JPH0621877B2 - Surface condition measuring device - Google Patents

Surface condition measuring device

Info

Publication number
JPH0621877B2
JPH0621877B2 JP61030363A JP3036386A JPH0621877B2 JP H0621877 B2 JPH0621877 B2 JP H0621877B2 JP 61030363 A JP61030363 A JP 61030363A JP 3036386 A JP3036386 A JP 3036386A JP H0621877 B2 JPH0621877 B2 JP H0621877B2
Authority
JP
Japan
Prior art keywords
substrate
light
circuit pattern
pattern
foreign matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61030363A
Other languages
Japanese (ja)
Other versions
JPS62188945A (en
Inventor
道生 河野
栄一 村上
章義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61030363A priority Critical patent/JPH0621877B2/en
Priority to US07/014,033 priority patent/US4795911A/en
Publication of JPS62188945A publication Critical patent/JPS62188945A/en
Publication of JPH0621877B2 publication Critical patent/JPH0621877B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は表面状態測定装置に関し、特に半導体製造装置
で使用される回路パターンが形成されているレチクルや
フォトマスク等の基板上に回路パターン以外の異物、例
えば不透過性のゴミ等を検出する際に好適な表面状態測
定装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a surface condition measuring apparatus, and particularly to a surface condition measuring device other than a circuit pattern on a substrate such as a reticle or a photomask on which a circuit pattern used in a semiconductor manufacturing apparatus is formed. The present invention relates to a surface state measuring apparatus suitable for detecting foreign matter, such as impermeable dust.

(従来の技術) 一般にIC製造工程においてはレチクル又はフォトマス
ク等の基板上に形成されている露光用の回路パターンを
半導体焼付け装置(ステッパー又はマスクアライナー)
によりレジストが塗布されたウエハ面上に転写して製造
している。
(Prior Art) Generally, in an IC manufacturing process, a circuit pattern for exposure formed on a substrate such as a reticle or a photomask is used as a semiconductor printing apparatus (stepper or mask aligner).
Is transferred onto the surface of the wafer coated with the resist to manufacture.

この際、基板面上にゴミ等の異物が存在すると転写する
際、異物も同時に転写されてしまいIC製造の歩留りを
低下させる原因となってくる。
At this time, if foreign matter such as dust is present on the surface of the substrate, the foreign matter is also simultaneously transferred at the time of transfer, which causes a decrease in yield of IC manufacturing.

特にレチクルを使用し、ステップアンドリピート方法に
より繰り返してウエハ面上に回路パターンを焼付ける場
合、レチクル面上の1個の異物がウエハ全面に焼付けら
れてしまいIC製造の歩留りを大きく低下させる原因と
なってくる。
In particular, when a circuit pattern is repeatedly printed on the wafer surface by the step-and-repeat method using a reticle, one foreign substance on the reticle surface is printed on the entire surface of the wafer, which causes a large decrease in the yield of IC manufacturing. Is coming.

その為、IC製造過程においては基板上の異物の存在を
検出するのが不可欠となっており、従来より種々の検査
方法が提案されている。例えば第2図は異物が等方向に
光を散乱する性質を利用する方法の一例である。同図に
おいては、走査用ミラー11とレンズ12を介してレーザー
10からの光束をハーフミラー13により2つに分け、2つ
のミラー14,45により各々基板15の表面と裏面に入射さ
せ、走査用ミラー11を回転若しくは振動させて基板15上
を走査している。そして基板15からの直接の反射光及び
透過光の光路から離れた位置に複数の受光部16,17,18
を設け、これらの複数の受光部16,17,18からの出力信
号を用いて基板15上の異物の存在を検出している。
Therefore, it is essential to detect the presence of foreign matter on the substrate in the IC manufacturing process, and various inspection methods have been conventionally proposed. For example, FIG. 2 shows an example of a method of utilizing the property that a foreign substance scatters light in the same direction. In the figure, the laser is passed through the scanning mirror 11 and the lens 12.
The luminous flux from 10 is divided into two by the half mirror 13 and is made incident on the front surface and the back surface of the substrate 15 by the two mirrors 14 and 45, respectively, and the scanning mirror 11 is rotated or vibrated to scan the substrate 15. . Then, a plurality of light receiving portions 16, 17, 18 are provided at positions apart from the optical paths of the reflected light and the transmitted light directly from the substrate 15.
Is provided, and the presence of foreign matter on the substrate 15 is detected using the output signals from the plurality of light receiving units 16, 17, and 18.

即ち回路パターンからの回折光は方向性が強い為、各受
光部からの出力値は異なるが異物に光束が入射すると入
射光束は等方向に散乱される為、複数の受光部からの出
力値が各々等しくなってくる。従ってこのときの出力値
を比較することにより異物の存在を検出している。
That is, since the diffracted light from the circuit pattern has a strong directivity, the output value from each light receiving unit is different, but when a light beam enters a foreign object, the incident light beam is scattered in the same direction, so the output values from multiple light receiving units are different. Each becomes equal. Therefore, the presence of foreign matter is detected by comparing the output values at this time.

又第3図は異物が入射光束の偏光特性を乱す性質を利用
する方法の一例である。同図において偏光子19、走査用
ミラー11そしてレンズ12を介してレーザー10からの光束
を所定の偏光状態の光束としハーフミラー13により2つ
に分け、2つのミラー14,45により各々基板15の表面と
裏面に入射させて走査用ミラー11により基板15上を走査
している。そして基板15からの直接の反射光及び透過光
の光路から離れた位置に各々検光子20,21を前方に配置
した2つの受光部21,23を設けている。そして回路パタ
ーンからの回折光と異物からの散乱光との偏光比率の違
いから生ずる受光量の差を2つの受光部21,23より検出
し、これにより基板15上の回路パターンと異物とを弁別
している。
Further, FIG. 3 is an example of a method of utilizing the property that a foreign substance disturbs the polarization characteristic of the incident light beam. In the figure, a light beam from the laser 10 is made into a light beam having a predetermined polarization state through a polarizer 19, a scanning mirror 11 and a lens 12 and is divided into two by a half mirror 13 and two mirrors 14 and 45 are provided on a substrate 15 respectively. The light is incident on the front surface and the back surface, and the scanning mirror 11 scans the substrate 15. Further, two light receiving portions 21 and 23 having analyzers 20 and 21 arranged in front are provided at positions apart from the optical paths of the reflected light and the transmitted light directly from the substrate 15. Then, the difference in the amount of received light caused by the difference in the polarization ratio between the diffracted light from the circuit pattern and the scattered light from the foreign matter is detected by the two light receiving units 21 and 23, and the circuit pattern on the substrate 15 and the foreign matter are detected by this. Different.

しかしながら第2図,第3図に示す検出方法はいずれも
受光部には入射光束の直接の反射光及び透過光は入射し
ないが回路パターンからの各次数の回折光の一部が入射
してしまう。この為、回路パターンからの回折光と異物
からの散乱光の双方の出力差をとる場合、異物の反射率
や形状等が異ってくると双方の出力差が変動し異物の検
出率が低下してくる欠点があった。
However, in the detection methods shown in FIGS. 2 and 3, the reflected light and the transmitted light of the incident light flux do not enter the light receiving portion, but a part of the diffracted light of each order from the circuit pattern enters. . Therefore, when the output difference between the diffracted light from the circuit pattern and the scattered light from the foreign matter is taken, if the reflectance and shape of the foreign matter are different, the output difference of both will fluctuate and the foreign matter detection rate will decrease. There was a drawback to come.

(発明が解決しようとする問題点) 本発明は基板上に存在しているゴミ等どのような状態の
異物であっても回路パターンと高い精度で分離検出する
ことのできる高い分離検出率を有した表面状態測定装置
の提供を目的とする。
(Problems to be Solved by the Invention) The present invention has a high separation detection rate capable of separating and detecting a foreign matter in any state such as dust existing on a substrate from a circuit pattern with high accuracy. An object of the present invention is to provide a surface condition measuring device.

(問題点を解決するための手段) パターンが形成されている基板に光束を入射させ、前記
光束で前記基板を走査する投光手段と、前記基板上の主
パターンから生じる回折光とは異なる前記基板からの散
乱光束を受光する受光手段とを有し、該受光手段からの
出力信号を利用して前記基板の表面状態を測定する装置
において、前記投光手段は、前記光束を前記基板面の法
線に対して傾いた方向から前記基板に斜入射させ且つ前
記基板上の前記主パターンが延びる方向に対し傾いた方
向に光軸を有し、前記光束で前記主パターンが延びる方
向に対し傾いた方向に前記基板を走査することである。
(Means for Solving the Problems) A light projecting unit that makes a light beam enter a substrate on which a pattern is formed and scans the substrate with the light beam is different from the diffracted light generated from the main pattern on the substrate. In a device having a light receiving means for receiving a scattered light flux from a substrate and measuring the surface state of the substrate using an output signal from the light receiving means, the light projecting means is configured to project the light flux onto the substrate surface. The light beam is obliquely incident on the substrate from a direction inclined with respect to the normal, and has an optical axis in a direction inclined with respect to a direction in which the main pattern extends on the substrate, and the light beam is inclined with respect to a direction in which the main pattern extends. Scanning the substrate in different directions.

この他、本発明の特徴は実施例において記載されてい
る。
Besides, the features of the present invention are described in the embodiments.

(実施例) 第1図は本発明の一実施例の光学系の概略図である。同
図において光源であるレーザー1からの光束をポリゴン
ミラー2により一方向へ反射させ、例えばf−θレンズ
を有する投光部4によりレチクル等の被測定物である基
板5上の回路パターンが形成されている点Oに集光して
いる。
(Example) FIG. 1 is a schematic view of an optical system of an example of the present invention. In the figure, a light beam from a laser 1 which is a light source is reflected in one direction by a polygon mirror 2, and a circuit pattern on a substrate 5 which is an object to be measured such as a reticle is formed by a light projecting section 4 having an f-θ lens, for example. It is focused on the point O.

ポリゴンミラー2と投光部4は投光手段の一部を構成し
ている。そしてポリゴンミラー2を回転させ基板5上を
点Bから点B方向に走査すると共に、基板5を矢印
若しくは矢印S方向に移動させることにより基板
5上の全面を走査している。投光部による光束の基板面
上への入射方向は垂直入射の他にどのような方向からで
も良く、例えば傾いた方向から入射させても良い。
The polygon mirror 2 and the light projecting section 4 form a part of the light projecting means. The polygon mirror 2 is rotated to scan the substrate 5 from the point B 1 to the point B 2 direction, and the substrate 5 is moved in the arrow S 1 or arrow S 2 direction to scan the entire surface of the substrate 5. . The direction of incidence of the light flux on the substrate surface by the light projecting portion may be from any direction other than vertical incidence, for example, it may be incident from an inclined direction.

そして基板5の上方に集光部6を設け、基板5上の異物
からの散乱光束を集光し、ミラー7を介して点P′に
集光し、その後レンズ8により受光面9に導光してい
る。
Then, a light condensing unit 6 is provided above the substrate 5 to condense scattered light flux from a foreign substance on the substrate 5, condense it to a point P G ′ via a mirror 7, and then guide it to a light receiving surface 9 by a lens 8. It is shining.

集光部6とミラー7そしてレンズ8は受光手段の一部を
構成している。レンズ8の光軸8の延長上のミラー7
との交点7と基板5上の交点Oとを結ぶ線は集光部6
の光軸であり、又点Oとポリゴンミラー2の反射点P
を結ぶ線は投光部5の光軸である。
The condenser 6, the mirror 7 and the lens 8 form a part of the light receiving means. Mirror 7 on extension of optical axis 8 1 of lens 8
Intersection of the 71 and the line connecting the intersection point O of the substrate 5 condensing unit 6
Of the optical axis of the polygon mirror 2 and the reflection point P G of the polygon mirror 2
The line connecting the two is the optical axis of the light projecting unit 5.

本実施例における点P′はポリゴンミラー2の回転に
伴って、その反射点Pから発散した光束が基板5上の
異物で散乱し、集光部6により集光する位置である。
The point P G ′ in this embodiment is the position where the light beam diverging from the reflection point P G is scattered by the foreign matter on the substrate 5 as the polygon mirror 2 rotates and is condensed by the light condensing unit 6.

本実施例ではポリゴンミラー2の回転によって基板5面
上を光束で走査する際、一方向の走査によって形成され
る点Bと点Bを結ぶ交線1が基板5に形成されてい
る主パターンから生じる回折光の方向と一致しないよう
に傾いた方向に角度βだけずらしている。
In this embodiment, when the surface of the substrate 5 is scanned with a light beam by the rotation of the polygon mirror 2, an intersection line 1 connecting the points B 1 and B 2 formed by scanning in one direction is formed on the substrate 5. The angle β is shifted in the inclined direction so as not to coincide with the direction of the diffracted light generated from the pattern.

そして集光部6を該集光部6の光軸の基板5への投影像
が基板5上の主パターンから生じる回折光の方向と一致
しないように角度βだけずらして配置している。
The condensing unit 6 is arranged with an angle β so that the projected image of the optical axis of the condensing unit 6 on the substrate 5 does not coincide with the direction of the diffracted light generated from the main pattern on the substrate 5.

即ち本実施例では集光部6を入射光束による基板上の交
線1と対応する集光用の交線1′が交線1と略一致する
ようにして基板上の異物から生じる散乱光束を効率良く
受光面9に導光している。
That is, in this embodiment, the converging line 6 through the converging part 6 on the substrate and the converging line 1 ′ for condensing corresponding to the converging line 1 on the substrate are substantially aligned with the intersecting line 1 so that the scattered light beam generated from the foreign matter on the substrate is The light is efficiently guided to the light receiving surface 9.

尚、集光用の交線1′は交線1と厳密に一致していなく
ても異物からの散乱光即が集光可能な範囲内で光線1と
一致していれば良い。又、集光部6を該集光部6の光軸
の基板5上への投影像が基板5の主パターンによる回折
光の生じる方向とずらして配置さえすれば投光部4によ
る基板5上の交線1が基板5上の主パターンによる回折
光の生じる方向と一致するように配置しても良い。
The intersecting line 1'for condensing does not have to exactly match the intersecting line 1 as long as it coincides with the light beam 1 within a range in which the scattered light immediately from the foreign matter can be collected. Further, as long as the light condensing unit 6 is arranged so that the projected image of the optical axis of the light condensing unit 6 onto the substrate 5 is displaced from the direction in which the diffracted light due to the main pattern of the substrate 5 is generated, the light condensing unit 4 causes the light to be generated on the substrate 5. The intersection line 1 may be arranged so as to coincide with the direction in which the light diffracted by the main pattern on the substrate 5 occurs.

第4図は第1図の実施例における入射光速と基板5上の
回路パターンから生じる回折光の説明図である。今、基
板上の回路パターン面が模式的に描いた球体Sの赤道面
に一致しているとする。現在使用されている半導体回路
パターンの基板上の回路パターンの形状は殆どが例えば
,Tで示すその縦横方向で互いに直交しているパ
ターンで構成されている。今、基板上のパターンT
びパターンTに対し基板5の垂直方向の矢印Iで示す
方向から光束を入射させる。そうすると基板5からの直
接の反射光は入射方向に戻ってくる。このときの反射光
の球体Sの交点をP′とすると、点P′を中心にして各
々のパターンT,Tと直交する方向に各次数の回折
像が形成する。回路パターンが孤立線の場合はその回折
像Qは第5図(A) に示す如く、パターンTと直交する方
向に連続的に現われる。又、回路パターンがメモリーの
ような繰り返しパターンの場合はその回折像Qは第5図
(B) に示す如く離散的に現われる。
FIG. 4 is an explanatory diagram of incident light speed and diffracted light generated from the circuit pattern on the substrate 5 in the embodiment of FIG. Now, it is assumed that the circuit pattern surface on the substrate coincides with the equator surface of the sphere S schematically drawn. The shape of the circuit pattern on the substrate of the semiconductor circuit pattern which is currently used is almost composed of, for example, patterns which are orthogonal to each other in the vertical and horizontal directions indicated by T 1 and T 2 . Now, the light flux is made to enter the pattern T 1 and the pattern T 2 on the substrate from the direction indicated by the arrow I in the vertical direction of the substrate 5. Then, the reflected light directly from the substrate 5 returns in the incident direction. If the intersection of the sphere S of the reflected light at this time is P ′, diffraction images of respective orders are formed in the direction orthogonal to the patterns T 1 and T 2 with the point P ′ as the center. When the circuit pattern is an isolated line, its diffraction image Q appears continuously in the direction orthogonal to the pattern T, as shown in FIG. Also, when the circuit pattern is a repeating pattern such as a memory, the diffraction image Q is shown in FIG.
It appears discretely as shown in (B).

いずれも場合でも直接の反射光即の点P′から遠ざかる
程、回路パターンからの回折像の強度は弱くなる。即ち
点P′から各回折光の生じる方向である点A′,P′,
Aより成る平面A′P′Aと点C′,P′,Cより成る
平面C′P′Cの平面内において、遠ざかるに従い回折
光の強度はかなり弱くなっている。
In either case, the intensity of the diffracted image from the circuit pattern becomes weaker as the distance from the point P ′ immediately after the direct reflected light increases. That is, points A ', P', which are the directions in which the respective diffracted lights are generated from the point P ',
In the plane A'P'A formed by A and the plane C'P'C formed by points C ', P', C, the intensity of the diffracted light becomes considerably weaker as the distance increases.

これに対して異物の散乱光は等方的に生じる。そこで本
実施例では受光手段の集光部の光軸が直接の反射光の光
路からなるべく遠くで、かつ基板上の主パターンより生
じる回折光の方向とずらした例えば点P近傍位置に集
光部の光軸がくるように配置することにより回路パター
ンからの回折光の影響をなるべく少なくして基板5上の
異物からの散乱光のみを主に受光するようにしている。
On the other hand, the scattered light of the foreign matter is isotropically generated. Therefore, in the present embodiment, the optical axis of the light collecting portion of the light receiving means is as far as possible from the optical path of the direct reflected light, and the light is condensed at a position, for example, near the point P o, which is offset from the direction of the diffracted light generated by the main pattern on the substrate. By arranging so that the optical axis of the portion is located, the influence of the diffracted light from the circuit pattern is minimized and only the scattered light from the foreign matter on the substrate 5 is mainly received.

即ち集光部の光軸が第1図に示すように基板5に対して
角度αとなり、かつ集光部の光軸の基板6上への投影像
が基板5の主パターンによる回折光の生じる方向であ
る、例えば基板5の縦横方向となす角と平行若しくは直
交方向より角度βだけずれるようにしている。
That is, as shown in FIG. 1, the optical axis of the condensing portion forms an angle α with the substrate 5, and the projected image of the optical axis of the condensing portion onto the substrate 6 produces diffracted light due to the main pattern of the substrate 5. The direction, for example, the angle formed by the vertical and horizontal directions of the substrate 5 is parallel to or orthogonal to the orthogonal direction by an angle β.

第5図(C) は回折光の生じる方向と受光手段の集光部の
光軸方向との説明図である。同図において矢印51は集光
部の光軸の基板5面上への投影像の方向、矢印52,53は
各々基板上の主パターンT,Tにより生じる回折光
の方向である。
FIG. 5 (C) is an explanatory diagram of the direction in which the diffracted light is generated and the optical axis direction of the condensing part of the light receiving means. In the figure, arrow 51 is the direction of the projected image of the optical axis of the condensing part on the surface of the substrate 5, and arrows 52 and 53 are the directions of the diffracted light generated by the main patterns T 1 and T 2 on the substrate, respectively.

同図に示すように本実施例では集光部の配置を特定する
ことにより回折光の影響をなくし、異物からの散乱光束
のみを集光するようにしている。これにより回路パター
ンに対する異物の分離検出率を高めている。
As shown in the figure, in the present embodiment, the influence of the diffracted light is eliminated by specifying the arrangement of the light condensing unit, and only the scattered light flux from the foreign matter is condensed. As a result, the foreign matter separation detection rate with respect to the circuit pattern is increased.

本実施例において更に、分離検出率を高めるには点P′
と点Pの中心Oに対して張る角δが大きい程、例えば
60゜<δ< 180゜の範囲に設定するのが好ましい。
In the present embodiment, the point P'to further increase the separation detection rate.
And the larger the angle δ formed with respect to the center O of the point P o ,
It is preferable to set in the range of 60 ° <δ <180 °.

又、本実施例において集光部の光軸が投光部の光軸に対
して±45度以内となるように各要素を配置するのが回路
パターンに対する異物の分離検出率を効果的に高めるこ
とが出来るので好ましい。
Further, in this embodiment, it is effective to increase the foreign matter separation detection rate with respect to the circuit pattern by arranging the respective elements so that the optical axis of the condensing section is within ± 45 degrees with respect to the optical axis of the light projecting section. It is possible because it is possible.

実際の基板上の回路パターンには基板の縦横方向に対し
て30度,45度そして60度方向のパターンも存在する場合
がある。このような基板に対しても本発明の効果を十分
発揮させる為には、集光部の光軸の基板面上への投影像
と基板の縦横方向となす角が平行若しくは直交方向より
15度± 5度の範囲内に設定するのが良い。
Actual circuit patterns on the board may include patterns in the directions of 30, 45, and 60 degrees with respect to the vertical and horizontal directions of the board. In order to sufficiently exert the effects of the present invention even on such a substrate, the angle formed between the projected image of the optical axis of the condensing portion on the substrate surface and the vertical and horizontal directions of the substrate is more than the parallel or orthogonal direction.
It is better to set within the range of 15 degrees ± 5 degrees.

尚、本実施例において基板に対する投光部の光軸と集光
部の光軸が光束の入射面内の法線に対して同一方向及び
法線に対して左右に分けて配置しても同様に本発明の目
的を達成することができる。
Incidentally, in the present embodiment, even if the optical axis of the light projecting portion and the optical axis of the light condensing portion with respect to the substrate are arranged in the same direction with respect to the normal line in the incident plane of the light flux and separately on the right and left sides with respect to the normal line, the same is true. The object of the present invention can be achieved.

尚、第1図に示す実施例においてレンズ8の光学的作用
としてはポリゴンミラー2の反射点Pと共役な点
′を受光面9上に結像させるものでも良く、又基板
5と受光面9を光役関係とし、点Pから発した光束を
平行光束として受光面9に導光させるものでも良い。
In the embodiment shown in FIG. 1, the optical action of the lens 8 may be such that a point P G ′ that is conjugate with the reflection point P G of the polygon mirror 2 is imaged on the light receiving surface 9 or the substrate 5 is used. The light-receiving surface 9 may be in a light-handling relationship, and the light flux emitted from the point P G may be guided to the light-receiving surface 9 as a parallel light flux.

(発明の効果) 本発明によれば基板上の回路パターンから生じる回折光
を空間配置的に避けて基板上に存在している異物からの
散乱光束だけを選択的に受光することができる為、回路
パターンに対する異物の分離検出率の高い表面状態測定
装置を達成することができる。
(Effect of the Invention) According to the present invention, it is possible to selectively receive only the scattered light flux from the foreign matter existing on the substrate while avoiding the diffracted light generated from the circuit pattern on the substrate spatially. It is possible to achieve a surface state measuring device having a high foreign matter separation detection rate with respect to a circuit pattern.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の光学系の概略図、第4図は
第1図の実施例における入射光速と回路パターンによる
回折光の説明図、第5図(A) ,(B) ,(C) は回路パター
ンと回折像との関係を示す説明図、第2図,第3図は各
々従来の表面状態測定装置の一例である。図中1は光
源、2はポリゴンミラー、4は投光部、5は基板、6は
集光部、7はミラー、8はレンズ、9は受光面である。
FIG. 1 is a schematic view of an optical system according to an embodiment of the present invention, FIG. 4 is an explanatory view of incident light speed and diffracted light depending on a circuit pattern in the embodiment of FIG. 1, and FIGS. 5 (A) and 5 (B). , (C) are explanatory views showing the relationship between the circuit pattern and the diffraction pattern, and FIGS. 2 and 3 are examples of conventional surface condition measuring devices. In the figure, 1 is a light source, 2 is a polygon mirror, 4 is a light projecting portion, 5 is a substrate, 6 is a light collecting portion, 7 is a mirror, 8 is a lens, and 9 is a light receiving surface.

フロントページの続き (56)参考文献 特開 昭57−128834(JP,A) 実開 昭57−22239(JP,U) 特公 昭63−58369(JP,B2)Continuation of the front page (56) Reference JP-A-57-128834 (JP, A) Actual development S57-22239 (JP, U) JP-B 63-58369 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】パターンが形成されている基板に光束を入
射させ、前記光束で前記基板を走査する投光手段と、前
記基板上の主パターンから生じる回折光とは異なる前記
基板からの散乱光束を受光する受光手段とを有し、該受
光手段からの出力信号を利用して前記基板の表面状態を
測定する装置において、前記投光手段は、前記光束を前
記基板面の法線に対して傾いた方向から前記基板に斜入
射させ且つ前記基板上の前記主パターンが延びる方向に
対し傾いた方向に光軸を有し、前記光束で前記主パター
ンが延びる方向に対し傾いた方向に前記基板を走査する
ことを特徴とする表面状態検査装置。
1. A scattered light beam from the substrate, which is different from a light-projecting means for making a light beam incident on a substrate on which a pattern is formed and scanning the substrate with the light beam, and diffracted light generated from a main pattern on the substrate. In the device for measuring the surface condition of the substrate by using the output signal from the light receiving unit, the light projecting unit is configured to measure the light flux with respect to a normal line of the substrate surface. The substrate is obliquely incident on the substrate from an inclined direction and has an optical axis in a direction inclined with respect to the extending direction of the main pattern on the substrate, and the substrate is provided in a direction inclined with respect to the extending direction of the main pattern by the light flux. A surface condition inspection device characterized by scanning.
JP61030363A 1986-02-14 1986-02-14 Surface condition measuring device Expired - Lifetime JPH0621877B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61030363A JPH0621877B2 (en) 1986-02-14 1986-02-14 Surface condition measuring device
US07/014,033 US4795911A (en) 1986-02-14 1987-02-12 Surface examining apparatus for detecting the presence of foreign particles on the surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61030363A JPH0621877B2 (en) 1986-02-14 1986-02-14 Surface condition measuring device

Publications (2)

Publication Number Publication Date
JPS62188945A JPS62188945A (en) 1987-08-18
JPH0621877B2 true JPH0621877B2 (en) 1994-03-23

Family

ID=12301780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61030363A Expired - Lifetime JPH0621877B2 (en) 1986-02-14 1986-02-14 Surface condition measuring device

Country Status (1)

Country Link
JP (1) JPH0621877B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0287047A (en) * 1988-09-22 1990-03-27 Topcon Corp Inspecting apparatus for surface
JP2538338B2 (en) * 1989-05-30 1996-09-25 キヤノン株式会社 Foreign matter inspection device
JP3109840B2 (en) * 1990-12-28 2000-11-20 キヤノン株式会社 Surface condition inspection device
RU2248736C2 (en) 1999-06-08 2005-03-27 Джапан Тобакко Инк. Apparatus and method for detecting contaminants in material
US7227148B2 (en) 1999-06-08 2007-06-05 Japan Tobacco Inc. Apparatus for detecting impurities in material and detecting method therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722239U (en) * 1980-07-11 1982-02-04
JPS57128834A (en) * 1981-02-04 1982-08-10 Nippon Kogaku Kk <Nikon> Inspecting apparatus of foreign substance
JPS5965428A (en) * 1982-10-06 1984-04-13 Hitachi Ltd Foreign substance detector
JPS5982727A (en) * 1982-11-04 1984-05-12 Hitachi Ltd Method and apparatus for detecting foreign matter
JPS6358369A (en) * 1986-08-29 1988-03-14 Fuji Xerox Co Ltd Recorder

Also Published As

Publication number Publication date
JPS62188945A (en) 1987-08-18

Similar Documents

Publication Publication Date Title
US4669875A (en) Foreign particle detecting method and apparatus
JP2933736B2 (en) Surface condition inspection device
JP2514037B2 (en) Detection optical system
CA2078731C (en) Positional deviation measuring device and method thereof
JPH0915163A (en) Method and equipment for inspecting foreign substance
JPH075115A (en) Surface condition inspection apparatus
US5162867A (en) Surface condition inspection method and apparatus using image transfer
JPH07209202A (en) Surface state inspection equipment, exposure apparatus employing it, and production of device using the exposure apparatus
JPH0743313A (en) Foreign matter inspection system and production of semiconductor device using it
JPH05332943A (en) Surface state inspection device
JPH0145973B2 (en)
USRE33991E (en) Foreign particle detecting method and apparatus
US5448350A (en) Surface state inspection apparatus and exposure apparatus including the same
JPH0621877B2 (en) Surface condition measuring device
JPH0627028A (en) Surface condition inspecting apparatus
JPH0621876B2 (en) Surface condition measuring device
JPH04122042A (en) Foreign matter inspection device
JP2006250843A (en) Surface inspection device
JPH0675039B2 (en) Surface condition measuring device
JPS62188944A (en) Surface condition measuring apparatus
JP3336392B2 (en) Foreign matter inspection apparatus and method
JP2962752B2 (en) Pattern inspection equipment
JPH04339245A (en) Inspecting device for surface condition
JPH07333167A (en) Surface state inspection device and exposure device using the inspection device
JPH02186248A (en) Surface condition inspecting device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term