JPS6364738B2 - - Google Patents

Info

Publication number
JPS6364738B2
JPS6364738B2 JP1438781A JP1438781A JPS6364738B2 JP S6364738 B2 JPS6364738 B2 JP S6364738B2 JP 1438781 A JP1438781 A JP 1438781A JP 1438781 A JP1438781 A JP 1438781A JP S6364738 B2 JPS6364738 B2 JP S6364738B2
Authority
JP
Japan
Prior art keywords
light
inspected
photoelectric
signal
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1438781A
Other languages
Japanese (ja)
Other versions
JPS57128834A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1438781A priority Critical patent/JPS57128834A/en
Priority to US06/343,552 priority patent/US4468120A/en
Publication of JPS57128834A publication Critical patent/JPS57128834A/en
Publication of JPS6364738B2 publication Critical patent/JPS6364738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Description

【発明の詳細な説明】 本発明は、微小なゴミ等の欠陥となる異物を検
出する装置に関し、特に、LSI用フオトマスク、
レテイクル又は、ウエハ等の回路パターン上に付
着した異物を欠陥として検出する検査装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting foreign matter that becomes a defect such as minute dust, and particularly to a photomask for LSI,
The present invention relates to an inspection device that detects foreign matter attached to a reticle or a circuit pattern of a wafer as a defect.

LSI用フオトマスクやウエハを製造する過程に
おいて、レテイクル、ウエハ、マスク等に異物が
付着することがあり、これらの異物は製造された
マスク、ウエハの欠陥の原因となる。特に縮小投
影型のパターン焼付け装置においてこの欠陥は各
マスク、ウエハの全チツプに共通の欠陥として現
われるため、製造工程において厳重に検査する必
要がある。このため、一般には目視による異物検
査を行なうことが考えられるが、この方法は通
常、検査が何時間にもおよび、作業者の疲労を誘
い、検査率の低減をまねいてしまう。そこで、特
に回路パターンを有する被検査物表面に存在する
異物を自動的に検査する装置として、レーザー光
を垂直又はほぼ垂直方向より被検査物の表面に入
射及び走査し、異物からの散乱光を集光、検出す
る装置が提案されている。しかし、この装置には
レーザー光を絞つて、小面積を順次走査していく
ため、検査時間が必然的に長くなつてしまうとい
う欠点があつた。
In the process of manufacturing LSI photomasks and wafers, foreign matter may adhere to the reticle, wafer, mask, etc., and these foreign matter may cause defects in the manufactured masks and wafers. Particularly in a reduction projection type pattern printing apparatus, this defect appears as a common defect in each mask and in all chips of a wafer, so it is necessary to strictly inspect it during the manufacturing process. For this reason, it is generally considered to carry out a visual inspection for foreign substances, but this method usually requires many hours of inspection, which leads to operator fatigue and a reduction in the inspection rate. Therefore, as a device that automatically inspects the foreign matter present on the surface of an inspected object having a circuit pattern, a laser beam is incident and scanned on the surface of the inspected object from a perpendicular or almost vertical direction, and the scattered light from the foreign object is detected. Devices that collect and detect light have been proposed. However, this device had the drawback that the inspection time was inevitably increased because the laser beam was focused and scanned sequentially over a small area.

そこで、本発明の目的は、パターンを有する被
検査物上に存在する異物を確実に速く検出できる
欠陥検査装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a defect inspection apparatus that can reliably and quickly detect foreign substances present on a patterned object to be inspected.

この目的を達成するにあたり、本発明において
は以下の如く構成する。
In order to achieve this object, the present invention is constructed as follows.

被検査物の表面に光ビーム、例えばレーザー光
を斜めに入射し、表面の光ビームによる照射部を
表面上で走査(2次元的に)する。そして、複数
の光電手段のうち少なくとも1つが、パターンに
よつて生じる散乱光を受光しないように、かつ複
数の光電手段の全てが、表面上の異物によつて生
じる散乱光を受光するように受光装置が配置さ
れ、受光装置の出力信号に基づいて、異物の有無
を検査するようにする。
A light beam, such as a laser beam, is obliquely incident on the surface of the object to be inspected, and the portion of the surface irradiated by the light beam is scanned (two-dimensionally) over the surface. At least one of the plurality of photoelectric means receives light so as not to receive scattered light generated by the pattern, and all of the plurality of photoelectric means receive light scattered light generated by foreign matter on the surface. A device is arranged to inspect the presence or absence of foreign matter based on the output signal of the light receiving device.

次に、本発明の実施例を説明するが、その前
に、集光して絞つた光ビーム、例えばレーザー光
を回路パターンのエツジ部に照射した場合、エツ
ジ部でどのように散乱されるかを第1図の原理図
により説明する。
Next, we will explain embodiments of the present invention, but before that, we will explain how the edges of a circuit pattern are scattered when a focused light beam, such as a laser beam, is irradiated onto the edges of a circuit pattern. will be explained using the principle diagram shown in FIG.

第1図において、被検査面は直交座標系xyzの
x−y平面上に広がつているものとする。被検査
面上には回路パターン2が設けられている。そし
て、パターン2のエツジ2aは、y軸と角度ψを
なしているものとする。図に示すように座標系
xyzの原点0にレーザー光1を入射する。従つ
て、原点0は入射点となる。このレーザー光1
は、被検査面すなわちx−y平面に対して角度θ
で、かつx−y平面への射影はy軸に一致してい
る。このときレーザー光1の散乱光は入射する方
向と反対側に、原点0を頂点とする円錐状に分布
し広がつていく。この円錐状の散乱光は、x−y
平面で2分されるように生じる。
In FIG. 1, it is assumed that the surface to be inspected extends on the xy plane of the orthogonal coordinate system xyz. A circuit pattern 2 is provided on the surface to be inspected. It is assumed that the edge 2a of pattern 2 forms an angle ψ with the y-axis. Coordinate system as shown in figure
Laser light 1 is incident on the origin 0 of xyz. Therefore, the origin 0 becomes the point of incidence. This laser beam 1
is the angle θ with respect to the surface to be inspected, that is, the x-y plane
, and the projection onto the x-y plane coincides with the y-axis. At this time, the scattered light of the laser light 1 is distributed and spread in a conical shape with the origin 0 as the apex on the opposite side to the direction of incidence. This cone-shaped scattered light is
It appears to be divided into two by a plane.

ここで、エツジ2aに対してレーザー光1が斜
入射(被検査面に対して斜めに入射)する場合、
散乱光の広がり方はある程度一義的に決まる。そ
れは図に示したようにレーザー光1の透過光線と
正反射光線が円錐のそれぞれ母線L1,L2とな
り、又エツジ2aの方向lが円錐の中心線となる
ような円錐状の散乱光となる。従つて母線L1
は、x−y平面の下側になり母線L2は上側に定
められる。ここで特別の場合として、角度ψが0゜
および90゜のときが考えられる。まずψ=0゜のと
き、散乱光はy軸を中心とした頂角2θの円錐状に
広がる。ψ=90゜のときは、頂角は180゜、すなわ
ちy−z平面で広がるようになる。
Here, when the laser beam 1 is obliquely incident on the edge 2a (incident obliquely with respect to the surface to be inspected),
The way the scattered light spreads is uniquely determined to some extent. As shown in the figure, the transmitted light and specularly reflected light of the laser beam 1 become cone-shaped scattered light such that the generating lines L1 and L2 of the cone, respectively, and the direction l of the edge 2a become the center line of the cone. Therefore, bus line L1
is on the lower side of the xy plane, and the generatrix L2 is set on the upper side. Here, as special cases, the angle ψ is 0° and 90°. First, when ψ=0°, the scattered light spreads in a conical shape with an apex angle of 2θ centered on the y-axis. When ψ=90°, the apex angle is 180°, that is, it spreads in the y-z plane.

このように、レーザー光をパターンのエツジに
照射した場合、エツジに対する入射角により方向
性を有する(指向性の強い)散乱光が生じる。一
方、被検査面上に異物が存在し、これにレーザー
光が照射された場合、散乱光は、異物からあらゆ
る方向に広がつていく。異物がレーザー光スポツ
トに比して十分小さい場合、異物に対する単位面
積あたりのレーザーパワーは変わらないので、被
検査面に対する角度θを小さく(例えば90゜未満
で10゜以上の鋭角に)して、パターンの広い面積
を照射するようにした方が効率的である。
In this way, when the edge of a pattern is irradiated with laser light, scattered light having directionality (strong directionality) is generated depending on the angle of incidence with respect to the edge. On the other hand, if a foreign object exists on the surface to be inspected and is irradiated with laser light, scattered light will spread from the foreign object in all directions. If the foreign object is sufficiently small compared to the laser beam spot, the laser power per unit area for the foreign object will not change, so the angle θ relative to the surface to be inspected is made small (for example, less than 90 degrees and an acute angle of 10 degrees or more). It is more efficient to irradiate a wider area of the pattern.

このようにして生じた散乱光は集光レンズと、
光電検出器によつて電気的に検出することができ
る。ところが、上述のように、一般にパターンは
幾何学的な平面形状であるため、パターンのエツ
ジからの散乱光には指向性があるので、異物から
の散乱光を検出するには、被検査面上のレーザー
光の照射部分を異なる方向から見込むように複数
の光電検出器を配置すればよいことになる。そこ
で、次に本発明の実施例について、第2図により
説明する。
The scattered light generated in this way is collected by a condensing lens,
It can be detected electrically by a photoelectric detector. However, as mentioned above, since the pattern is generally a geometric planar shape, the scattered light from the edges of the pattern has directionality, so in order to detect the scattered light from foreign objects, it is necessary to A plurality of photoelectric detectors may be arranged so as to look at the laser beam irradiation area from different directions. Next, an embodiment of the present invention will be described with reference to FIG. 2.

第2図は、本発明の実施例による装置の構成を
示す斜視図である。被検査物10は、回路パター
ンを含むレテイクル、マスク、又はウエハである
ものとする。この被検査物10の表面は、図中座
標系xyzのx−y平面上にあるものとする。レー
ザー光1は、適宜、エキスパンダー(不図示)、
集光レンズ11等の照射用集光光学系としての光
学部材によつて任意のビーム径に変換された後に
スポツト光に絞り込まれ、単位面積あたりの光強
度を上げる。レーザー光1はビーム走査手段とし
てのスキヤナー12(バイブレータ、ガルバノミ
ラー等)によつて被検査物10のx方向を走査す
る。このとき、走査するレーザー光1は、被検査
物10の表面に対し斜めに(例えば入射角70゜〜
80゜で)入射するようにする。従つて、レーザー
光1の被検査物10上のほぼ一次元の照射部分1
3〜15でのスポツトの形状は図中、ほぼy方向
に延びた楕円状になる。また、スキヤナー12に
よつて走査されるレーザー光1の走査位置は、光
電素子22,23によつて検出される。一方、被
検査物10は載置台49に載置されてモータ等の
移動50によつてレーザー光1の走査方向と、ほ
ぼ直交する方向24に移動可能であり、照射部を
y方向に走査する。この載置台49には適当な移
動量測定手段、例えば、リニアエンコーダ51が
設けられていて、その測定値に基づいて、レーザ
ー光1の、被検査物10上のy方向の照射位置が
計測可能である。
FIG. 2 is a perspective view showing the configuration of an apparatus according to an embodiment of the present invention. The object to be inspected 10 is assumed to be a reticle, mask, or wafer including a circuit pattern. The surface of the object to be inspected 10 is assumed to be on the xy plane of the coordinate system xyz in the figure. The laser beam 1 may be transmitted through an expander (not shown), as appropriate.
The beam is converted into an arbitrary beam diameter by an optical member serving as a condensing optical system for irradiation, such as the condenser lens 11, and then narrowed down to a spot light to increase the light intensity per unit area. The laser beam 1 scans the object to be inspected 10 in the x direction by a scanner 12 (vibrator, galvano mirror, etc.) serving as a beam scanning means. At this time, the scanning laser beam 1 is applied obliquely to the surface of the object 10 to be inspected (for example, at an angle of incidence of 70° to
80°). Therefore, the approximately one-dimensional irradiation portion 1 of the laser beam 1 on the inspected object 10
In the figure, the spots 3 to 15 have an elliptical shape extending approximately in the y direction. Further, the scanning position of the laser beam 1 scanned by the scanner 12 is detected by photoelectric elements 22 and 23. On the other hand, the object to be inspected 10 is placed on a mounting table 49 and can be moved in a direction 24 substantially perpendicular to the scanning direction of the laser beam 1 by a movement 50 of a motor or the like, and the irradiation section is scanned in the y direction. . This mounting table 49 is provided with a suitable movement measuring means, for example, a linear encoder 51, and based on the measured value, the irradiation position of the laser beam 1 on the object to be inspected 10 in the y direction can be measured. It is.

光電素子19,20,21は、それぞれ異なる
空間方向から、レーザー光1による照射部13〜
15からの散乱光を受光するように配置されてい
る。この光電素子19,20,21の各受光面に
は、集光レンズ16,17,18によつて、散乱
光が集光される。さらに、それぞれの集光レンズ
16,17,18の光軸は、被検査物10の表
面、すなわち、x−y平面に対して、斜めになる
ように配置されている。これは、x−y平面に対
する光軸の角を受光角とすると、この受光角を小
さくして、被検査物10のパターン面自身の乱反
射、等の影響を受けにくいようにするためであ
る。尚、この実施例では、光電素子19,20,
21はレーザー光1の走査のほぼ中心部14から
等距離に配置されている。また第2図からも明ら
かなように、x−y平面内でみたとき、3つの集
光レンズ16,17,18の夫々は、ほぼ一次元
の照射部分13〜15を互いに異なる角度方向か
ら見込むとともに、レーザー光1の被検査物10
の表面での正反射方向を避けた位置に配置されて
いる。
The photoelectric elements 19, 20, and 21 are irradiated with laser light 1 from different spatial directions.
It is arranged so as to receive the scattered light from 15. Scattered light is focused on each light receiving surface of the photoelectric elements 19, 20, 21 by condensing lenses 16, 17, 18. Further, the optical axes of the respective condensing lenses 16, 17, and 18 are arranged obliquely with respect to the surface of the object to be inspected 10, that is, the xy plane. This is because, assuming that the angle of the optical axis with respect to the x-y plane is the light receiving angle, this light receiving angle is made small so as to be less susceptible to the influence of diffused reflection of the pattern surface itself of the object 10 to be inspected. Note that in this embodiment, the photoelectric elements 19, 20,
21 is arranged approximately at the same distance from the center 14 of the scanning direction of the laser beam 1. Furthermore, as is clear from FIG. 2, when viewed within the x-y plane, each of the three condenser lenses 16, 17, 18 looks at the approximately one-dimensional irradiation portions 13 to 15 from different angular directions. In addition, the object to be inspected 10 of the laser beam 1
It is placed in a position that avoids the direction of specular reflection on the surface.

次に、この装置で、被検査物10上に存在する
異物を検出する動作について説明する。レーザー
光1をスキヤナー12で走査しつつ、被検査物1
0をx−y平面上、y方向に移動する。この動作
中、レーザー光1がパターンのエツジを照射した
場合、前述のように散乱光は強い指向性を伴う。
そこで、異なる方向から散乱光を検出可能な光電
素子19,20,21のうち、特定の光電素子だ
けが、エツジからの散乱光を受光する。従つて、
各光電素子の配置は、パターンのエツジからの散
乱光を同時に受光しないように定められる。ま
た、レーザー光1が走査中に異物を照射した場
合、異物による散乱光は、あらゆる方向、すなわ
ちほとんど無指向に生じる。従つて、この場合
は、光電素子19,20,21全てが、異物から
の散乱光を受光する。さらに、パターンのエツジ
付近に異物が存在した場合、エツジからの散乱光
は特定の光電素子に受光され、かつ異物からの散
乱光は、全ての光電素子に受光される。この際、
各光電素子の光電出力信号は、レーザー光1のエ
ツジに対する(又は表面に対する)入射角及び異
物の大きさ等によつて、それぞれ異なる値にな
る。
Next, the operation of detecting a foreign object present on the object to be inspected 10 using this apparatus will be explained. While scanning the laser beam 1 with the scanner 12, the object 1 to be inspected is
0 in the y direction on the x-y plane. During this operation, when the laser beam 1 irradiates the edge of the pattern, the scattered light is accompanied by strong directivity as described above.
Therefore, among the photoelectric elements 19, 20, and 21 that can detect scattered light from different directions, only a specific photoelectric element receives the scattered light from the edge. Therefore,
The arrangement of each photoelectric element is determined so as not to simultaneously receive scattered light from the edges of the pattern. Further, when the laser beam 1 irradiates a foreign object during scanning, light scattered by the foreign object occurs in all directions, that is, almost non-directionally. Therefore, in this case, all of the photoelectric elements 19, 20, and 21 receive the scattered light from the foreign object. Furthermore, if a foreign object exists near the edge of the pattern, the scattered light from the edge is received by a specific photoelectric element, and the scattered light from the foreign object is received by all the photoelectric elements. On this occasion,
The photoelectric output signal of each photoelectric element takes a different value depending on the angle of incidence of the laser beam 1 on the edge (or on the surface), the size of the foreign object, and the like.

そこで、各光電素子19,20,21の光電出
力信号をそれぞれ適宜、増幅器で増幅した後、そ
の出力信号と所定の基準信号を比較器で比較し、
レーザー光1の照射部から光電素子の方向へ散乱
光が生じたか否かを検出する。このことについ
て、第3図により説明する。
Therefore, after suitably amplifying the photoelectric output signals of each photoelectric element 19, 20, and 21 with an amplifier, the output signal and a predetermined reference signal are compared with a comparator.
It is detected whether or not scattered light is generated from the irradiation part of the laser beam 1 in the direction of the photoelectric element. This will be explained with reference to FIG.

光電素子19,20,21の光電信号は、それ
ぞれ増幅器30,31,32によつて増幅され
る。増幅器30,31,32の各出力信号はそれ
ぞれ差動増幅器34,35,36によつて、基準
信号33との差を取られる。
The photoelectric signals of the photoelectric elements 19, 20, 21 are amplified by amplifiers 30, 31, 32, respectively. The difference between each output signal of the amplifiers 30, 31, and 32 and the reference signal 33 is taken by differential amplifiers 34, 35, and 36, respectively.

論理回路37は、各差動の出力(2値化された
デジタル信号又は差に比例したアナログ信号)か
ら所定の論理演算、例えば論理積(AND)演算
を行なう。そこで上述のように、各光電素子が全
て十分な光電信号を出力した時、論理回路37は
所定の検出信号を出力する。すなわち、被検査物
10上の異物にレーザー光1が照射された時だけ
検出信号を出力する。
The logic circuit 37 performs a predetermined logical operation, for example, a logical product (AND) operation, from each differential output (binarized digital signal or analog signal proportional to the difference). Therefore, as described above, when all the photoelectric elements output sufficient photoelectric signals, the logic circuit 37 outputs a predetermined detection signal. That is, a detection signal is output only when a foreign object on the object to be inspected 10 is irradiated with the laser beam 1.

この検出信号、移動量測定手段51による測定
値、及び光電素子22,23によるレーザー光1
の走査位値に基づいて、被検査物10上の異物の
位置が求められる。
This detection signal, the measurement value by the movement amount measuring means 51, and the laser beam 1 by the photoelectric elements 22 and 23
The position of the foreign object on the object to be inspected 10 is determined based on the scanning position value.

尚、光電素子22,23の光電信号は、走査さ
れたレーザー光1が各素子を横切つたとき、最も
大きくなる。そこで、例えば、計数手段43によ
つて素子22の光電信号が極大になつた時に、ス
タート信号42を発生して所定の基準パルスの計
数を開始し、素子23の光電信号が極大になつた
時にストツプ信号44を発生してその計数を停止
するようにする。そして、この期間に計数された
パルス数を、適当な演算手段により演算して、レ
ーザー光1によるスポツトの被検査物10上の位
置(x−y平面上でx方向の位置)を定める。ま
た、3つの光電素子19,20,21の各光電信
号は、被検査物10上の異物の位置によつては、
それぞれ大きさが異なつてくる。例えば、第2図
において、異物が照射部13付近に存在すると、
光電素子19の光電信号が最も大きく、次に光電
素子20の光電信号、そして、光電素子21の光
電信号が一番小さくなる。そこで、各光電信号に
基づいて、異物の位置を定める際に、異物の位置
に応じた各信号の大小を補正するようにする。
Note that the photoelectric signals of the photoelectric elements 22 and 23 become the largest when the scanned laser beam 1 crosses each element. Therefore, for example, when the photoelectric signal of the element 22 reaches a maximum by the counting means 43, the start signal 42 is generated to start counting a predetermined reference pulse, and when the photoelectric signal of the element 23 reaches a maximum, A stop signal 44 is generated to stop the counting. Then, the number of pulses counted during this period is calculated by a suitable calculation means to determine the position of the spot of the laser beam 1 on the object to be inspected 10 (the position in the x direction on the x-y plane). Further, each photoelectric signal of the three photoelectric elements 19, 20, 21 may be
Each one comes in different sizes. For example, in FIG. 2, if a foreign object exists near the irradiation section 13,
The photoelectric signal of the photoelectric element 19 is the largest, followed by the photoelectric signal of the photoelectric element 20, and the photoelectric signal of the photoelectric element 21 is the smallest. Therefore, when determining the position of a foreign object based on each photoelectric signal, the magnitude of each signal is corrected depending on the position of the foreign object.

このために、各増幅器30,31,32の後に
増幅度変換器38,39,40を設けておく。こ
の変換器38,39,40は、例えば複数の抵抗
とスイツチ等を組み込んだもので、スイツチの切
換で抵抗値が変わる。制御器41は、前述のスタ
ート信号42の入力時点から変換器38,39,
40へ時系列的なシーケンシヤル信号45を出力
する。このシーケンシヤル信号45は例えば、レ
ーザー光1の1回の走査期間を等分割した時点で
1パルスを発生するような信号である。変換器3
8,39,40は、シーケンシヤル信号45の入
力により、同時に、時系列的な抵抗値変化を行な
う。これにより、増幅度変換器38,39,40
の増幅度が変化する。尚、この時変換器38,3
9,40の抵抗値変化は、レーザー光1の照射部
の走査位置に対する光電素子19,20,21の
配置に応じて決定され、結果的に3つの増幅器3
0,31,32の時間に対する増幅度の変化は同
一ではない。
For this purpose, amplification converters 38, 39, 40 are provided after each amplifier 30, 31, 32. The converters 38, 39, and 40 incorporate, for example, a plurality of resistors and switches, and the resistance value changes by switching the switches. The controller 41 controls the converters 38, 39,
A time-series sequential signal 45 is output to 40. This sequential signal 45 is, for example, a signal that generates one pulse when one scanning period of the laser beam 1 is equally divided. converter 3
8, 39, and 40 simultaneously change the resistance value in a time-series manner by inputting the sequential signal 45. As a result, the amplification converters 38, 39, 40
The degree of amplification changes. In addition, at this time, the converters 38, 3
The resistance value change of 9, 40 is determined according to the arrangement of the photoelectric elements 19, 20, 21 with respect to the scanning position of the irradiation part of the laser beam 1, and as a result, the change in the resistance value of the three amplifiers 3
The changes in the amplification degree with respect to time of 0, 31, and 32 are not the same.

このようにして、所定の補正を受けた異物から
の信号によつて、統計的に、異物の位置にかかわ
らず、大きさのみに依存した信号が得られる。す
なわち、補正された信号値(変換器38,39,
40の出力信号など)に基づいて、あらかじめ統
計的に求めておいた異物の大きさに関するデータ
と照合するようにすればよい。
In this way, the signal from the foreign object that has been subjected to the predetermined correction provides a signal that statistically depends only on the size, regardless of the position of the foreign object. That is, the corrected signal values (transducers 38, 39,
40 output signal, etc.), it may be compared with data regarding the size of the foreign object that has been statistically determined in advance.

以上のように、3つの光電素子19,20,2
1の各光電信号から異物検出と同時に異物のおお
よその大きさを求めることもできる。
As mentioned above, the three photoelectric elements 19, 20, 2
It is also possible to determine the approximate size of the foreign object from each photoelectric signal of 1 at the same time as detecting the foreign object.

また、板状の被検査物10の裏面を同時に検査
するには、ビームスプリツター等を用いて、レー
ザー光1を分割し、裏面に斜入射させればよい。
この際、裏面の異物からの散乱光を検出するた
め、さらに複数の光電素子が表面のそれらと同様
に配置される。
Furthermore, in order to simultaneously inspect the back surface of the plate-shaped object 10 to be inspected, a beam splitter or the like may be used to split the laser beam 1 and make it obliquely incident on the back surface.
At this time, in order to detect scattered light from foreign matter on the back surface, a plurality of photoelectric elements are further arranged in the same way as those on the front surface.

尚、実施例では、光電素子を3つ配置したが、
パターンのエツジによる散乱光の指向性を考慮す
れば、簡単には、2つの光電素子を配置するだけ
でもよい。
In addition, in the example, three photoelectric elements were arranged, but
If the directivity of the scattered light due to the edges of the pattern is taken into consideration, it is sufficient to simply arrange two photoelectric elements.

以上のように、本発明によれば、被検査物上の
欠陥を検査するにあたり、簡単な光学系で、欠陥
に対する単位面積あたりのレーザーパワー密度を
減らすことなく、パターン面に照射されるスポツ
トの大きさを大きくできるので、走査回数が減
り、検査時間が短縮される。さらに、レーザー光
の照射部上方に、適宜観察手段(例えば光学顕微
鏡)を配置して、欠陥を目視観察することもでき
る利点を有する。
As described above, according to the present invention, when inspecting defects on an object to be inspected, a spot irradiated onto a pattern surface can be detected using a simple optical system without reducing the laser power density per unit area for the defect. Since the size can be increased, the number of scans is reduced and inspection time is shortened. Furthermore, there is an advantage that defects can be visually observed by appropriately arranging observation means (for example, an optical microscope) above the laser beam irradiation part.

また、パターンのエツジや異物からの散乱光を
受光する受光用集光光学系と光電検出手段の複数
の対は、スポツト光の走査の間、パターンエツジ
から強い指向性を伴つて発生した散乱光は同時に
受けないように、互いに異なる空間方向からスポ
ツト光の照射部を見込むように配置したので、パ
ターンのエツジからの散乱光の影響を受けずに、
光電信号のS/N比(表面上の異物からの散乱光
と、その他の所からの散乱光の比に依存する。)
が向上する。
In addition, the plurality of pairs of light-receiving condensing optical systems and photoelectric detection means that receive scattered light from pattern edges and foreign objects are used to detect scattered light generated from pattern edges with strong directivity during spot light scanning. The spot light is placed so that the irradiated area is viewed from different spatial directions, so that the spots are not affected by the scattered light from the edges of the pattern.
S/N ratio of photoelectric signal (depends on the ratio of scattered light from foreign objects on the surface and scattered light from other places)
will improve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、パターンのエツジに光ビームを照射
したときに生じる散乱光の様子を示した原理図、
第2図は、本発明の実施例による異物検査装置を
示す斜視図、第3図は、本発明の実施例による異
物検査装置における信号処理系を示すブロツク図
である。 主要部分の符号の説明、1……光ビーム、2…
…パターン、10……被検査物、12……スキヤ
ナー、19,20,21……受光装置、37……
論理回路、38,39,40……増幅度変換器。
Figure 1 is a principle diagram showing the state of scattered light that occurs when the edge of a pattern is irradiated with a light beam.
FIG. 2 is a perspective view showing a foreign matter inspection apparatus according to an embodiment of the present invention, and FIG. 3 is a block diagram showing a signal processing system in the foreign matter inspection apparatus according to an embodiment of the present invention. Explanation of symbols of main parts, 1...Light beam, 2...
...Pattern, 10...Object to be inspected, 12...Scanner, 19, 20, 21...Light receiving device, 37...
Logic circuit, 38, 39, 40...amplification converter.

Claims (1)

【特許請求の範囲】 1 幾何学的な平面形状のパターンを有する被検
査物を光ビームで走査し、該被検査物から生じる
散乱光を光電検出することによつて、前記被検査
物の表面の欠陥を検査する装置において、 前記光ビームを前記被検査物上で集光して絞つ
たスポツト光に形成するとともに、該光ビーム
を、前記被検査物の表面と成す角度を0゜以外で
90゜未満の鋭角にして照射する照射用集光光学系
と; 前記光ビームのスポツト光を、該光ビームの照
射状態を保つて前記被検査物上でほぼ一次元に走
査するビーム走査手段と; 前記スポツト光のほぼ一次元の走査による照射
部分を、互いに異なる複数の空間方向から見込む
位置に配置するとともに、前記照射部分から生じ
た散乱光を集光する複数の受光用集光光学系と; 該複数の受光用集光光学系の夫々で集光された
散乱光を受光する複数の光電検出手段と; 該複数の光電検出手段の各光電信号の大きさに
基づいて前記欠陥を検出する検出回路とを備え、 前記複数の受光用集光光学系の夫々が前記パタ
ーンからの散乱光を同時に受けないように前記空
間方向を定めたことを特徴とする欠陥検査装置。 2 複数の受光用集光光学系の各光軸は被検査物
の表面に対して斜めに設定されるとともに、前記
被検査物の表面と平行な面内でみたとき、前記複
数の受光用集光光学系はスポツト光によるほぼ一
次元の照射部分を互いに異なる角度方向から見込
む空間位置に配置したことを特徴とする特許請求
の範囲第1項記載の装置。 3 複数の光電検出手段の夫々は、スポツト光に
よるほぼ一次元の照射部分の中心部からほぼ等距
離に配置されることを特徴とする特許請求の範囲
第1項又は第2項記載の装置。 4 ビーム走査手段は、スポツト光のほぼ一次元
の走査位置に対応した信号を出力する手段を有
し、該信号と複数の光電検出手段からの各光電信
号とに基づいて、前記ほぼ一次元の照射部分内で
の欠陥の位置を特定することを特徴とする特許請
求の範囲第1項記載の装置。 5 検出回路は、スポツト光のほぼ一次元の走査
位置に対応した信号に基づいて、複数の光電検出
手段からの各光電信号の大きさを走査位置に応じ
て個別に補正する補正回路と、該補正された各光
電信号に基づいてパターンからの散乱光と欠陥か
らの散乱光とを判別する演算回路とを含むことを
特徴とする特許請求の範囲第4項記載の装置。
[Scope of Claims] 1. The surface of the object to be inspected is scanned with a light beam and the scattered light generated from the object is photoelectrically detected. In an apparatus for inspecting defects in a device, the light beam is focused on the object to be inspected to form a focused spot light, and the angle between the light beam and the surface of the object to be inspected is other than 0°.
a condensing optical system for irradiation that irradiates at an acute angle of less than 90 degrees; and a beam scanning means that scans the spot light of the light beam almost one-dimensionally on the object to be inspected while maintaining the irradiation state of the light beam. ; a plurality of light-receiving condensing optical systems that arrange the irradiated portion by substantially one-dimensional scanning of the spot light at positions viewed from a plurality of mutually different spatial directions, and condense the scattered light generated from the irradiated portion; a plurality of photoelectric detection means for receiving the scattered light collected by each of the plurality of light-receiving focusing optical systems; and detecting the defect based on the magnitude of each photoelectric signal of the plurality of photoelectric detection means. a detection circuit, wherein the spatial direction is determined so that each of the plurality of light receiving condensing optical systems does not simultaneously receive scattered light from the pattern. 2. Each optical axis of the plurality of light-receiving focusing optical systems is set obliquely to the surface of the object to be inspected, and when viewed in a plane parallel to the surface of the object to be inspected, the plurality of light-receiving focusing optical systems 2. The apparatus according to claim 1, wherein the light optical system is disposed at a spatial position where a substantially one-dimensional irradiated portion of the spot light is viewed from different angular directions. 3. The apparatus according to claim 1 or 2, wherein each of the plurality of photoelectric detection means is arranged at approximately the same distance from the center of the approximately one-dimensional irradiation area by the spot light. 4. The beam scanning means has means for outputting a signal corresponding to the approximately one-dimensional scanning position of the spot light, and based on the signal and each photoelectric signal from the plurality of photoelectric detection means, The apparatus according to claim 1, characterized in that the position of the defect is specified within the irradiated part. 5. The detection circuit includes a correction circuit that individually corrects the magnitude of each photoelectric signal from the plurality of photoelectric detection means according to the scanning position, based on the signal corresponding to the substantially one-dimensional scanning position of the spot light; 5. The apparatus according to claim 4, further comprising an arithmetic circuit that discriminates between scattered light from a pattern and scattered light from a defect based on each corrected photoelectric signal.
JP1438781A 1981-02-04 1981-02-04 Inspecting apparatus of foreign substance Granted JPS57128834A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1438781A JPS57128834A (en) 1981-02-04 1981-02-04 Inspecting apparatus of foreign substance
US06/343,552 US4468120A (en) 1981-02-04 1982-01-28 Foreign substance inspecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1438781A JPS57128834A (en) 1981-02-04 1981-02-04 Inspecting apparatus of foreign substance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP62249879A Division JPS63171346A (en) 1987-10-05 1987-10-05 Flaw inspection apparatus

Publications (2)

Publication Number Publication Date
JPS57128834A JPS57128834A (en) 1982-08-10
JPS6364738B2 true JPS6364738B2 (en) 1988-12-13

Family

ID=11859641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1438781A Granted JPS57128834A (en) 1981-02-04 1981-02-04 Inspecting apparatus of foreign substance

Country Status (1)

Country Link
JP (1) JPS57128834A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982727A (en) * 1982-11-04 1984-05-12 Hitachi Ltd Method and apparatus for detecting foreign matter
JPH0621877B2 (en) * 1986-02-14 1994-03-23 キヤノン株式会社 Surface condition measuring device
JPH0621876B2 (en) * 1986-02-14 1994-03-23 キヤノン株式会社 Surface condition measuring device
JPH0629860B2 (en) * 1986-07-28 1994-04-20 キヤノン株式会社 Surface condition inspection device
JPH0715441B2 (en) * 1989-11-27 1995-02-22 株式会社日立製作所 Foreign object detection method and apparatus
JPH0816651B2 (en) * 1991-04-26 1996-02-21 株式会社日立製作所 Double-sided foreign matter detection method and device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498292A (en) * 1972-05-10 1974-01-24
JPS4983470A (en) * 1972-11-18 1974-08-10
US3879131A (en) * 1974-02-06 1975-04-22 Bell Telephone Labor Inc Photomask inspection by real time diffraction pattern analysis
US3984189A (en) * 1973-01-19 1976-10-05 Hitachi Electronics, Ltd. Method and apparatus for detecting defects in a surface regardless of surface finish
JPS5228594A (en) * 1975-08-29 1977-03-03 Matsushita Electric Works Ltd Process for producing modified melamine resins having flexibility
JPS5385375A (en) * 1976-12-31 1978-07-27 Fujitsu Ltd Pattern inspecting device
JPS54128682A (en) * 1978-03-30 1979-10-05 Hitachi Ltd Automatic detector for foreign matters
JPS5594145A (en) * 1979-01-12 1980-07-17 Hitachi Ltd Method of and device for inspecting surface of article
JPS5599735A (en) * 1979-01-26 1980-07-30 Hitachi Ltd Testing method for foreign material on wafer
JPS55107942A (en) * 1979-02-13 1980-08-19 Matsushita Electric Works Ltd Inspecting method of plate
JPS55149829A (en) * 1979-05-11 1980-11-21 Hitachi Ltd Detector for foreign matter in wafer
JPS5780546A (en) * 1980-11-07 1982-05-20 Nippon Kogaku Kk <Nikon> Detecting device for foreign substance

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS498292A (en) * 1972-05-10 1974-01-24
JPS4983470A (en) * 1972-11-18 1974-08-10
US3984189A (en) * 1973-01-19 1976-10-05 Hitachi Electronics, Ltd. Method and apparatus for detecting defects in a surface regardless of surface finish
US3879131A (en) * 1974-02-06 1975-04-22 Bell Telephone Labor Inc Photomask inspection by real time diffraction pattern analysis
JPS5228594A (en) * 1975-08-29 1977-03-03 Matsushita Electric Works Ltd Process for producing modified melamine resins having flexibility
JPS5385375A (en) * 1976-12-31 1978-07-27 Fujitsu Ltd Pattern inspecting device
JPS54128682A (en) * 1978-03-30 1979-10-05 Hitachi Ltd Automatic detector for foreign matters
JPS5594145A (en) * 1979-01-12 1980-07-17 Hitachi Ltd Method of and device for inspecting surface of article
JPS5599735A (en) * 1979-01-26 1980-07-30 Hitachi Ltd Testing method for foreign material on wafer
JPS55107942A (en) * 1979-02-13 1980-08-19 Matsushita Electric Works Ltd Inspecting method of plate
JPS55149829A (en) * 1979-05-11 1980-11-21 Hitachi Ltd Detector for foreign matter in wafer
JPS5780546A (en) * 1980-11-07 1982-05-20 Nippon Kogaku Kk <Nikon> Detecting device for foreign substance

Also Published As

Publication number Publication date
JPS57128834A (en) 1982-08-10

Similar Documents

Publication Publication Date Title
US5436464A (en) Foreign particle inspecting method and apparatus with correction for pellicle transmittance
US6208750B1 (en) Method for detecting particles using illumination with several wavelengths
JPS6352696B2 (en)
JPS6364738B2 (en)
JPH0256626B2 (en)
JP2004079593A (en) Contamination inspection method and device thereof
JP3432273B2 (en) Foreign matter inspection device and foreign matter inspection method
JPH0769272B2 (en) Foreign matter inspection device
JPH07119702B2 (en) Defect inspection device and defect inspection method
JPH0341786B2 (en)
JPH06258237A (en) Defect inspection device
JPS61176838A (en) Inspection of defect of transparent or semi-transparent plate-shaped body
JPH046898B2 (en)
US5796475A (en) Signal process method and apparatus for defect inspection
JP3168480B2 (en) Foreign matter inspection method and foreign matter inspection device
JPS63208746A (en) Defect inspecting device
JPS5862544A (en) Device for checking foreign matter
JP2671896B2 (en) Foreign matter inspection device
JPH09218162A (en) Surface defect inspection device
JP3406951B2 (en) Surface condition inspection device
JPS63118640A (en) Foreign matter detector
JPH06258235A (en) Surface inspection device
JPH0326447Y2 (en)
JPH0527411A (en) Foreign matter inspecting device
JPS63279146A (en) Foreign matter detector