JPS6366278B2 - - Google Patents

Info

Publication number
JPS6366278B2
JPS6366278B2 JP14796480A JP14796480A JPS6366278B2 JP S6366278 B2 JPS6366278 B2 JP S6366278B2 JP 14796480 A JP14796480 A JP 14796480A JP 14796480 A JP14796480 A JP 14796480A JP S6366278 B2 JPS6366278 B2 JP S6366278B2
Authority
JP
Japan
Prior art keywords
calcium
water
ions
treated
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14796480A
Other languages
Japanese (ja)
Other versions
JPS5771693A (en
Inventor
Tadahiko Asano
Masatsune Ookuma
Sadaoki Kaneda
Sakae Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KATAYAMA KAGAKU KOGYO KENKYUSHO KK
Original Assignee
KATAYAMA KAGAKU KOGYO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATAYAMA KAGAKU KOGYO KENKYUSHO KK filed Critical KATAYAMA KAGAKU KOGYO KENKYUSHO KK
Priority to JP14796480A priority Critical patent/JPS5771693A/en
Publication of JPS5771693A publication Critical patent/JPS5771693A/en
Publication of JPS6366278B2 publication Critical patent/JPS6366278B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は上水、下水、し尿汚水、工業用水、工
場排水、家庭排水、ボイラー用水等およびこれら
の処理水中に存在する少量のリン酸塩類を除去す
る方法に関し、ことに下水、し尿汚水処理におけ
る二次処理後に残留した少量のリン酸イオンを除
去する方法に関するものである。 一般に上記の被処理水中に溶解して存在するリ
ン酸塩類は無機性のオルトリン酸塩、縮合リン酸
塩等や有機性のリン酸エステル類、ホスホン酸塩
類等を含み、これらリン酸塩類の存在は湖沼、内
湾、内海の富栄養化の原因となり水質汚濁、赤潮
等の社会問題を生じる原因となつている。 このため従来からこれら水中に存在するリン酸
塩類の除去法として種々な処理法が見い出されて
いるが近年、ことに下水、し尿汚水処理において
一次処理または二次処理後に少量残留するリン酸
イオンを除去する高度処理が種々行なわれるよう
になつてきた。これらの高度処理に一般的に用い
られる方法としては、化学的凝集沈殿法が挙げら
れる。この方法は特定の凝集剤、例えば鉄塩また
はアルミニウム塩を用いる金属塩凝集沈殿法およ
び消石灰を用いる石灰凝集沈殿法でいずれも不溶
性リン酸塩類を生成せしめて分離除去する方法で
ある。 しかし金属塩凝集沈殿法は含有するリン酸イオ
ンの理論反応量よりかなり過剰の金属塩の添加が
必要であるとともに液中に残留した金属塩を二次
的に除去する必要があり二次処理を含めた処理後
に大量の汚泥が発生するという欠点を有してい
た。 一方石灰凝集沈殿法は、被処理水に消石灰を添
加し、PH10〜11のアルカリ条件下でヒドロキシカ
ルシウムアパタイトを生成させてリン酸イオンを
分離除去する方法であるが、アルカリ条件を保つ
ためには、理論反応量よりも過剰の消石灰の添加
を必要としていた。さらに被処理液のPHが高いた
め共存するMアルカリ度成分との副反応によつて
炭酸カルシウムを生成して消石灰を消費し、かつ
消石灰の溶解を抑制するためリン酸イオンの除去
効率が低下する欠点を有し、効率を上げるために
は、より過剰の消石灰を加える必要があつた。ま
た、処理後に極めて多量の汚泥が発生し、処理水
のPHも高く、排出する場合には、PH調節の必要が
あるという欠点をも有していた。 本発明は、これらの問題点を解決すべくなされ
たものであり、PH6〜8に必要に応じて調整した
少量のリン酸イオンを含有する水を、カルシウム
中性塩からのカルシウムイオン共存下で水酸化マ
グネシウムまたは酸化マグネシウムと接触させて
リン酸イオンを除去することを特徴とする液中の
リン酸イオンの除去法を提供するものである。 本発明において処理されるリン酸イオン含有水
のPHは6〜8であるのが好ましい。PHが8を越え
るとカルシウムイオンを共存させた場合に炭酸カ
ルシウムが生じて有効カルシウムイオンが消費さ
れリン酸イオン除去効率が低下し、汚泥量が増加
する傾向を有するので好ましくない。またPHが6
未満であると水酸化マグネシウムまたは酸化マグ
ネシウムの消費量が増大し、かつ不溶性のリン酸
塩類の生成が抑制されるので好ましくない。よつ
て、該リン酸イオン含有水のPHが6〜8の範囲外
である場合にはこの範囲内に、通常用いられる中
和剤等を用いてPH調整することが好ましい。本発
明におけるカルシウム供給源としては塩化カルシ
ウム、硫酸カルシウムおよび硝酸カルシウム等の
カルシウム中性塩が用いられる。カルシウム中性
塩の添加量としては、被処理水のリン酸イオンに
対してCa/PO4モル比が1.0〜5.0の範囲が適当で
ある。 本発明において、水酸化マグネシウムまたは酸
化マグネシウムを接触させるに当つて、これらを
液中に懸濁させて接触させるか、充填塔に充填
し、通水することによつて接触させるのが好適で
ある。懸濁させて接触させる場合の添加量は処理
するリン酸イオンの濃度にも左右されるが通常
100mg/〜5000mg/程度である。充填させる
場合にもこれらに準じて行なう。 本発明は、通常、被処理水にカルシウム中性塩
を添加した後または同時に、上記水酸化マグネシ
ウムまたは酸化マグネシウムの接触処理に付して
行なわれるが、水酸化マグネシウムまたは酸化マ
グネシウムを懸濁させて接触させる場合には、こ
れらが難溶性であるため、カルシウム中性塩を添
加前に予め添加し懸濁させておいてもよい。 本発明においては、カルシウム供給源として、
カルシウム中性塩を用いるため取扱い上容易にカ
ルシウムイオンを供給できるとともに被処理水の
PHがほとんど変化せず、従来の石灰凝集沈殿法で
見られる高PH条件(10〜11)での炭酸カルシウム
析出の副反応がほとんど生じない。このようなカ
ルシウムイオン共存下において被処理水を、水酸
化マグネシウムまたは酸化マグネシウムに接触さ
せることにより、不溶性リン酸塩を生成させ効率
よくリン酸イオンが除去できる。水酸化マグネシ
ウムまたは酸化マグネシウムは水に難溶性である
ためアルカリ供給剤としては従来使用されていな
いものであるが、微量のアルカリ成分を溶出(PH
約8.5)させる作用を有し、本発明における懸濁
状態または充填通水状態においては溶解しアルカ
リ成分として働く部分と未溶解で反応を促進させ
る部分とを共存させることができる。このため不
溶性リン酸塩類を生成するための必要なアルカリ
分を効率よく連続的に供給でき、被処理液のPHを
中性から微アルカリの条件下にて不溶性リン酸塩
類の生成反応を前述した副反応をほとんど生じず
に効率よく進行させることができる。また、大部
分の未溶解の部分は再使用することができ、連続
的に処理する場合は溶出した量のみを補充するこ
とによつて目的を達成することができ経済的であ
る。 このように本発明は、被処理水が中性から微ア
ルカリ条件下で処理されるため無駄な副反応をほ
とんど生じず目的反応を効率よく進行させること
ができ、従来の石灰凝集沈殿法に比較してカルシ
ウムイオン添加量を減少でき、薬品費の節約と共
に汚泥の発生量を激減でき、加えて処理後の処理
水のPH調節なしに排出できる利点を有している。 本発明の具体的な実施方法としては、例えば、
PH6〜8の被処理水にカルシウム中性塩を添加し
た後、水酸化マグネシウムまたは酸化マグネシウ
ムを添加し撹拌懸濁させ、凝集沈殿分離、過等
によつて沈殿物を分離除去して、リン酸イオンを
除去する方法および上記被処理水にカルシウム中
性塩を添加した後、水酸化マグネシウムまたは酸
化マグネシウムを充填した充填塔に通水し、生じ
た浮遊固型物を分離除去して、リン酸イオンを除
去する方法等がある。 本発明は、特に下水、し尿汚水等の二次処理後
に残留するリン酸イオンの除去に有用な方法であ
るが、リン酸イオンを少量含む上水、下水、し尿
汚水、工業用水、工場排水、家庭排水、ボイラー
用水等およびこれらの処理水の処理にも適用でき
る。 次に本発明を実施例によつてさらに詳しく説明
する。 実施例 1 リン酸イオン20mg/含有するPH7.0の水1
中に次表に示す各種薬剤をそれぞれ添加し、15分
間撹拌後別し、リン酸イオンの残留量を測定し
次式より除去率を算出した。 リン酸イオン除去率(%)=20−残留リ
ン酸イオン(mg/)/20×100 その結果を表1に示す。なお、比較例中No.6の
Ca(OH)2の添加量50mgは、CaCl2・2H2O100mg添
加時のカルシウム量に合わせて決定したものであ
る。 このように本発明によるリン酸イオン除去率
は、従来の石灰凝集沈殿法(No.9)に比較して明
らかに優れており処理後のPHも中性に近く、PH調
整の必要がないことがわかつた。なお、塩化カル
シウムを従来の消石灰に代えた場合(No.6)の除
去率は低く、処理後のPHも本発明に比較して高い
ことが明らかになつた。
The present invention relates to a method for removing small amounts of phosphates present in tap water, sewage, human waste water, industrial water, factory wastewater, domestic wastewater, boiler water, etc., and their treated water, and particularly in the treatment of sewage and human waste water. The present invention relates to a method for removing small amounts of phosphate ions remaining after secondary treatment. In general, the phosphates that are dissolved in the water to be treated include inorganic orthophosphates, condensed phosphates, etc., organic phosphate esters, phosphonates, etc., and the presence of these phosphates This causes eutrophication of lakes, inner bays, and inland seas, causing social problems such as water pollution and red tide. For this reason, various treatment methods have been found to remove the phosphates present in water, but in recent years, especially in sewage and human waste water treatment, methods have been developed to remove phosphate ions that remain in small amounts after primary or secondary treatment. Various advanced treatments for removal have come to be carried out. Chemical coagulation and precipitation methods are examples of methods commonly used for these advanced treatments. This method uses a metal salt coagulation precipitation method using a specific coagulant such as an iron salt or an aluminum salt, and a lime coagulation precipitation method using slaked lime to generate insoluble phosphates and separate and remove them. However, the metal salt coagulation-precipitation method requires the addition of metal salts in considerably excess amount compared to the theoretical reaction amount of the phosphate ions contained, and also requires secondary treatment to remove the metal salts remaining in the solution. It had the disadvantage that a large amount of sludge was generated after the treatment. On the other hand, the lime coagulation precipitation method is a method in which slaked lime is added to the water to be treated and hydroxycalcium apatite is generated under alkaline conditions of pH 10 to 11 to separate and remove phosphate ions, but in order to maintain alkaline conditions, , it was necessary to add more slaked lime than the theoretical reaction amount. Furthermore, since the PH of the liquid to be treated is high, calcium carbonate is produced through a side reaction with the coexisting M alkalinity component, consuming slaked lime, and the removal efficiency of phosphate ions decreases because the dissolution of slaked lime is suppressed. The drawback was that a larger excess of slaked lime had to be added to increase efficiency. In addition, a very large amount of sludge is generated after treatment, and the pH of the treated water is also high, so it has the disadvantage that it is necessary to adjust the pH when discharging. The present invention was made to solve these problems, and water containing a small amount of phosphate ions, adjusted to pH 6 to 8 as necessary, is treated in the coexistence of calcium ions from a calcium neutral salt. The present invention provides a method for removing phosphate ions in a liquid, which is characterized by removing phosphate ions by contacting with magnesium hydroxide or magnesium oxide. The pH of the phosphate ion-containing water treated in the present invention is preferably 6 to 8. If the pH exceeds 8, calcium carbonate is generated when calcium ions are present, and effective calcium ions are consumed, the phosphate ion removal efficiency decreases, and the amount of sludge tends to increase, which is not preferable. Also, the PH is 6
If it is less than this, the consumption of magnesium hydroxide or magnesium oxide increases and the production of insoluble phosphates is suppressed, which is not preferable. Therefore, when the pH of the phosphate ion-containing water is outside the range of 6 to 8, it is preferable to adjust the pH to within this range using a commonly used neutralizing agent or the like. Calcium neutral salts such as calcium chloride, calcium sulfate and calcium nitrate are used as calcium sources in the present invention. The appropriate amount of the calcium neutral salt to be added is such that the Ca/PO 4 molar ratio is in the range of 1.0 to 5.0 relative to the phosphate ions in the water to be treated. In the present invention, when bringing magnesium hydroxide or magnesium oxide into contact, it is preferable to contact them by suspending them in a liquid or by filling them in a packed tower and passing water through them. . The amount added when contacting in suspension depends on the concentration of phosphate ions to be treated, but is usually
It is about 100mg/~5000mg/. When filling, follow these instructions. In the present invention, the above-mentioned contact treatment with magnesium hydroxide or magnesium oxide is usually carried out after or at the same time as adding a calcium neutral salt to the water to be treated. When bringing them into contact, since these are poorly soluble, a calcium neutral salt may be added in advance and suspended before addition. In the present invention, as a calcium source,
Since calcium neutral salt is used, calcium ions can be supplied easily in handling, and the water to be treated can be easily supplied.
There is almost no change in pH, and the side reaction of calcium carbonate precipitation under high pH conditions (10 to 11), which is observed in conventional lime coagulation precipitation methods, hardly occurs. By bringing the water to be treated into contact with magnesium hydroxide or magnesium oxide in the presence of such calcium ions, insoluble phosphates are generated and phosphate ions can be efficiently removed. Magnesium hydroxide or magnesium oxide is not traditionally used as an alkali supply agent because it is poorly soluble in water, but it can be used to elute trace amounts of alkaline components (PH
8.5), and in the suspended state or filled water-flowing state in the present invention, a dissolved part that acts as an alkaline component and an undissolved part that promotes the reaction can coexist. Therefore, the necessary alkali content for producing insoluble phosphates can be efficiently and continuously supplied, and the reaction for producing insoluble phosphates can be carried out under conditions where the pH of the liquid to be treated is neutral to slightly alkaline. The reaction can proceed efficiently with almost no side reactions. Furthermore, most of the undissolved portion can be reused, and in the case of continuous processing, the purpose can be achieved by replenishing only the eluted amount, which is economical. As described above, in the present invention, since the water to be treated is treated under neutral to slightly alkaline conditions, the target reaction can proceed efficiently with almost no unnecessary side reactions, and compared to the conventional lime coagulation precipitation method. It has the advantage of reducing the amount of calcium ions added, saving chemical costs and drastically reducing the amount of sludge generated.Additionally, it has the advantage that the treated water can be discharged without adjusting the pH of the treated water. As a specific implementation method of the present invention, for example,
After adding a calcium neutral salt to the water to be treated with a pH of 6 to 8, magnesium hydroxide or magnesium oxide is added, stirred and suspended, and the precipitate is separated and removed by coagulation-sedimentation separation, filtration, etc., and phosphoric acid is removed. Method for removing ions and after adding a calcium neutral salt to the water to be treated, the water is passed through a packed tower filled with magnesium hydroxide or magnesium oxide, the resulting suspended solids are separated and removed, and phosphoric acid is removed. There are methods to remove ions. The present invention is a method particularly useful for removing phosphate ions remaining after secondary treatment of sewage, human waste water, etc. It can also be applied to the treatment of domestic wastewater, boiler water, etc., and their treated water. Next, the present invention will be explained in more detail with reference to Examples. Example 1 Phosphate ion 20mg/containing PH7.0 water 1
The various chemicals listed in the table below were added to the mixture, stirred for 15 minutes, separated, the residual amount of phosphate ions was measured, and the removal rate was calculated from the following formula. Phosphate ion removal rate (%) = 20 - residual phosphate ions (mg/) / 20 x 100 The results are shown in Table 1. In addition, No. 6 of the comparative examples
The amount of Ca(OH) 2 added, 50 mg, was determined according to the amount of calcium when adding 100 mg of CaCl 2 .2H 2 O. As described above, the phosphate ion removal rate according to the present invention is clearly superior to that of the conventional lime coagulation precipitation method (No. 9), and the pH after treatment is close to neutral, so there is no need for pH adjustment. I understood. It was also revealed that when calcium chloride was replaced with conventional slaked lime (No. 6), the removal rate was low and the PH after treatment was also high compared to the present invention.

【表】 実施例 2 リン酸イオン20mg/含有するPH約7.0の水中
に、塩化カルシウム2水塩を100mg/添加した
後、水酸化マグネシウム100g充填したカラムに
流速20c.c./minで通水し、通水後のリン酸イオン
の残留量を測定し、同様にしてリン酸イオン除去
率を算出した。その結果を表2に示す。
[Table] Example 2 After adding 100 mg of calcium chloride dihydrate to water with a pH of approximately 7.0 containing 20 mg of phosphate ions, water was passed through a column packed with 100 g of magnesium hydroxide at a flow rate of 20 c.c./min. Then, the amount of phosphate ions remaining after water flow was measured, and the phosphate ion removal rate was calculated in the same manner. The results are shown in Table 2.

【表】 結果に示すように、充填カラムを通すことによ
り、リン酸イオンが効率よく除去されていること
がわかる。また通水後192時間経過しても効率が
ほとんど低下しておらず、処理後のPHも中性に近
いことがわかる。 実施例 3 被処理水の処理前のPHを変化させて、実施例1
と同様な実験を行ない、リン酸イオン除去率およ
び処理のPHを測定した。その結果を表3に示す。
[Table] As shown in the results, it can be seen that phosphate ions are efficiently removed by passing through the packed column. It can also be seen that the efficiency has hardly decreased even after 192 hours have passed after water flow, and the pH after treatment is close to neutral. Example 3 Example 1 by changing the pH of the water to be treated before treatment
A similar experiment was conducted to measure the phosphate ion removal rate and the pH of the treatment. The results are shown in Table 3.

【表】 結果に示す通り、処理前のPHが6.0〜8.0である
場合に、効率のよいリン酸イオンの除去ができる
ことがわかつた。 実施例 4 塩化カルシウムの添加と水酸化マグネシウムの
添加を以下の条件で行ないその効果を比較した。
条件および結果を表4に示す。
[Table] As shown in the results, it was found that phosphate ions could be removed efficiently when the pH before treatment was between 6.0 and 8.0. Example 4 Calcium chloride and magnesium hydroxide were added under the following conditions and their effects were compared.
The conditions and results are shown in Table 4.

【表】 結果に示す通り、カルシウムイオンを含む状態
で被処理水が水酸化マグネシウムと接触する場合
において効率のよいリン酸イオン除去が得られる
ことがわかり、カルシウムイオンを含まない状態
で水酸化マグネシウムを接触させても良好な効果
が得られないことがわかつた。 実施例 5 塩化カルシウムの代わりに硫酸カルシウムおよ
び硝酸カルシウムを用い、実施例1に従つて実験
を行なつた。その結果を表5に示す。なお、添加
量は、CaCl2・2H2O100mg/のカルシウムイオ
ンに合わせて決定した。
[Table] As shown in the results, it was found that efficient phosphate ion removal was obtained when the water to be treated came into contact with magnesium hydroxide in a state that contained calcium ions; It was found that no good effect could be obtained even if the Example 5 An experiment was conducted according to Example 1 using calcium sulfate and calcium nitrate instead of calcium chloride. The results are shown in Table 5. The amount added was determined according to the calcium ion content of 100 mg/CaCl 2 .2H 2 O.

【表】 このように塩化カルシウム以外のカルシウム中
性塩を使用した場合においても、良好なリン酸イ
オン除去効率が得られた。 実施例 6 本発明方法により新たに発生する汚泥量を、従
来の石灰凝集沈殿法と比較するため、以下の条件
で実施例1に従い実験を行なつた。その結果を表
6に示す。
[Table] Even when a neutral calcium salt other than calcium chloride was used, good phosphate ion removal efficiency was obtained. Example 6 In order to compare the amount of sludge newly generated by the method of the present invention with that of the conventional lime coagulation sedimentation method, an experiment was conducted according to Example 1 under the following conditions. The results are shown in Table 6.

【表】 量であつた。
このように本発明方法においては、汚泥の発生
量を従来法に比較して極端に減少させることがで
き、かつ効率のよいリン酸イオン除去効果が得ら
れることがわかつた。
[Table] It was the amount.
As described above, it was found that in the method of the present invention, the amount of sludge generated can be extremely reduced compared to the conventional method, and an efficient phosphate ion removal effect can be obtained.

Claims (1)

【特許請求の範囲】 1 PH6〜8に必要に応じて調整した少量のリン
酸イオンを含有する水を、カルシウム中性塩から
のカルシウムイオン共存下で水酸化マグネシウム
または酸化マグネシウムと接触させてリン酸イオ
ンを除去することを特徴とする液中のリン酸イオ
ンの除去法。 2 水酸化マグネシウムまたは酸化マグネシウム
を液中に懸濁させて接触させるか、充填塔に充填
し、通水することによつて接触させる特許請求の
範囲第1項に記載の方法。 3 カルシウム中性塩が塩化カルシウム、硫酸カ
ルシウムおよび硝酸カルシウムのいずれかである
特許請求の範囲第1項または第2項記載の方法。
[Claims] 1 Water containing a small amount of phosphate ions, adjusted to pH 6 to 8 as necessary, is brought into contact with magnesium hydroxide or magnesium oxide in the coexistence of calcium ions from a calcium neutral salt to produce phosphorus. A method for removing phosphate ions in a liquid, characterized by removing acid ions. 2. The method according to claim 1, wherein magnesium hydroxide or magnesium oxide is brought into contact by suspending it in a liquid, or by filling it in a packed tower and passing water through it. 3. The method according to claim 1 or 2, wherein the calcium neutral salt is calcium chloride, calcium sulfate, or calcium nitrate.
JP14796480A 1980-10-21 1980-10-21 Method of removing phosphate ion contained in liquid Granted JPS5771693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14796480A JPS5771693A (en) 1980-10-21 1980-10-21 Method of removing phosphate ion contained in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14796480A JPS5771693A (en) 1980-10-21 1980-10-21 Method of removing phosphate ion contained in liquid

Publications (2)

Publication Number Publication Date
JPS5771693A JPS5771693A (en) 1982-05-04
JPS6366278B2 true JPS6366278B2 (en) 1988-12-20

Family

ID=15442065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14796480A Granted JPS5771693A (en) 1980-10-21 1980-10-21 Method of removing phosphate ion contained in liquid

Country Status (1)

Country Link
JP (1) JPS5771693A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199090A (en) * 1982-05-14 1983-11-19 Hitachi Plant Eng & Constr Co Ltd Production of seed crystal material for crystallization treatment of phosphate in liquid
JPS6045958B2 (en) * 1982-09-03 1985-10-12 日立プラント建設株式会社 Treatment method for phosphate-containing wastewater
JPS605283A (en) * 1983-06-22 1985-01-11 Hitachi Plant Eng & Constr Co Ltd Treatment of phosphate ion-containing water
JPS605282A (en) * 1983-06-22 1985-01-11 Hitachi Plant Eng & Constr Co Ltd Treatment of phosphate ion-containing water
JPS6182840A (en) * 1984-09-29 1986-04-26 Agency Of Ind Science & Technol Phosphorus removing agent
SK159594A3 (en) * 1992-06-23 1995-06-07 Board Water Process for the removal of phosphorus
JP2005095758A (en) * 2003-09-24 2005-04-14 National Agriculture & Bio-Oriented Research Organization Method and apparatus for treating water containing inorganic-state nitrogen or phosphorus
JP4756260B2 (en) * 2004-11-10 2011-08-24 独立行政法人農業・食品産業技術総合研究機構 Method for treating inorganic nitrogen / phosphorus water with suspension
WO2014017500A1 (en) * 2012-07-24 2014-01-30 ダイキン工業株式会社 Method for treating aqueous solution containing phosphoric acid ions
JP6467110B2 (en) * 2016-09-30 2019-02-06 ヒューマン・メタボローム・テクノロジーズ株式会社 Method for measuring ethanolamine phosphate
GR1010426B (en) * 2022-01-24 2023-03-09 Πολυζωης Νικος Α.Ε., Dephosphorization filter

Also Published As

Publication number Publication date
JPS5771693A (en) 1982-05-04

Similar Documents

Publication Publication Date Title
US4028237A (en) Method and apparatus for treatment of fluorine-containing waste waters
JPS6366278B2 (en)
JP4584185B2 (en) Method and apparatus for treating wastewater containing boron
JP2010269309A (en) Boron-containing wastewater treatment method and apparatus
WO2004071970A1 (en) Method for removing phosphorus in wastewater
JPS62262789A (en) Method for removing phosphorus
JPS6097091A (en) Treatment of fluoride ion-containing water
JPS6339308B2 (en)
WO2003080519A1 (en) Method of wastewater treatment
JPH09141274A (en) High-degree treatment for waste water containing phosphorus
KR100324078B1 (en) Process for removing fluorine from desulfurization waste water of flue gas
JPH06134487A (en) Monofluorophosphate for controlling calcium carbonate scale and stabilizing iron and manganese
JPS62125894A (en) Treatment of fluorine-containing waste water
JP2001327979A (en) Method for treating wastewater containing arsenic and removing agent
JP2003251367A (en) Treatment method for selenic acid-containing waste water and treating agent used therefor
JP2003136070A (en) Method and agent for treating lead-containing waste water
KR19990011049A (en) Treatment method of phosphate wastewater by struvite precipitation
JPH01284390A (en) Treatment of phosphate-containing water
JPH04150996A (en) Treatment of phosphate ion-containing waste water
JP5330329B2 (en) Method and apparatus for treating wastewater containing boron
RU2110486C1 (en) Method for processing of exhausted solutions comprising compounds of hexavalent chromium
JP2004290715A (en) Wastewater treatment method
JPS605282A (en) Treatment of phosphate ion-containing water
JPH10258291A (en) Removing method for ammonia and/or ammonium ion in waste water
JPS59177191A (en) Treatment of phosphate-containing water