JPS605282A - Treatment of phosphate ion-containing water - Google Patents

Treatment of phosphate ion-containing water

Info

Publication number
JPS605282A
JPS605282A JP11249283A JP11249283A JPS605282A JP S605282 A JPS605282 A JP S605282A JP 11249283 A JP11249283 A JP 11249283A JP 11249283 A JP11249283 A JP 11249283A JP S605282 A JPS605282 A JP S605282A
Authority
JP
Japan
Prior art keywords
water
phosphate
ion
magnesium
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11249283A
Other languages
Japanese (ja)
Inventor
Masamitsu Ito
真実 伊藤
Shiro Kaneko
金子 四郎
Moriyuki Sumiyoshi
住吉 盛幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Construction Co Ltd
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP11249283A priority Critical patent/JPS605282A/en
Publication of JPS605282A publication Critical patent/JPS605282A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably remove a phosphate ion to a low concn. over a long period of time by omitting a decarbonization process, by a method wherein Ca-salt is added to phosphate ion-containing water and, after pH-adjustment, the treated water is brought into contact with a phosphate removing agent in the coexistence of an Mg-ion. CONSTITUTION:Ca-salt such as CaCl2 is added to phosphate ion-containing water such as sewerage, excretion sewage or factory waste water. This treated water is adjusted to a pH of 8.5 or more and brought into contact with a phosphate removing agent such as granular MgO in the coexistence of about 50mg/l of an Mg-ion. By the coexistence of the Mg-ion, the good removal effect of the phosphate ion is obtained within a short retention time without receiving the influence of carbonate in water.

Description

【発明の詳細な説明】 本発明は上水、下水、し尿系汚水、工業用水、工場廃水
、ボイラー用水等、リン酸イオンを含む水を処理・し、
リン酸イオンを除去する方法に関する。
Detailed Description of the Invention The present invention treats water containing phosphate ions, such as tap water, sewage, human waste water, industrial water, factory wastewater, boiler water, etc.
The present invention relates to a method for removing phosphate ions.

自然水系に排出される上記各種廃水中には、オルトリン
酸塩、縮合リン酸塩等の無機性リン酸塩や有機性リン酸
塩が含まれており、これらのリン酸イオンが河川、湖沼
、内湾等の閉鎖性水域の富栄養化の原因となっている。
The above various wastewaters discharged into natural water systems contain inorganic phosphates such as orthophosphates and condensed phosphates, as well as organic phosphates, and these phosphate ions are released into rivers, lakes, marshes, etc. It causes eutrophication of closed water bodies such as inner bays.

これらのリン酸イオンは、水中に0.01〜0.02■
/It (Pとして)存在するだけでも富栄養化を起こ
すと言われている。従って、リン酸イオンを効率良く極
めて低濃度まで除去でき、かつ信頼性が高い処理法の開
発が望まれている。
These phosphate ions are present in water at a concentration of 0.01 to 0.02
The mere presence of /It (as P) is said to cause eutrophication. Therefore, there is a need for the development of a highly reliable treatment method that can efficiently remove phosphate ions to extremely low concentrations.

リン酸イオン含有水の高度処理法として、晶析法が注目
されている。この晶析法は、排水に可溶性カルシウム塩
を添加し、pHを7以上に調整した後、リン鉱石を充填
した塔に通水し、水中のリン酸イオンをリン酸カルシウ
ムとしてリン鉱石表面に析出させ、リン酸イオンを除去
する方法である。
Crystallization is attracting attention as an advanced treatment method for water containing phosphate ions. In this crystallization method, a soluble calcium salt is added to the wastewater, the pH is adjusted to 7 or more, and then the water is passed through a tower filled with phosphate rock, and the phosphate ions in the water are precipitated on the surface of the phosphate rock as calcium phosphate. This is a method to remove phosphate ions.

この方法は、処理水質が安定しており、また、汚泥を発
生しないので、有効な方法であるが、液中の炭酸成分の
妨害を受けるため、晶析前に炭酸成分を除去するための
脱炭酸工程を設置しなければならないという欠点がある
。脱炭酸工程は炭酸成分を炭酸ガスとして揮散させる工
程であり、pH値を3〜5に調節しなければならないの
で、多量の酸が必要である。
This method is effective because the quality of the treated water is stable and it does not generate sludge, but because it is interfered with by the carbonic acid components in the liquid, desorption is required to remove the carbonic acid components before crystallization. The disadvantage is that a carbonation process must be installed. The decarboxylation process is a process of volatilizing carbonic acid components as carbon dioxide gas, and since the pH value must be adjusted to 3 to 5, a large amount of acid is required.

特開昭57−71693号公報は、炭酸成分の妨害を回
避する方法として、p116〜8に必要に応b 71!
 整したリン酸イオン含有水を、力)Liシウム中性塩
からのカルシうムイオンの共存下で水酸化マグネシウム
又は酸化マグネシウムと接触させる方法を開示している
。そして、pHが8を越えると、炭酸カルシウムが生じ
て有効カルシウムイオンが消費され、リン酸イオン除去
効率が低下すると記載している。しかしながら、ヒドロ
キシカルシウムアパタイトの溶解炭はpH値が増加する
に従って減少するので、上記公報にょるpH条件ではリ
ン酸イオンの除去効率は満足とはいえない。例えば、上
記公報の実施例2では20cc/minで通水し、19
2時間後にはリン酸イオン除去率は既に90%に低下し
ている。
JP-A-57-71693 discloses a method for avoiding interference with carbonic acid components, b71!
A method is disclosed in which purified phosphate ion-containing water is brought into contact with magnesium hydroxide or magnesium oxide in the presence of calcium ions from a neutral salt of Li. It is also stated that when the pH exceeds 8, calcium carbonate is generated, effective calcium ions are consumed, and the phosphate ion removal efficiency is reduced. However, since the dissolved carbon of hydroxycalcium apatite decreases as the pH value increases, the removal efficiency of phosphate ions cannot be said to be satisfactory under the pH conditions described in the above publication. For example, in Example 2 of the above publication, water is passed at a rate of 20 cc/min, and 19
After 2 hours, the phosphate ion removal rate had already decreased to 90%.

本発明は、脱炭酸工程を省略して極めて長い期間にわた
って安定して著り、 <低濃度才でリン酸イオンを除去
しうる方法を提供することを目的とするもので、リン酸
イオン含有水にカルシウム塩を添加した後、リン除去材
と接触させてjlリン酸イオン除去する方法において、
水のpHを8.5ジノにに調整し、マグネシウムイオン
の共存下にリン除去材と接触させることを特徴とする。
The purpose of the present invention is to provide a method that can remove phosphate ions stably over a very long period of time by omitting the decarboxylation step, and can remove phosphate ions at low concentrations. In a method for removing jl phosphate ions by adding a calcium salt to and then contacting with a phosphorus removal material,
It is characterized in that the pH of water is adjusted to 8.5 dino, and the water is brought into contact with a phosphorus removing material in the coexistence of magnesium ions.

カルシウム塩としては、塩化カルシウム、硫酸カルシウ
ム及び硝酸カルシウム等の中性カルシう゛−“、7′°
、二 Qリン除去材として酸化マグネシウム を使用する場合には、その酸化マグネシウムからムイオ
ンを補給してもよい。
Calcium salts include neutral calcium salts such as calcium chloride, calcium sulfate, and calcium nitrate.
When magnesium oxide is used as the di-Q phosphorus removing material, mu ions may be supplied from the magnesium oxide.

Ca”−Mg’” co;−系でMIF” (7)Ca
CO3生成ニ及ばず影響を検討するため、M−アルカリ
度100■/ l! (CaCO3として)の合成液を
試料とし、塩化カルシウムを50■//(Caとして)
添加し、pH10に調節し、マグネシウム塩を添加し、
1時間攪拌し、炭酸カルシウムの析出量及びカルシウム
残存量を測定する実験をマグネシウム添加量を種々に変
動させて行った。結果を第1図に示す。この結果からM
g’m度が高くなるに従って、炭酸カルシウム析出量が
減少することがわかる。他方、リン酸とカルシウムを反
応させて晶析材表面でヒドロキシアパタイトを晶析させ
る過程でMgイオンが存在すると、上記反応の中間生成
物としてMgを含む化合物が生成し、ヒドロキシアパタ
イトの生成を阻害するおそれがある。しかし、種々検討
の結果、マグネシウムイオンの濃度を50 mg / 
11;J下(hとして)で共存させると、ヒドロキシア
パタイトの生成を阻害することなく、炭酸カルシウムの
析出を防止できることが判明し7た。晶析反応はアルカ
リ性条件下で行うので、炭酸カルシウムが析出しやすい
環境にあるにもかかわらず、本発明方法によれば、炭酸
カルシウムを析出せず、脱炭酸工程を必要としない。
Ca"-Mg'"co;- system with MIF" (7) Ca
In order to examine the effect on CO3 production, M-alkalinity was set at 100 ■/l! Sample a synthetic solution of (as CaCO3) and 50% calcium chloride // (as Ca)
Add, adjust pH to 10, add magnesium salt,
After stirring for 1 hour, experiments were conducted to measure the amount of precipitated calcium carbonate and the amount of remaining calcium while varying the amount of magnesium added. The results are shown in Figure 1. From this result, M
It can be seen that as the g'm degree increases, the amount of calcium carbonate precipitated decreases. On the other hand, if Mg ions are present in the process of reacting phosphoric acid and calcium to crystallize hydroxyapatite on the surface of the crystallization material, a compound containing Mg will be produced as an intermediate product of the above reaction, inhibiting the production of hydroxyapatite. There is a risk of However, as a result of various studies, the concentration of magnesium ions was reduced to 50 mg/
11; It has been found that the coexistence of calcium carbonate under J (as h) can prevent the precipitation of calcium carbonate without inhibiting the formation of hydroxyapatite7. Since the crystallization reaction is carried out under alkaline conditions, the method of the present invention does not precipitate calcium carbonate and does not require a decarboxylation step, even though the environment is such that calcium carbonate is likely to precipitate.

更に、処理水中にはマグネシウムイオン及びカルシウム
イオンが残留しており、アルカリ性であるので、処理水
の一部を原水に循環混合することにより、流入水調整用
の薬品の添加量を低減することができる。
Furthermore, since magnesium ions and calcium ions remain in the treated water and it is alkaline, it is possible to reduce the amount of chemicals added for inflow water conditioning by circulating and mixing a portion of the treated water with the raw water. can.

次に、実施例に基づいて本発明を詳述するが、本発明は
これに限定されるものではない。
Next, the present invention will be described in detail based on Examples, but the present invention is not limited thereto.

実施例1 直径27顛、高さ1mのカラムにリン鉱石と粒状酸化マ
グネシウムをそれぞれ充填した塔にリン酸イオンを1.
5〜2.5mg/ρ含有する下水二次処理水中に塩化カ
ルシウムをCaとして20〜30mg/7!添加し、p
Hを8.5に調整した試料を通水し、比較した。その結
果を第2図に示す。
Example 1 Phosphate ions were charged into a column having a diameter of 27 mm and a height of 1 m, each filled with phosphate rock and granular magnesium oxide.
Calcium chloride in secondary sewage treatment water containing 5-2.5 mg/ρ is 20-30 mg/7! Add p
A sample with H adjusted to 8.5 was passed through water and compared. The results are shown in FIG.

下水二次処理水中にはM−アルカリ度(CaC03換W
)成分が100〜200mg/ 1含まれているので、
リン鉱石充填塔ではM−アルカリ度の影響を受け、約5
0時間通水抜から徐々に処理水質が悪化した。これに反
して、粒状酸化マグネシウム充填塔では、酸化マグネシ
ウムの溶出により常に10〜25■/eのマグネシウム
イオンが液中に存在するので、M−アルカリ度成分の影
響を受けに<<、約500時間経過するまで観察しても
安定して良好な処理水が得られた。
Secondary sewage treatment water contains M-alkalinity (CaC03
) component is included at 100 to 200 mg/1,
In a phosphate rock packed tower, it is affected by M-alkalinity, and about 5
The quality of the treated water gradually deteriorated after water was drained for 0 hours. On the other hand, in a granular magnesium oxide-packed tower, 10 to 25 μ/e of magnesium ions are always present in the liquid due to the elution of magnesium oxide, so it is not affected by the M-alkalinity component. Even when observed over time, stable and good treated water was obtained.

リン鉱石を晶析材として使用する場合には、流入水を予
めpH3〜5に調整し、曝気することにより炭酸成分を
除去した後、前記操作を行うと、酸化マグネシウムを使
用した場合に近い結果が得られる。
When using phosphate rock as a crystallizing material, if the inflow water is adjusted to pH 3 to 5 in advance and the carbonate component is removed by aeration, then the above operation is performed, resulting in a result similar to that obtained when magnesium oxide is used. is obtained.

このように、マグネシウムイオンを共存させると、水中
の炭酸成分の影響がなく、脱炭酸工程を行わなくとも、
リン鉱石を用い、脱炭酸を行った場合より良好な結果が
得られる。
In this way, when magnesium ions coexist, there is no effect of carbonic acid components in water, and even without a decarboxylation process,
Better results can be obtained than when decarboxylation is performed using phosphate rock.

実施例2 直径27隨、高さ1mのカラムに粒径Q、5〜1.01
の粒状酸化マグネシウムを充填し、5V2h”で実施例
1と同じ試料及びそれにマグネシウム塩をマグネシウム
として25.50及び]00mg/a添加した試料を通
水した。100時間通水後の処理水のリン濃度(■/ρ
)を1;記の表に示す。
Example 2 Particle size Q, 5 to 1.01 in a column with a diameter of 27 mm and a height of 1 m.
of granular magnesium oxide, and water was passed through the same sample as in Example 1 and a sample to which 25.50 and ]00 mg/a of magnesium salt was added at 5V2h. Concentration (■/ρ
) are shown in the table below.

この表から、マグネシウムの添加量が多くなると、処理
水質が悪化する傾向があるが、低濃度では著しい効果が
あることが判る。その限界濃度は、特に粒状酸化マグネ
シウムをリン除去材として使用した場合、除去材からの
溶出骨としてマグネシウムが10〜25■/βあるので
、この溶出骨にマグネシウムを25■/!添加した35
〜50■/ρである。 マグネシウム塩の種類による処
理効果の差は見られない。
From this table, it can be seen that as the amount of magnesium added increases, the quality of treated water tends to deteriorate, but low concentrations have a significant effect. Especially when granular magnesium oxide is used as a phosphorus removal material, the limit concentration is 10 to 25 ■/β of magnesium as eluted bone from the removal material, so 25 ■/β of magnesium is added to this eluted bone! Added 35
~50■/ρ. No difference in treatment effect was observed depending on the type of magnesium salt.

実施例3 直径27非、高さ1mのカラムに粒径0.5〜1.0鶴
の粒状酸化マグネシウムを充填し、実施例1と同じ試料
を5V2h ’で通水し、得られる処理水の50%を流
入水に循環させる方式でリン酸イオン除去実験を行った
。結果を第3図に示す。
Example 3 A column with a diameter of 27 cm and a height of 1 m was filled with granular magnesium oxide having a particle size of 0.5 to 1.0 m, and the same sample as in Example 1 was passed through it at 5V2h', and the resulting treated water was A phosphate ion removal experiment was conducted by circulating 50% of the phosphate ion to the inflow water. The results are shown in Figure 3.

なお、循環水のpHは10.0〜10.5、マグネシウ
ム濃度は25〜30mg/(1、リン酸イオン濃度は0
.2〜0.3■/βであった。
In addition, the pH of the circulating water is 10.0 to 10.5, the magnesium concentration is 25 to 30 mg/(1, and the phosphate ion concentration is 0.
.. It was 2 to 0.3 ■/β.

このように、マグネシウムを含む処理水をfllrJf
Eさせることにより、マグネジ・ラムが炭酸成分の妨害
を抑制することができ、安定した処理水質が得られた。
In this way, the treated water containing magnesium is
By using E, Magneji Ram was able to suppress the interference of carbonic acid components, and stable treated water quality was obtained.

この場合、処理水のpHが10〜10;5であるから、
処理水の循環により流入水のpHをアルカリ側に移行さ
せることができ、又は処理水中にカルシウムイオンが残
存するので、この面でも流入水調整用の薬品量を低減で
きるという利点もある。
In this case, since the pH of the treated water is 10-10;5,
By circulating the treated water, the pH of the inflow water can be shifted to the alkaline side, or calcium ions remain in the treated water, so there is also an advantage in this respect that the amount of chemicals for adjusting the inflow water can be reduced.

実施例4 直径200 in、高さ350 (l mvaのカラム
に粒径0.5〜1.0鰭の粒状酸化マグネシウムを充填
し、下水二次処理水の濾過水に塩化カルシウムを20〜
30■/7! (Caとして)添加し、ρ1(を8.5
に調1 整した試料を5V3h 、LV6m/hの速度で300
0時間通水した。結果を第4図に示す。この条件でマグ
ネシウムは10〜25 E/ 7!?’4出しており、
脱炭酸を行わずに安定して良好な処理水質が得られた。
Example 4 A column with a diameter of 200 inches and a height of 350 mva was filled with granular magnesium oxide having a particle size of 0.5 to 1.0 fins, and calcium chloride was added to the filtrate of secondary sewage treatment water by 20 to 10 g of calcium chloride.
30■/7! (as Ca) and ρ1 (8.5
The sample adjusted to
Water was passed for 0 hours. The results are shown in Figure 4. Under these conditions, magnesium is 10-25 E/7! ? '4 has been issued,
Stable and good treated water quality was obtained without decarboxylation.

 4 第1図にも示したように、マグネシウムかIO〜25m
g/#の範囲では、炭酸カルシウムの析出を防止しろる
量は20〜30■/lであり、M−アルカリ度が100
■/aである場合、炭酸カルシウムが70〜80trv
z/l!析出する計算になるが、本実施例において実測
したところ、晶析塔内での炭酸成分の減少量は流入水の
5〜10%であった。
4 As shown in Figure 1, magnesium or IO~25m
In the range of g/#, the amount that prevents the precipitation of calcium carbonate is 20 to 30 ■/l, and the M-alkalinity is 100
■/a, calcium carbonate is 70-80trv
z/l! Although it is calculated that the carbonate component will precipitate, actual measurements in this example showed that the amount of decrease in the carbonate component in the crystallization tower was 5 to 10% in the inflow water.

これは、晶析塔内での滞留時間が20分程度であるため
、マグネシウムの共存効果の他に、滞留時間が短いため
平衡に達することができないこともあって、炭酸カルシ
ウムの析出を防止できたと考えることもできる。このよ
うに滞留時間が短くても、本発明によればヒドロキシア
パタイトは効率よく晶析する。
This is because the residence time in the crystallization tower is about 20 minutes, so in addition to the coexistence effect of magnesium, the short residence time also makes it impossible to reach equilibrium, which prevents the precipitation of calcium carbonate. You can also think that. Even with such a short residence time, hydroxyapatite can be efficiently crystallized according to the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はマグネシウムの添加量と炭酸カルシウムの析出
量との関係を示すグラフ、第2図は本発明方法及び従来
法による処理水の水質の経時変化を示すグラフ、第3図
は実施例3による水質の経時変化を示すグラフ、第4図
は実施例4の結果を示すグラフである。
Figure 1 is a graph showing the relationship between the amount of magnesium added and the amount of calcium carbonate precipitated, Figure 2 is a graph showing changes over time in the quality of water treated by the method of the present invention and the conventional method, and Figure 3 is Example 3. FIG. 4 is a graph showing the results of Example 4.

Claims (4)

【特許請求の範囲】[Claims] (1)リン酸イオン含有水にカルシウム塩を添加した後
、リン除去材と接触させてリン酸イオンを除去する方法
において、水のpHを8.5以上に調整し、マグネシウ
ムイオンの共存下にリン除去材と接触させることを特徴
とするリン酸イオン含有水の処理方法。
(1) In the method of adding calcium salt to phosphate ion-containing water and then bringing it into contact with a phosphorus removal material to remove phosphate ions, the pH of the water is adjusted to 8.5 or higher, and the water is added in the presence of magnesium ions. A method for treating water containing phosphate ions, the method comprising bringing the water into contact with a phosphorus removing material.
(2)マグネシウムイオンが、除去材として粒状酸化マ
グネシウムを用い、その除去材から溶出したもの及び/
又は可溶性マグネシウム塩を添加したものである特許請
求の範囲第1項記載の方法。
(2) Magnesium ions are eluted from the removal material using granular magnesium oxide as the removal material and/
Or the method according to claim 1, wherein a soluble magnesium salt is added.
(3)50+n+r/ρ以下のマグネシウムイオンを共
存させる特許請求の範囲第1項又は第2項記載の方法。
(3) The method according to claim 1 or 2, in which magnesium ions of 50+n+r/ρ or less are allowed to coexist.
(4)処理水の一部を原水に循環混合して処理する特許
請求の範囲第1項〜第3項のいずれか1項に記載の方法
(4) The method according to any one of claims 1 to 3, wherein a part of the treated water is recycled and mixed with raw water for treatment.
JP11249283A 1983-06-22 1983-06-22 Treatment of phosphate ion-containing water Pending JPS605282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11249283A JPS605282A (en) 1983-06-22 1983-06-22 Treatment of phosphate ion-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11249283A JPS605282A (en) 1983-06-22 1983-06-22 Treatment of phosphate ion-containing water

Publications (1)

Publication Number Publication Date
JPS605282A true JPS605282A (en) 1985-01-11

Family

ID=14587996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11249283A Pending JPS605282A (en) 1983-06-22 1983-06-22 Treatment of phosphate ion-containing water

Country Status (1)

Country Link
JP (1) JPS605282A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647209A1 (en) * 1992-06-23 1995-04-12 Water Board Process for the removal of phosphorous

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367960A (en) * 1976-11-30 1978-06-16 Ebara Infilco Co Ltd Method of treating orgaic waste water
JPS5771693A (en) * 1980-10-21 1982-05-04 Katayama Chem Works Co Ltd Method of removing phosphate ion contained in liquid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5367960A (en) * 1976-11-30 1978-06-16 Ebara Infilco Co Ltd Method of treating orgaic waste water
JPS5771693A (en) * 1980-10-21 1982-05-04 Katayama Chem Works Co Ltd Method of removing phosphate ion contained in liquid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0647209A1 (en) * 1992-06-23 1995-04-12 Water Board Process for the removal of phosphorous
EP0647209A4 (en) * 1992-06-23 1995-05-31 Water Board Process for the removal of phosphorous.

Similar Documents

Publication Publication Date Title
Saidou et al. Struvite precipitation by the dissolved CO2 degasification technique: Impact of the airflow rate and pH
JPS5840192A (en) Treatment of industrial waste water
JPS6366278B2 (en)
JPS605282A (en) Treatment of phosphate ion-containing water
JP2001129562A (en) Phosphorus removing method
JPS6339308B2 (en)
JPS6097091A (en) Treatment of fluoride ion-containing water
JP4153267B2 (en) Dephosphorization / ammonia removal method, ammonia fertilizer production method, and melt solidification method
JP4337303B2 (en) How to remove sulfate ions
EP1493716A1 (en) Method of wastewater treatment
JPS59199097A (en) Disposal of waste cement slurry
JP2006297301A (en) Powder wastewater treatment agent containing oyster shell as main component
JPH0130554B2 (en)
JP2005040739A (en) Phosphate-containing wastewater treatment method
JPH0315512B2 (en)
JP2004174386A (en) Treatment method for phosphoric acid-containing wastewater
JPS59177191A (en) Treatment of phosphate-containing water
US4228003A (en) Method of removing phosphates from waste water
JPS641200B2 (en)
JPS63258692A (en) Treatment of organic sewage
JP2006142191A (en) Method for treating phosphoric acid-containing drainage
JPH01284390A (en) Treatment of phosphate-containing water
JPS605283A (en) Treatment of phosphate ion-containing water
JPS624199B2 (en)
JPS598439B2 (en) How to treat organic wastewater