask and the gate mask are (6), respectively.
It can be seen that it can be expressed by equations (6) and (7).

発明の詳細 な説明してきたように、本発明による実効チャンネル長
の測定、ゲート長寸法の測定、拡散・ゲートマスク合わ
せずれ寸法の測定は、MOSトランジスタと同一の構造
において行なっており。
As described in detail, the measurements of the effective channel length, gate length, and diffusion/gate mask misalignment according to the present invention are performed in the same structure as the MOS transistor.

得られた値は、より直接的な意味を持つ。The obtained value has a more direct meaning.

しかも、電気的により簡便な式で表わせるため半導体製
造プロセス条件の検査を自動的、且つ多量の実施が出来
る効果が奏される。即ち、実効チャンネル長の導出に関
しては従来例の(1)式のようにマスク設計値をいくつ
も用意することなく、しかも簡便な方法で実効チャンネ
ル長を求める事が出来る。さらに、実効チャンネル長だ
けでなくマスク合わせずれ、ゲート長寸法の測定も同一
構造のパターンから導出できる事は従来例ではない事で
るる。またこの方法は、非破壊的な方法であるため、測
定試料に制限が課せられることの々い効果も奏される。
Moreover, since it can be electrically expressed using a simpler equation, it is possible to automatically perform a large number of inspections of semiconductor manufacturing process conditions. That is, regarding the derivation of the effective channel length, it is possible to obtain the effective channel length using a simple method without having to prepare a number of mask design values as in the conventional equation (1). Furthermore, it is unprecedented that not only the effective channel length but also the mask misalignment and gate length measurements can be derived from patterns of the same structure. Furthermore, since this method is a non-destructive method, it has the advantage of imposing restrictions on the measurement sample.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はMOSトランジスタの実効チャンネル長をMO
Sトランジスタから求める従来の測定方法を説明するた
めの図、第2図(2L) 、 (b)は本発明の寸法測
定方法の原理を示するために示したMOSトランジスタ
構造の模式的なバター/平面図と断面図、第3図は本発
明の寸法測定方法を可能とするパターン構造と電極構造
を示す平面図でるる。 1・・・・・・半導体基板、2,3,25,3テ・・・
・・・領域% ’ t 6rテ、2テ、26.38・・
・・・・拡散層、4.24・・・・・・ゲート材、8・
・・・・・拡散層の横方向広がり部分、10,11.1
7.18・・・・・・ゲート材の層抵抗を求めるための
ファンデ、ポウパターンの電極、11.16,19,2
3・・・・・・ゲート長測定用の電極、j 2〜15 
、20 P−22、31、32゜35.36・・・・・
・拡散層幅測定用の電極、30゜31.33.34・・
・・・・拡散層抵抗を測定するためのファン、デ、ボー
の電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 L マスク二のチャンネル長丁伝ムM 第2図 第3図
Figure 1 shows the effective channel length of a MOS transistor.
Figures 2 (2L) and (b), which are diagrams for explaining the conventional measurement method for determining dimensions from an S transistor, are schematic diagrams of a MOS transistor structure shown to illustrate the principle of the dimension measurement method of the present invention. A plan view and a sectional view, and FIG. 3 is a plan view showing a pattern structure and an electrode structure that enable the dimension measuring method of the present invention. 1... Semiconductor substrate, 2, 3, 25, 3...
...area% 't 6rte, 2te, 26.38...
... Diffusion layer, 4.24 ... Gate material, 8.
... Laterally expanding portion of the diffusion layer, 10, 11.1
7.18...Foundation and pow pattern electrode for determining layer resistance of gate material, 11.16, 19, 2
3... Electrode for gate length measurement, j 2 to 15
, 20 P-22, 31, 32゜35.36...
・Electrode for measuring the width of the diffusion layer, 30° 31.33.34...
... Fan, de, and bo electrodes for measuring diffusion layer resistance. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure L Mask 2 channel length M Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] MOSトランジスタを構成するソース拡散領域、ドレイ
ン拡散領域、ゲート材質部のそれぞれの両端に電流通電
用電極と、その両端間で発生する電圧降下分を測定する
ための電圧測定端子とが付設された測定パターンと、前
記MOSトランジスタと同一の面積で、同一の拡散種が
全面に導入されて形成された全面拡散領域の両端に電流
通電用端子と電圧測定用端子とが付設された測定用パタ
ーンと、前記ゲート材料部ならびに前記全面拡散領域に
延長して、それぞれ層抵抗測定用の電極パターンとをそ
なえた半導体装置。
A measurement method in which current-carrying electrodes are attached to both ends of each of the source diffusion region, drain diffusion region, and gate material that constitute a MOS transistor, and voltage measurement terminals are attached to measure the voltage drop that occurs between the two ends. a measurement pattern having the same area as the MOS transistor and having a current carrying terminal and a voltage measuring terminal attached to both ends of an entire diffusion region formed by introducing the same diffusion species over the entire surface; A semiconductor device including electrode patterns for layer resistance measurement extending to the gate material portion and the entire diffusion region.
JP59170691A 1984-08-16 1984-08-16 Semiconductor device Granted JPS6148927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59170691A JPS6148927A (en) 1984-08-16 1984-08-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59170691A JPS6148927A (en) 1984-08-16 1984-08-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6148927A true JPS6148927A (en) 1986-03-10
JPH0586858B2 JPH0586858B2 (en) 1993-12-14

Family

ID=15909605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59170691A Granted JPS6148927A (en) 1984-08-16 1984-08-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6148927A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129943A (en) * 1988-11-09 1990-05-18 Fujitsu Ltd Manufacture of semiconductor device
JPH056861A (en) * 1991-06-26 1993-01-14 Nec Yamagata Ltd Control apparatus of semiconductor manufacture
US7595557B2 (en) 2005-06-17 2009-09-29 Panasonic Corporation Semiconductor device and manufacturing method thereof
JP2016174063A (en) * 2015-03-17 2016-09-29 株式会社日立製作所 Semiconductor device, method for manufacturing semiconductor device, and circuit system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292482A (en) * 1976-01-30 1977-08-03 Hitachi Ltd Measuring of contamination of semiconductor element
JPS56152246A (en) * 1980-04-25 1981-11-25 Pioneer Electronic Corp Manufacture of semiconductor device
JPS583039U (en) * 1981-06-29 1983-01-10 富士通株式会社 Structure of evaluation section of semiconductor circuit device
JPS59105375A (en) * 1982-12-08 1984-06-18 Nec Corp Semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583039B2 (en) * 1975-06-30 1983-01-19 松下電工株式会社 Fukugoumetsukihou

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5292482A (en) * 1976-01-30 1977-08-03 Hitachi Ltd Measuring of contamination of semiconductor element
JPS56152246A (en) * 1980-04-25 1981-11-25 Pioneer Electronic Corp Manufacture of semiconductor device
JPS583039U (en) * 1981-06-29 1983-01-10 富士通株式会社 Structure of evaluation section of semiconductor circuit device
JPS59105375A (en) * 1982-12-08 1984-06-18 Nec Corp Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129943A (en) * 1988-11-09 1990-05-18 Fujitsu Ltd Manufacture of semiconductor device
JPH056861A (en) * 1991-06-26 1993-01-14 Nec Yamagata Ltd Control apparatus of semiconductor manufacture
US7595557B2 (en) 2005-06-17 2009-09-29 Panasonic Corporation Semiconductor device and manufacturing method thereof
JP2016174063A (en) * 2015-03-17 2016-09-29 株式会社日立製作所 Semiconductor device, method for manufacturing semiconductor device, and circuit system

Also Published As

Publication number Publication date
JPH0586858B2 (en) 1993-12-14

Similar Documents

Publication Publication Date Title
EP0352940B1 (en) Method of measuring specific contact resistivity of self-aligned contacts in integrated circuits
US3465427A (en) Combined transistor and testing structures and fabrication thereof
US4413271A (en) Integrated circuit including test portion and method for making
JPS5918863B2 (en) Defect monitoring structure for semiconductor wafers
USRE40597E1 (en) Evaluation TEG for semiconductor device and method of evaluation
KR880014651A (en) Test method of gate oxide on semiconductor
US6150669A (en) Combination test structures for in-situ measurements during fabrication of semiconductor devices
US3650020A (en) Method of monitoring semiconductor device fabrication
JPS6148927A (en) Semiconductor device
US4942357A (en) Method of testing a charge-coupled device
JP3736740B2 (en) Insulating film capacity evaluation apparatus and insulating film capacity evaluation method
JPH033943B2 (en)
JP2585556B2 (en) Semiconductor integrated circuit device
JPS5953702B2 (en) How to measure the specifications of field effect transistors
JPH036661B2 (en)
JPS59105375A (en) Semiconductor device
JPS6242378B2 (en)
JP2755220B2 (en) Semiconductor integrated circuit device and inspection method thereof
JP3250215B2 (en) Method and apparatus for evaluating plasma non-uniformity
JPS61139701A (en) Pattern dimension measuring circuit
KR100265841B1 (en) Semiconductor element manufacturing process monitoring method
RU1775753C (en) Method of charge carrier mobility profile determination in semiconductor layers
JPS588138B2 (en) Handout Taisouchino Seizouhouhou
JPS5823454A (en) Inspecting method
JPS5927097B2 (en) Manufacturing method of semiconductor device