JPS59177191A - Treatment of phosphate-containing water - Google Patents

Treatment of phosphate-containing water

Info

Publication number
JPS59177191A
JPS59177191A JP4898583A JP4898583A JPS59177191A JP S59177191 A JPS59177191 A JP S59177191A JP 4898583 A JP4898583 A JP 4898583A JP 4898583 A JP4898583 A JP 4898583A JP S59177191 A JPS59177191 A JP S59177191A
Authority
JP
Japan
Prior art keywords
water
phosphate
raw water
column
stripping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4898583A
Other languages
Japanese (ja)
Inventor
Tadao Horiguchi
堀口 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP4898583A priority Critical patent/JPS59177191A/en
Publication of JPS59177191A publication Critical patent/JPS59177191A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove phosphoric ion from waste water at a low cost, by stripping waste water containing phosphoric ion, and bringing it into contact with the crystal seeds of calcium phosphate in the presence of Ca. CONSTITUTION:Phosphate-contg. raw water 11, e.g. treated water of night soil, sewage or industrial waste water, is adjusted to a pH of 3-5 by the addition of an acid 13 such as sulfuric acid. Said raw water is introduced into a decarboxylation column 15 and stripped therein by releasing air from a lower side. CO2- contg. stripping gas is discharged through a line 17, while the decarboxylated raw water is withdrawn through a line 19. Said raw water is adjusted to a pH above 6 by the addition of an alkaline Ca agent 21 such as slaked lime. Thereafter, the raw water is sent into a crystallization dephosphorizer column 23 and brought into contact with crystal seeds containing calcium phosphate, e.g. hydroxyapatite, fluoroapatite or trilime phosphate, charged in the column to crystallizedly dephosphorize phosphoric ion as calcium phosphate on the surfaces of said crystal seeds. The dephosphorized raw water is introduced into a neutralizer column 27, neutralized therein with the stripping gas 17 and then drained.

Description

【発明の詳細な説明】 本発明はリン酸塩を含む水の処理方法に関し・詳しくは
、晶析脱リン法による水の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating water containing phosphate, and more particularly, to a method for treating water by crystallization dephosphorization.

近年、湖沼、内湾をはじめとする閉鎖水域における富栄
養化の問題が著しく、この対策が急がれている。富栄養
化の原因の一つは水中に存在するリン酸塩にあり、リン
酸塩の除去についての研究が進められている。このリン
酸塩は洗剤ビルダー、肥料などに汎く使われており、生
活廃水、産業廃水などにオル) IJリン酸塩縮合リン
酸塩などの無機リン酸塩や有機リン酸塩の形で存在して
いる。
In recent years, the problem of eutrophication in closed water bodies such as lakes, marshes, and inner bays has become serious, and countermeasures are urgently needed. One of the causes of eutrophication is phosphates present in water, and research is underway to remove phosphates. This phosphate is widely used in detergent builders, fertilizers, etc., and exists in the form of inorganic phosphates such as IJ phosphate condensed phosphates and organic phosphates in domestic wastewater, industrial wastewater, etc. are doing.

水中のリン酸塩を除去する方法としては飄硫酸パン上等
を用いる凝集法、活性汚泥法、あるしぐ゛はこれらを組
み合わせる方法が実験プラントや実際のプラントで用い
られて効果が認められているが、近年、より操作が簡単
で、しかも汚泥が発生せず、処理効率の高い晶析脱リン
法が注目されている。
Methods for removing phosphates from water include the flocculation method using sulfuric acid bread, the activated sludge method, and a combination of these methods, which have been used in experimental plants and actual plants and have been shown to be effective. However, in recent years, crystallization dephosphorization has attracted attention because it is easier to operate, does not generate sludge, and has high processing efficiency.

晶析脱リン法は、リン酸塩を含む水を、カルシウムイオ
ンの存在下にヒドロキシアバタイトナトノリン酸カルシ
ウムを含む結晶種と接触させて、水中のリン酸イオンを
リン酸カルシウムの形にして結晶種表面に晶析させる方
法であり1主として(1)式の反応により進むと考えら
れる。
In the crystallization dephosphorization method, water containing phosphate is brought into contact with crystal seeds containing hydroxyabatite calcium phosphate in the presence of calcium ions, and the phosphate ions in the water are converted into calcium phosphate onto the surface of the crystal seeds. It is a method of crystallization, and is thought to proceed primarily through the reaction of formula (1).

5Ca” −1−3HPOj−+40H−−+ Ca、
(OH) (PO4)!+ +3H20””” (1)
このように晶析脱リン法においてはCaイオンの存在か
必須であるが、一方、原水(脱リン処理対象水)のアル
カリ度が高い場合にはCa”+ HCO3−+OH−→ CaC0,↓+H20・・曲(2) のように炭酸スケールの析出が起こるため、前処理とし
て脱炭酸処理を施すことが必要となる。
5Ca"-1-3HPOj-+40H--+ Ca,
(OH) (PO4)! + +3H20””” (1)
In this way, the presence of Ca ions is essential in the crystallization dephosphorization method, but on the other hand, when the alkalinity of raw water (water targeted for dephosphorization treatment) is high, Ca"+ HCO3- + OH- → CaC0,↓+H20 ...As shown in song (2), precipitation of carbonate scale occurs, so it is necessary to perform decarboxylation treatment as a pretreatment.

また、上記(1)式から推定できるように、水酸イオン
濃度が高いほど反応速度が大きくなるので、リン酸塩の
凝集が起こらない準安定域の範囲で、高いpUで処理す
ることが望ましい。しがしながら、晶析反応に適切な高
いpHで処理を行なうと、処理水のpuも高くなってそ
のまま放流できず、後中和処理などの対策が必要となり
、煩雑でありコスト的にも不利であった。
In addition, as can be estimated from the above equation (1), the higher the hydroxyl ion concentration, the higher the reaction rate, so it is desirable to treat at a high pU within the metastable region where phosphate aggregation does not occur. . However, if the treatment is carried out at a high pH suitable for the crystallization reaction, the PU of the treated water will also be high and it cannot be discharged as it is, and countermeasures such as post-neutralization treatment will be required, which is complicated and costly. It was a disadvantage.

本発明者は、晶析脱リン法に内包される上記の如き問題
点を解決すべく鋭意検討した結果、原水を脱炭酸し、こ
れにより得られる炭酸ガスで処理水を中和することによ
り、上記の問題点を一挙に解決しうろことを見い出し、
この知見に基づいて本発明を完成するに至った。
As a result of intensive study to solve the above-mentioned problems inherent in the crystallization dephosphorization method, the present inventor decarboxylated the raw water and neutralized the treated water with the carbon dioxide gas obtained thereby, We found a way to solve the above problems all at once,
Based on this knowledge, we have completed the present invention.

すなわち、本発明のリン酸塩全台む水の処理方法は、 (a)  リン酸塩を含む水を酸性化にストリッピング
する第1工程と; (b)  ;:の第1工程処理水をカルシウムイオンの
存在下であって、かつ、1116以上の条件下に、リン
酸カルシウムを含む結晶種と接触させる第2工程と; (e)  この第2工程処理水を、さらに第1工程から
排出されるストリッピングガスと接触させる第3工程 とを有することを特徴とする。
That is, the method for treating water containing all phosphates of the present invention includes (a) a first step of acidifying and stripping water containing phosphates; (b) treating water in the first step; a second step of contacting with crystal seeds containing calcium phosphate in the presence of calcium ions and under conditions of 1116 or higher; (e) this second step treated water is further discharged from the first step; The method is characterized by comprising a third step of bringing the method into contact with a stripping gas.

iI図は本発明の英施例を示すフローシートであるoリ
ン酸塩を含む原水はライン11から導入され、硫酸など
の酸剤13が添加されて酸性、好ましくはpl! 3〜
5に調整きれ、脱炭酸塔15に送られる。脱炭酸塔15
では下部がら空気f:敗気してストリッピングが行なわ
れ、炭酸力スを含むストリッピングガスはライン17が
ら排出され、一方、脱炭酸処理されり原水はライン19
から次工程に送られる。
Figure ii is a flow sheet showing an embodiment of the present invention.O Raw water containing phosphate is introduced from line 11, and an acid agent 13 such as sulfuric acid is added to make it acidic, preferably pl! 3~
5 and sent to the decarboxylation tower 15. Decarboxylation tower 15
Then, the air from the lower part F: is degassed and stripped, and the stripping gas containing carbon dioxide is discharged from the line 17, while the raw water that has been decarboxylated is passed through the line 19.
is sent to the next process.

炭酸ガスのストリッピングには加熱、減圧なと適宜の方
法を採用しうるが、前記の如くエアレーションによるの
が好ましい。
For stripping the carbon dioxide gas, any suitable method such as heating or reduced pressure may be employed, but as mentioned above, aeration is preferably used.

本発明で処理対象とする原水としては、炭酸スケール防
止のための脱炭酸処理の必要性および回収炭酸ガスの中
和剤としての有効利用の観点から、高アルカリ度のもの
が好適であり、M−アルカリ度が200 m9/II以
上の原水に対して将に効果を発揮する。
The raw water to be treated in the present invention is preferably one with high alkalinity, from the viewpoint of the necessity of decarboxylation treatment to prevent carbon dioxide scale and the effective use of recovered carbon dioxide as a neutralizing agent. - Effective for raw water with alkalinity of 200 m9/II or more.

脱炭酸処理された原水にはアルカリ剤およびカルシウム
剤21が添加され、986以上に調整されて、晶析脱リ
ン塔23に供給される。
An alkaline agent and a calcium agent 21 are added to the decarboxylated raw water, adjusted to 986 or higher, and supplied to the crystallization dephosphorization tower 23.

アルカリ剤およびCa剤の添加には、消石灰のようにア
ルカリ剤であると同時にCa剤でもあるものを用いるこ
とが好ましいが、塩化カルシウムなどの水溶性カルシウ
ム塩とアルカリ剤とを添加することもできる。
For the addition of an alkali agent and a Ca agent, it is preferable to use something that is both an alkaline agent and a Ca agent, such as slaked lime, but it is also possible to add a water-soluble calcium salt such as calcium chloride and an alkaline agent. .

前記(1)式から判るように、晶析反応を進めるために
は反応系にカルシウムイオンおよび水酸イオンを多量に
存在させることが望ましいが、これらが過剰に存在する
と結晶種以外のところにリン酸カルシウムなどの微細沈
澱を生じ、充填層を閉塞するなどして通水処理効率を低
下させることもある。生成するリン酸カルシウムの濃度
が溶解度よりも高く、過溶解度(反応系に結晶種が存在
しない場合に、結晶が析出し始める濃度)より低くなる
ようなカルシウムイオン濃度およびpHの領域、すなわ
ち準安定域においては、生成するリン酸カルシウムが結
晶種表面に析出し微細性1aは生成しないが、カルシウ
ムイオンおよび/またはpHが高くなり、生成するリン
酸カルシウムか過溶解度を越える不安定域においては、
リン酸カルシウムか微細沈澱となって析出する。この準
安定域は原水中に含まれるリン酸イオンの濃度によって
範囲が異なり、リン酸イオン6度が低いほど広くなる。
As can be seen from the above equation (1), it is desirable to have large amounts of calcium ions and hydroxide ions present in the reaction system in order to advance the crystallization reaction, but if these are present in excess, calcium phosphate will be present in areas other than the crystal seeds. This may cause fine precipitates such as, etc., which may clog the packed bed and reduce the water flow treatment efficiency. In a region of calcium ion concentration and pH such that the concentration of calcium phosphate produced is higher than its solubility and lower than its supersolubility (the concentration at which crystals begin to precipitate in the absence of crystal seeds in the reaction system), that is, in the metastable region. In this case, the produced calcium phosphate precipitates on the surface of the crystal seed and fineness 1a is not produced, but in the unstable region where calcium ions and/or pH become high and the produced calcium phosphate exceeds supersolubility,
Calcium phosphate precipitates as a fine precipitate. The range of this metastable region varies depending on the concentration of phosphate ions contained in the raw water, and the lower the 6 degrees of phosphate ion, the wider it becomes.

したがって、リン酸イオン濃度が高い場合にはI)[1
を高くすると不安定域となって沈澱が生成しやすい傾向
があるか、リン酸イオン6度か低い場合にはpHを高く
しても準安定域での晶析か可能であるから、沈澱を生成
させることなく晶析反応を速くさせることかできる。い
ずれにしろ、準安定域の範囲内で高いpiで晶析脱リン
処理を行なう方か、脱リン効率の点では好ましいことに
なる。
Therefore, when the phosphate ion concentration is high, I) [1
If the pH is raised, it tends to become unstable and precipitates are likely to form, or if the phosphate ion is 6 degrees or lower, it is possible to crystallize in the metastable region even if the pH is increased, so precipitation is not possible. It is possible to speed up the crystallization reaction without producing it. In any case, it is preferable in terms of dephosphorization efficiency to perform the crystallization dephosphorization treatment at a high pi within the metastable region.

しかしなから、高いpH値で晶析反応を行なうと、晶析
脱リン処理水のpnも当然に高くなって放流水基車と合
致しなくなるため、後中和処理などの対策が必要となる
。そこで従来は、後中和処理を行なうと薬剤費が増大し
、メンテナンスも煩雑になることから、晶析脱リン効果
の低下はあっても処理水のpIIが放流基準に収まるよ
うな条件に設定して晶析脱リン処理を行なっていた。こ
れに対して本発明では、脱炭酸塔工5からのストリッピ
ングガス(排ガス)を中和剤として利用できるので、そ
れだけ高いpH値に設定して、脱炭酸された原水とリン
儀塩を含む結晶種とを接触させることができ、脱リン効
率を同上させることが可能となる。
However, if the crystallization reaction is carried out at a high pH value, the pn of the crystallized and dephosphorized water will naturally increase and will no longer match the discharge water base, so countermeasures such as post-neutralization treatment will be required. . Conventionally, post-neutralization increases chemical costs and makes maintenance complicated, so conditions were set so that the pII of the treated water would fall within the discharge standard, even though the crystallization dephosphorization effect would decrease. Crystallization and dephosphorization treatment was carried out. On the other hand, in the present invention, since the stripping gas (exhaust gas) from the decarbonation tower 5 can be used as a neutralizing agent, the pH value is set to a correspondingly higher value, and the decarboxylated raw water and phosphorus salt are contained. The crystal seeds can be brought into contact with each other, and the dephosphorization efficiency can be increased.

晶析脱リン塔23には、ヒドロキシアパタイト、フルオ
ロアノぞタイト、リン酸三石灰などのリン酸カルシウム
を含む結晶種が充填され、これら結晶種はそれ自体を粒
状物として充填層を形成してもよく、また、粉状物とし
て適当な支持体層に捕捉させた状態で充填してもよい。
The crystallization dephosphorization tower 23 is filled with crystal seeds containing calcium phosphate such as hydroxyapatite, fluoroanozotite, and tricalcium phosphate, and these crystal seeds themselves may form a packed bed as granules. Alternatively, it may be filled in a state in which it is trapped in a suitable support layer as a powder.

さらに、原水と結晶種との接触方法は固定床式でも流動
床式のいずれでもよい。
Furthermore, the method of contacting the raw water with the crystal seeds may be either a fixed bed method or a fluidized bed method.

脱リン処理された水はライン25から後中和塔27に送
られ、脱炭酸塔15からライン17を経て供給されるス
トリッピングガスと接触し、このストリッピングガス中
に含まれる炭酸ガスにより中和処理が施されて、ライン
29から排水される。脱炭酸工程で発生する炭酸ガス量
は、処理水のpH制御に必要な酸の鼠に対して過大とな
ることがないので、後中和塔におけるpH制御は特に必
要かなく、安定性も高い。
The dephosphorized water is sent from the line 25 to the post-neutralization tower 27, where it comes into contact with the stripping gas supplied from the decarbonation tower 15 through the line 17, and is neutralized by the carbon dioxide contained in this stripping gas. The water is treated with water and drained through line 29. The amount of carbon dioxide gas generated in the decarboxylation process is not excessive compared to the acid content required to control the pH of the treated water, so there is no need for pH control in the post-neutralization tower, and the process is highly stable. .

後中和装置としては一般のガス吸収装ねを用いることか
でき、その代表例としては、充填塔(ハニカム、砕石、
ラシヒリング、テラレットなどが充填される。)、段塔
あるいはカスケード装置、スプレー塔あるいはスクラノ
々ン、気泡塔、気泡攪拌装置などが挙げられる。
General gas absorption equipment can be used as the post-neutralization equipment, and typical examples include packed towers (honeycomb, crushed stone, etc.).
Filled with raschig rings, terrarets, etc. ), plate towers or cascade devices, spray towers or scrubbers, bubble columns, bubble stirring devices, etc.

本発明によれは、晶析脱リン処理の前処理として脱炭酸
処理を行ない、ここで発生する炭酸ガスを含む排カスを
、中和剤として晶析脱リン処理水に吸収させることによ
り、最適pH値で晶析脱リン処理を行なうことができ、
しかも、別途中和剤を用いることなく、処理後の放流水
のpH(il k N正基準内に抑えることができる。
According to the present invention, decarboxylation treatment is performed as a pretreatment for crystallization dephosphorization treatment, and the waste residue containing carbon dioxide generated here is absorbed into the crystallization dephosphorization treated water as a neutralizing agent. Crystallization dephosphorization treatment can be performed at pH value,
Furthermore, the pH of the treated effluent water can be kept within the positive standard without using a separate neutralizing agent.

本発明の処理方法はアルカリ度が高い原水に適しており
、たとえば、床法処理水、硬度の高い下水、工業廃水な
どに好適である。
The treatment method of the present invention is suitable for raw water with high alkalinity, such as bed-processed water, highly hard sewage, and industrial wastewater.

実施例 リン酸塩3筋勺(pとして)を含みM−アルカリ度30
0 rry7iの合成水に硫酸を添加してpl!を3.
5とし、脱炭酸塔で空気曝気をして脱炭酸を行なった。
Example: Phosphate 3-strength (as p) containing M-Alkalinity 30
0 Add sulfuric acid to the synthetic water of rry7i and pl! 3.
5, and decarboxylation was performed by aeration with air in a decarboxylation tower.

その結果、アルカリ度が約40mg/lの処理水が得ら
れた。
As a result, treated water with an alkalinity of about 40 mg/l was obtained.

次に、この処理水に消石灰および塩化カルシウムを加え
て、pH9,O、カルシウム量362ψ/lとなるよう
に調節した後、粒度16〜32メツシユのリン鉱石を1
50m1充填した固定床に、5V=2 (hr−’ )
の流速で通水した。その結果、リン濃度(’ 4 Tn
9/l 、 pHs、 7の処理水が得られた。
Next, slaked lime and calcium chloride were added to this treated water to adjust the pH to 9.0 and the amount of calcium to be 362 ψ/l, and then 1 ounce of phosphate rock with a particle size of 16 to 32 mesh was added.
5V=2 (hr-') in a fixed bed packed with 50ml
Water was passed at a flow rate of . As a result, the phosphorus concentration (' 4 Tn
Treated water with a pH of 7/1 was obtained.

次に、この処理水と、脱炭酸塔から排出されたストリッ
ピングガスとを接触させたところ、pHは84となった
Next, when this treated water was brought into contact with the stripping gas discharged from the decarboxylation tower, the pH became 84.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すフローシ一トである。 15・・・脱炭酸塔   23・・・晶析脱リン塔27
・・・後中和塔 特許出願人  栗田工業株式会社
FIG. 1 is a flow sheet showing an embodiment of the present invention. 15...Decarboxylation tower 23...Crystallization dephosphorization tower 27
... Post-neutralization tower patent applicant Kurita Industries Co., Ltd.

Claims (1)

【特許請求の範囲】 1 リン酸塩を含む水を酸性下にストリッピングする第
1工程と、第1工程処理水をカルシウムイオンの存在下
であって、かつ、9116以上の条件下に、リン酸カル
シウムを含む結晶種と接触させる第2工程と、第2工程
処理水を、さらに第1工程から排量されるストリッピン
グガスと接触させる第3工程とを有することを特徴とす
るリン酸塩を含む水の処理方法。 2、 前記ストリッピングがエアレーションにより行な
われる特許請求の範囲第1項記載の処理方法。 3、 前記リン酸カルシウムを含む結晶種がヒドロキシ
アパタイト、フルオロアパタイトおよびリン酸三石灰か
ら成る群から選ばれる少なくとも一種である特許請求の
範囲第1項または第2項に記載の処理方法。
[Claims] 1. A first step of stripping water containing phosphate under acidic conditions, and stripping the first step treated water in the presence of calcium ions and under conditions of 9116 or higher. and a third step of contacting the second step treated water with a stripping gas discharged from the first step. How to treat water. 2. The processing method according to claim 1, wherein the stripping is performed by aeration. 3. The treatment method according to claim 1 or 2, wherein the crystal seed containing calcium phosphate is at least one selected from the group consisting of hydroxyapatite, fluoroapatite, and tricalcium phosphate.
JP4898583A 1983-03-25 1983-03-25 Treatment of phosphate-containing water Pending JPS59177191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4898583A JPS59177191A (en) 1983-03-25 1983-03-25 Treatment of phosphate-containing water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4898583A JPS59177191A (en) 1983-03-25 1983-03-25 Treatment of phosphate-containing water

Publications (1)

Publication Number Publication Date
JPS59177191A true JPS59177191A (en) 1984-10-06

Family

ID=12818528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4898583A Pending JPS59177191A (en) 1983-03-25 1983-03-25 Treatment of phosphate-containing water

Country Status (1)

Country Link
JP (1) JPS59177191A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6102481A (en) * 1997-08-25 2000-08-15 Araco Kabushiki Kaisha Vehicle seat
CN102826640A (en) * 2011-06-17 2012-12-19 中国石油化工股份有限公司 Method for treating organic phosphorus production wastewater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6102481A (en) * 1997-08-25 2000-08-15 Araco Kabushiki Kaisha Vehicle seat
CN102826640A (en) * 2011-06-17 2012-12-19 中国石油化工股份有限公司 Method for treating organic phosphorus production wastewater

Similar Documents

Publication Publication Date Title
Giesen Crystallisation process enables environmental friendly phosphate removal at low costs
Saidou et al. Struvite precipitation by the dissolved CO2 degasification technique: Impact of the airflow rate and pH
US3551332A (en) Purification of fluorine-containing industrial waste waters
Oguz et al. Removal of phosphate from waste waters by adsorption
JP2005246249A (en) Method for recovering phosphorus and its apparatus
KR101002191B1 (en) Method for reducing sludge and wastewater and for treating gas
JP2007175673A (en) Treatment method of ammonia-containing drain
JPS6366278B2 (en)
JP2006218354A (en) Method for treating fluorine-containing waste water
JPS59177191A (en) Treatment of phosphate-containing water
JP4153267B2 (en) Dephosphorization / ammonia removal method, ammonia fertilizer production method, and melt solidification method
RU2715529C1 (en) Method of treating waste water from ammonium ions
JPH10235374A (en) Wastewater treatment by map method using sea water
JP4019212B2 (en) How to recover phosphorus from sludge
JPH0739889A (en) Treatment of high concentration ammonia waste liquid
JP2004174386A (en) Treatment method for phosphoric acid-containing wastewater
JPS61271087A (en) Treatment of waste water containing phosphate
JP6407052B2 (en) Phosphorus recovery apparatus and phosphorus recovery method
JPS60168587A (en) Fluidized bed type catalytic dephosphorization
JPS605282A (en) Treatment of phosphate ion-containing water
KR101900259B1 (en) High-concentration total nitrogen removal process from high-purity NO2 purified wastewater
JPH0675708B2 (en) Method for removing phosphorus from liquid
JPS591120B2 (en) Advanced treatment method for organic wastewater
Antes et al. Digestate treatment: phosphorus removal.
JPS59147695A (en) Manufacture of dephosphorizing material