JPS6365646A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6365646A
JPS6365646A JP21024486A JP21024486A JPS6365646A JP S6365646 A JPS6365646 A JP S6365646A JP 21024486 A JP21024486 A JP 21024486A JP 21024486 A JP21024486 A JP 21024486A JP S6365646 A JPS6365646 A JP S6365646A
Authority
JP
Japan
Prior art keywords
oxide film
insulating film
film
silicon oxide
plasma vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21024486A
Other languages
Japanese (ja)
Other versions
JPH0611079B2 (en
Inventor
Shuji Kishi
岸 修司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61210244A priority Critical patent/JPH0611079B2/en
Publication of JPS6365646A publication Critical patent/JPS6365646A/en
Publication of JPH0611079B2 publication Critical patent/JPH0611079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To contrive the improvement of integration degree and reliability of a semiconductor device without generating 'hillocks' and 'Al dissipation' in Al wirings at all by a method wherein an Si oxide film is formed by a sputtering method, wherein a film can be adhered at a temperature of 200 deg.C or less and without utilizing a chemical reaction, is formed on an insulating film to come into contact directly to the Al wirings. CONSTITUTION:A semiconductor device comprises an Si substrate 1, a field insulating film 2 formed on this upper surface, first layer Al wirings 3 formed on the field insulating film 3 and an interlayer insulating film consisting of a 4-layer structure of an Si oxide film 4 by a sputtering method, a first Si oxide film 5 by a plasma vapor growth method, Si oxide films 6 by a coating method and a second Si oxide film 7 by a plasma vapor growth method, which are formed in order on the whole surface of the substrate including these Al wirings 3. That is, after the first Si oxide film 5 is formed, the step differences are filled with the Si oxide films 6 by a coating method which is a normal means and flattened and furthermore, by forming the second Si oxide film 7 on the upper surfaces of the Si oxide films 5 and 6 by a plasma vapor growth method, the interlayer insulating film is formed into a 4-layer structure.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に多層配線における層間
絶縁膜の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor device, and particularly to the structure of an interlayer insulating film in a multilayer wiring.

〔従来の技術〕[Conventional technology]

高密度化および高速化を目指す最近の半導体装置、特に
集積回路装置では配線の多層化が必要不可欠である。配
線の多層化全実現する際に褒も重要なことは配線間全絶
縁分離する眉間絶縁膜の膜質と構造であシ、一般的には
まず下層配線の段差を充分に緩和°できること、すなわ
ち平坦性が良好であることが要求される。従来、この平
坦性を確保するためにはシリカ塗布膜が用いられ、例え
ば第1層アルミ配線上にプラズマ気相成長されたシリコ
ン窒化膜の凹所tこのシリカ塗布膜で埋め更に化学気相
成長法によるリン・ガラス膜金被覆した3層構造の層間
絶縁膜が広く用いられてきた。
2. Description of the Related Art Multilayer wiring is essential in recent semiconductor devices, especially integrated circuit devices, which aim to achieve higher density and higher speed. What is important when realizing multi-layer wiring is the film quality and structure of the glabella insulating film that completely isolates the wiring. Good properties are required. Conventionally, a silica coating film has been used to ensure this flatness. For example, the recesses in a silicon nitride film grown on the first layer aluminum wiring by plasma vapor deposition are filled with this silica coating film and further deposited by chemical vapor deposition. A three-layer interlayer dielectric film coated with phosphorus glass film and gold has been widely used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、この従来の層間絶縁膜構造は、まず第1
に下層アルミ配線上にシリコン窒化膜をプラズマ気相成
長させる際、またはり/硅酸ガラス(PSG)t−化学
気相成長させる際アルミ配線に1ヒロツモ 7目−トまたはスルーホール不良を生じ、第2にる。ま
た、第3にはシリコン窒化膜は酸化膜に比し誘電率が高
いので配線の層間容量が大きくなシ動作速度に悪影響を
及はし更に第4には化学気相されたリン・ガラス膜はプ
ラズマ気相成長の窒化膜と比べると平坦性が良くないな
どの諸欠点を有する。とシ分け、第2番目に挙げた1ア
ルミ消失”は2〜3μm程度の大きさのものが1発生す
ることがあシ下層アルミ配線の断線事故または配線寿命
の大幅低下に直結するので今日の如きアルミ配線幅が/
3μm以下で製造される半導体デバイスにおいては致命
的障害となる。
However, this conventional interlayer insulating film structure
When a silicon nitride film is grown in plasma vapor phase on the lower aluminum wiring, or when silicic acid glass (PSG) is grown in chemical vapor phase, defects in the aluminum wiring or through holes occur. Second one. Thirdly, the silicon nitride film has a higher dielectric constant than the oxide film, so the interlayer capacitance of the wiring is large, which has a negative effect on the operating speed.Fourthly, the phosphorus glass film is chemically vaporized. has various drawbacks such as poor flatness compared to plasma vapor grown nitride films. The second item, ``Aluminum loss'', is caused by the occurrence of particles with a size of about 2 to 3 μm, which directly leads to disconnection accidents in the lower layer aluminum wiring or a significant reduction in the life of the wiring, so today's The aluminum wiring width is /
This is a fatal problem for semiconductor devices manufactured with a thickness of 3 μm or less.

本発明の目的は、従って、アルミ配線に対しヒロである
The object of the present invention is therefore to provide advantages over aluminum wiring.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、半導体装置は、シリコン基板と、前記
シリコン基板上のフィールド絶縁膜と、前記フィールド
絶縁膜上に形成された第1層のアルミ配線と、前記第1
層アルミ配線を含む基板全面に順次形成されるスパッタ
法によるシリコン酸化膜、プラズマ気相成長法による第
1のシリコン酸化膜、塗布法によるシリコン酸化膜およ
びプラズマ気相成長法による第2のシリコン酸化膜の4
層構造からなる第2層アルミ配線に対する層間絶縁膜と
を備えること金含む。
According to the present invention, a semiconductor device includes a silicon substrate, a field insulating film on the silicon substrate, a first layer of aluminum wiring formed on the field insulating film, and a first layer of aluminum wiring formed on the field insulating film.
A silicon oxide film by sputtering, a first silicon oxide film by plasma vapor deposition, a silicon oxide film by coating, and a second silicon oxide film by plasma vapor deposition are sequentially formed on the entire surface of the substrate including layered aluminum wiring. membrane 4
It also includes an interlayer insulating film for the second layer aluminum wiring having a layered structure.

すなわち、本発明によれば、アルミ配線に直接接触する
絶縁膜には200”C以下の温度で且つ化学反応を利用
せずに被着できるスパッタ法のシリコン酸化膜が形成さ
れるので、従来の層間絶縁膜のようにアルミ配線に°′
ヒロック”を生ぜしめたバ或いは゛′アルミ消失”事故
を発生せしめたシするなどの問題点は解決される。すな
わち、アルミ配線の゛ヒロック箋これに直接接触する絶
縁膜の形成温度によって大きく左右されるが200”C
以下の場合は発生せず、また、′アルミ消失”現象は反
応ガスと直接接触しなければ生じることはないので、ア
ルミ配線に直接接触する絶縁膜がスパッタ法で形成され
ている場合はこれら力ゞ゛発生ている恐れは全くない。
That is, according to the present invention, a silicon oxide film is formed on the insulating film that is in direct contact with the aluminum wiring using a sputtering method that can be deposited at a temperature of 200"C or lower and without using a chemical reaction. °′ for aluminum wiring like interlayer insulation film
Problems such as the crash that caused the "hillock" or the crash that caused the "aluminum disappearance" accident are solved. In other words, it depends largely on the formation temperature of the insulating film that is in direct contact with the aluminum wiring hillock, but the temperature is 20"C.
The following cases will not occur, and the phenomenon of 'aluminum disappearance' will not occur unless there is direct contact with the reaction gas, so if the insulating film that is in direct contact with the aluminum wiring is formed by sputtering, these There is no fear that this is happening.

更にプラズマ気相成長法によるシリコン酸化膜は同じく
プラズマ気相成長のシリコン窒化膜と同程度の段差被覆
性を有し且つその誘電率は後者の約1/2と小さいので
配線の層間容量を大幅に減少せしめ得る。
Furthermore, a silicon oxide film produced by plasma vapor phase epitaxy has a step coverage comparable to that of a silicon nitride film produced by plasma vapor phase epitaxy, and its dielectric constant is about 1/2 that of the latter, so it can significantly increase the interlayer capacitance of wiring. can be reduced to

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示す配線部分の断面構造図
である。本実施例によれば、本発明の半導体装置は、シ
リコン基板1と、この上面に形成されたフィールド絶縁
膜2と、フィールド絶縁膜3上に形成された第1層アル
ミ配線3と、このアルミ配線3を含む基板全面に順次形
成されたスパッタ法によるシリコン酸化膜4、プラズマ
気相成長法による第1のシリコン酸化膜5、塗布法によ
るシリコン酸化膜6およびプラズマ気相成長法による第
2のシリコン酸化膜704層構造からなる眉間絶縁膜と
を含む。すなわち、第1層アルミ配M3の露出面は化学
反応を利用せずに済み且つ200″C程度の温度で被着
できるスパッタ法によるシリコン酸化膜4で被覆され6
アルミ・ヒロックおよび“アルミ消失”の発生がまず防
止される。ついで、第1のシリコン酸化膜5勿この上面
に形成した後段差全通常手段の塗布法によるシリコン酸
化膜6で埋めて平坦化し、更に第2のシリコン酸化膜7
tこの上面にプラズマ気相成長法で形成することによっ
て眉間絶縁膜は4層構造に形成される。この際、スルー
・プツトおよびトランジスタ素子の特性劣化等を考慮し
てスパッタ時間金成可く短時間に済ますと共に絶縁膜も
シリコン酸化膜4の形成だけに限ったの又゛みろ。
FIG. 1 is a cross-sectional structural diagram of a wiring portion showing an embodiment of the present invention. According to this embodiment, the semiconductor device of the present invention includes a silicon substrate 1, a field insulating film 2 formed on the upper surface of the silicon substrate 1, a first layer aluminum wiring 3 formed on the field insulating film 3, and the aluminum A silicon oxide film 4 formed by sputtering on the entire surface of the substrate including wiring 3, a first silicon oxide film 5 formed by plasma vapor deposition, a silicon oxide film 6 formed by coating, and a second silicon oxide film 6 formed by plasma vapor deposition. It includes a glabella insulating film consisting of a silicon oxide film 704 layered structure. That is, the exposed surface of the first aluminum layer M3 is coated with a silicon oxide film 4 formed by sputtering, which does not require the use of chemical reactions and can be deposited at a temperature of about 200"C.
The occurrence of aluminum hillocks and "aluminum disappearance" is firstly prevented. Next, all the steps formed on the upper surface of the first silicon oxide film 5 are filled and planarized with a silicon oxide film 6 by a conventional coating method, and then a second silicon oxide film 7 is formed.
By forming the glabellar insulating film on this upper surface by plasma vapor deposition, a four-layer structure is formed. At this time, considering the throughput and deterioration of the characteristics of the transistor elements, etc., the sputtering time can be kept as short as possible, and the insulating film is also limited to the formation of the silicon oxide film 4.

この4層構造の層間絶縁膜はアルミ配線3にパヒロック
#または“アルミ消失”を生せしめないはかシでなく、
全てが誘電率の小さいシリコン酸化膜で作られているの
で配線の層間容量が著しく小さい利点も併わせ有してい
る。
This four-layer structure interlayer insulating film is not only reliable but also prevents the aluminum wiring 3 from causing block # or "aluminum disappearance".
Since everything is made of a silicon oxide film with a low dielectric constant, it also has the advantage of extremely low interlayer capacitance of wiring.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、アルミ配
線に′°ヒロック”および1アルミ消失”を全く生せし
めない層間絶縁膜を備えた半導体装置を得ることができ
るので、多層アルミニウム配線構造半導体装置に実施す
れば、集積度および信頼性の向上に顕著なる効果金臭し
得る。
As explained in detail above, according to the present invention, it is possible to obtain a semiconductor device equipped with an interlayer insulating film that does not cause any ``hillocks'' or 1-aluminum loss in aluminum interconnections, so that a multilayer aluminum interconnection structure can be obtained. When applied to semiconductor devices, significant effects can be achieved in improving the degree of integration and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す配線部分の断面構造図
である。 l・・・シリコン基板、2・・・フィールド絶縁層、3
・・・アルミ配線、4・・・スパッタ法によるシリコン
酸化膜、5・・・プラズマ気相成長法による第1のシリ
コン酸化膜、6・・・塗布法によるシリコン酸化膜、7
・・・プラズマ気相成長法による第2のシリコン酸化膜
。 、/ 代理人 弁理士  内 原  (晋 1: シリコン基板 2:フィールド羊色)表頃 3ニアルミ配線
FIG. 1 is a cross-sectional structural diagram of a wiring portion showing an embodiment of the present invention. l...Silicon substrate, 2...Field insulating layer, 3
... Aluminum wiring, 4... Silicon oxide film by sputtering method, 5... First silicon oxide film by plasma vapor deposition method, 6... Silicon oxide film by coating method, 7
...Second silicon oxide film formed by plasma vapor phase epitaxy. , / Agent Patent Attorney Hara Uchi (Shin 1: Silicon substrate 2: Field sheep color) Front side 3 Ni-aluminum wiring

Claims (1)

【特許請求の範囲】[Claims] シリコン基板と、前記シリコン基板上のフィールド絶縁
膜と、前記フィールド絶縁膜上に形成される第1層のア
ルミ配線と、前記第1層アルミ配線を含む基板全面に順
次形成されるスパッタ法によるシリコン酸化膜、プラズ
マ気相成長法による第1のシリコン酸化膜、塗布法によ
るシリコン酸化膜およびプラズマ気相成長法による第2
のシリコン酸化膜の4層構造からなる第2層アルミ配線
に対する層間絶縁膜とを備えることを特徴とする半導体
装置。
A silicon substrate, a field insulating film on the silicon substrate, a first layer of aluminum wiring formed on the field insulating film, and silicon formed by sputtering on the entire surface of the substrate including the first layer aluminum wiring in order. Oxide film, first silicon oxide film formed by plasma vapor deposition method, silicon oxide film formed by coating method, and second silicon oxide film formed by plasma vapor phase growth method.
1. A semiconductor device comprising: an interlayer insulating film for a second layer aluminum wiring having a four-layer structure of silicon oxide films.
JP61210244A 1986-09-05 1986-09-05 Semiconductor device Expired - Lifetime JPH0611079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61210244A JPH0611079B2 (en) 1986-09-05 1986-09-05 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61210244A JPH0611079B2 (en) 1986-09-05 1986-09-05 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6365646A true JPS6365646A (en) 1988-03-24
JPH0611079B2 JPH0611079B2 (en) 1994-02-09

Family

ID=16586171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61210244A Expired - Lifetime JPH0611079B2 (en) 1986-09-05 1986-09-05 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0611079B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283450A (en) * 1990-03-30 1991-12-13 Toshiba Corp Semiconductor device
JPH04167429A (en) * 1990-10-30 1992-06-15 Mitsubishi Electric Corp Semiconductor device and its manufacture

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957456A (en) * 1982-09-27 1984-04-03 Fujitsu Ltd Manufacture of semiconductor device
JPS5998534A (en) * 1982-11-26 1984-06-06 Nec Corp Semiconductor device
JPS6035535A (en) * 1983-08-08 1985-02-23 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS6042847A (en) * 1983-08-18 1985-03-07 Nec Corp Semiconductor device
JPS60136335A (en) * 1983-12-26 1985-07-19 Hitachi Ltd Multilayer interconnection structure
JPS60262443A (en) * 1984-06-08 1985-12-25 Nec Corp Forming method of multilayer interconnection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5957456A (en) * 1982-09-27 1984-04-03 Fujitsu Ltd Manufacture of semiconductor device
JPS5998534A (en) * 1982-11-26 1984-06-06 Nec Corp Semiconductor device
JPS6035535A (en) * 1983-08-08 1985-02-23 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPS6042847A (en) * 1983-08-18 1985-03-07 Nec Corp Semiconductor device
JPS60136335A (en) * 1983-12-26 1985-07-19 Hitachi Ltd Multilayer interconnection structure
JPS60262443A (en) * 1984-06-08 1985-12-25 Nec Corp Forming method of multilayer interconnection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283450A (en) * 1990-03-30 1991-12-13 Toshiba Corp Semiconductor device
JPH04167429A (en) * 1990-10-30 1992-06-15 Mitsubishi Electric Corp Semiconductor device and its manufacture

Also Published As

Publication number Publication date
JPH0611079B2 (en) 1994-02-09

Similar Documents

Publication Publication Date Title
JPH0514417B2 (en)
JPS62219923A (en) Manufacture of semiconductor device
JPS6365646A (en) Semiconductor device
JPH06302704A (en) Semiconductor device
JPS60119755A (en) Semiconductor integrated circuit device with multilayered wiring
JPH07147281A (en) Manufacture of semiconductor integrated circuit device
JP2884100B2 (en) Semiconductor device
JPH02183536A (en) Semiconductor device
JP3099381B2 (en) Semiconductor device and manufacturing method thereof
JPS6325952A (en) Semiconductor device
JPS6151848A (en) Manufacture of semiconductor device
JPH1187496A (en) Manufacture of semiconductor device
JPS60113444A (en) Multilayer interconnection structure
JPH0794583A (en) Fabrication of semiconductor integrated circuit device
JPH0529481A (en) Semiconductor device
JPH056939A (en) Manufacture of semiconductor device
JPH04255249A (en) Manufacture of semiconductor device
JPH06120166A (en) Manufacture of semiconductor device
JPH0122984B2 (en)
JPS5950517A (en) Semiconductor device
JPS62245641A (en) Structure of pad part of semiconductor device
JPH05152444A (en) Manufacture of semiconductor device
JPH0291968A (en) Manufacture of memory device
JPS63164241A (en) Manufacture of semiconductor device
JPH03126246A (en) Semiconductor device