JPH02186248A - Surface condition inspecting device - Google Patents

Surface condition inspecting device

Info

Publication number
JPH02186248A
JPH02186248A JP469589A JP469589A JPH02186248A JP H02186248 A JPH02186248 A JP H02186248A JP 469589 A JP469589 A JP 469589A JP 469589 A JP469589 A JP 469589A JP H02186248 A JPH02186248 A JP H02186248A
Authority
JP
Japan
Prior art keywords
light
substrate
laser beam
pellicle
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP469589A
Other languages
Japanese (ja)
Other versions
JPH07104288B2 (en
Inventor
Michio Kono
道生 河野
Eiichi Murakami
栄一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1004695A priority Critical patent/JPH07104288B2/en
Publication of JPH02186248A publication Critical patent/JPH02186248A/en
Publication of JPH07104288B2 publication Critical patent/JPH07104288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a stable inspection of a foreign matter by making a laser beam P polarized while it is made incident on the surface of a substrate at less than 75 deg. in the angle of incidence in a surface condition inspecting device which makes a laser beam incident onto a substrate to inspect a surface condition of the substrate detecting scattered light thereof. CONSTITUTION:When a laser beam 6 is made incident P polarized at 75 deg. in the angle of incidence, in the transmission thereof through a pellicle film 2, a transmissivity varies in a range of 95-87% of the maximum transmissivity for a scattering of a film thickness. If an angle theta2 about optical axes P2P2' of a light receiving element 7b is also 75 deg., a quantity of light received with the light receiving element 7b varies with a squaring of variations in the transmissivity, namely, in a range of 90-76%. Thus, when a foreign matter is on the surface of glass, variations in the thickness of the pellicle film can be suppressed downto 18% at the worst.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は表面状態検査装置に関し、特に、半導体製造装
置で使用される回路パターンが形成されたレチクルやフ
ォトマスク等の基板上およびこの基板に装着したペリク
ル保護膜のような光学薄膜等の保護膜面上に、不透過性
のごみ等の異物が付着した場合に、これを精度良く検出
する表面状態検査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a surface condition inspection device, and in particular, to a surface condition inspection device used in semiconductor manufacturing equipment on and to a substrate such as a reticle or photomask on which a circuit pattern is formed. The present invention relates to a surface condition inspection device that accurately detects foreign matter such as impermeable dust adhering to the surface of a protective film such as an optical thin film such as a pellicle protective film.

[従来の技術] 一般にIC製造工程においてはレチクルまたはフォ)・
マスク等の基板上に形成されている露光用の回路パター
ンを半導体焼付装置(ステッパまたはマスクアライナ)
によりレジストが塗布されたウェハ面上に転写して製造
している。
[Prior Art] Generally, in the IC manufacturing process, a reticle or a
A semiconductor printing device (stepper or mask aligner) is used to print circuit patterns for exposure formed on substrates such as masks.
It is manufactured by transferring onto a wafer surface coated with resist.

この際、基板面上にごみ等の異物が存在すると転写する
際、異物も同時に転写されてしまいIC製造の歩留りを
低下させる原因となってくる。
At this time, if foreign matter such as dust is present on the substrate surface, the foreign matter will also be transferred at the same time, causing a decrease in the yield of IC manufacturing.

そのためIC製造工程においては基板上の異物の存在を
検出するのが不可欠となっており、従来より種々の検査
方法が提案されている。例えば第2図は異物が等友釣に
光を散乱する性質を利用する方法の一例である。
Therefore, in the IC manufacturing process, it is essential to detect the presence of foreign substances on the substrate, and various inspection methods have been proposed. For example, FIG. 2 shows an example of a method that utilizes the property of a foreign object to scatter light evenly.

同図においては走査用ミラー11とレンズ12を介して
レーザ10からの光束をミラーの出し入れによって上下
に分け、2つのミラー14.15により各々基板18の
表面と裏面に入射させ、走査用ミラー11を回転若しく
は振動させて基板18上を走査している。そして基板1
8からの直接の反射光および透過光の光路から離れた位
置に基板18の表面と裏面に焦点を合わせた2つの受光
部16.17を設け、これら2つの受光部16゜17か
らの出力信号を用いて基板18上の異物の存在を検出し
ている。
In the figure, the light beam from the laser 10 is divided into upper and lower parts through the scanning mirror 11 and lens 12 by inserting and removing the mirrors, and is made incident on the front and back surfaces of the substrate 18 by two mirrors 14 and 15, respectively. The substrate 18 is scanned by rotating or vibrating. and board 1
Two light receiving sections 16 and 17 focused on the front and back surfaces of the substrate 18 are provided at positions away from the optical path of the direct reflected light and transmitted light from the substrate 18, and output signals from these two light receiving sections 16 and 17 are provided. is used to detect the presence of foreign matter on the substrate 18.

すなわち異物に光束が入射すると入射光束は等友釣に散
乱される。このため、一方の面に異物が存在していると
、その面に焦点を合わせた受光部からの出力は大きくな
る。従って、このときの2つの受光部からの出力値を比
較することにより異物の存在を検出している。
That is, when a light beam is incident on a foreign object, the incident light beam is uniformly scattered. Therefore, if a foreign object is present on one surface, the output from the light receiving section focused on that surface will increase. Therefore, the presence of foreign matter is detected by comparing the output values from the two light receiving sections at this time.

また従来、この種の表面状態検査装置では、異物の反射
散乱光強度の高いS偏光を用いている。
Conventionally, this type of surface condition inspection apparatus uses S-polarized light, which has a high intensity of light reflected and scattered by foreign objects.

しかも、基板表面がバターニングされている場合、その
パターン回折光を回避し、異物散乱光だけを受光しやく
するために、レチクル法線に対し60°以上の斜め入射
ビームで走査するのが殆どである。
Moreover, if the substrate surface is patterned, scanning is usually performed with an oblique incident beam of 60° or more relative to the reticle normal in order to avoid the pattern diffracted light and make it easier to receive only the foreign object scattered light. It is.

しかしながら、この方法は基板の表面と裏面の各々の方
向から光束を切り換えて走査する必要があり、また基板
にペリクル保護膜を装着したときはべりタル面にも異物
が付着する場合があり、この場合どの面に異物が付着し
ているのか検出しなければならず、走査用の光束を各々
の被検出面に焦点合わせをして繰り返して測定する必要
がある。
However, this method requires scanning by switching the light beam from each direction of the front and back surfaces of the substrate, and when a pellicle protective film is attached to the substrate, foreign matter may also adhere to the pellicle surface. It is necessary to detect which surface the foreign matter is attached to, and it is necessary to focus the scanning light beam on each detection surface and repeatedly perform measurements.

これに対し、第3図はべりタル膜を装着したレチクル膜
の異物検査を、上下のペリクル面、ガラス面、パターン
面の計4面同時に行なう方式を示している(特開昭62
−188949号公報参照)。この場合、レーザビーム
101がレチクルに対し斜め上方から入射し、各検査面
102a。
On the other hand, Fig. 3 shows a method in which the foreign object inspection of a reticle film equipped with a Veritaru film is carried out simultaneously on four surfaces: the upper and lower pellicle surfaces, the glass surface, and the pattern surface (Japanese Patent Laid-Open No. 62
(Refer to Publication No.-188949). In this case, the laser beam 101 is incident on the reticle obliquely from above, and the laser beam 101 is incident on each inspection surface 102a.

102b  103.+04とビーム101の交線−ト
を覗く異物散乱光の受光光学系が検査面の数だけ設けら
れている。ちなみに同図において、105a〜105d
は各検査面上からのビーム走査線の散乱光束を取り込む
受光素子、例えばセルフォックレンズアレー(セルフォ
ックは日本板硝子(株)の商品名)やバーレンズ、シリ
ンドリカルレンズといった一次元結像素子などであり、
106a〜106dは検査面上の異物散乱光束以外を遮
ぎるための視野絞り、107a〜107dは視野絞りを
通過した光束をフォトマル1088〜108dに導くた
めの光ファイバ等の光伝達手段である。
102b 103. The number of light receiving optical systems for foreign object scattered light looking through the intersection line -t of +04 and beam 101 is provided as many as the number of surfaces to be inspected. By the way, in the same figure, 105a to 105d
is a light-receiving element that takes in the scattered light flux of the beam scanning line from each inspection surface, such as a one-dimensional imaging element such as a Selfoc lens array (Selfoc is a product name of Nippon Sheet Glass Co., Ltd.), a bar lens, or a cylindrical lens.
Reference numerals 106a to 106d are field stops for blocking light other than light beams scattered by foreign objects on the inspection surface, and 107a to 107d are optical transmission means such as optical fibers for guiding the light fluxes that have passed through the field stops to photomultiples 1088 to 108d.

[発明が解決しようとする課題] しかしながら、このような検査装置においては、ペリク
ル膜自身の厚みのばらつきのため、例えば基準値を0.
865μmとしたとき厚みが±0.01μm変化しただ
けでも、ペリクル膜を透過して基板上に到達するレーザ
ビームの強度が変動する。
[Problems to be Solved by the Invention] However, in such an inspection device, due to variations in the thickness of the pellicle film itself, for example, the reference value is set to 0.
Even if the thickness changes by only ±0.01 μm when the thickness is 865 μm, the intensity of the laser beam that passes through the pellicle film and reaches the substrate changes.

ちなみに、ビームのペリクル膜表面に対する入射角を横
軸にとり縦軸にペリクル膜を1回透過するときの透過率
をとってグラフに示せば、第4図のようになる。したが
って、第3図において、例えばビームlotかペリクル
膜の法線に対し75゜の入射角でS偏光入射した場合を
考えると、このときの透過率は最大で70%、最小で4
5%である。最終的に充電変換される光束は、基板面に
関して考えると、入射と受光で合計2回ペリクル膜を透
過しなければならないので、受光角も同じく75°だと
すると、この2乗で受光光量が変動する。すなわち、最
大で49%、最小で20%となる。したがって、基板上
に全く同じ異物があったとしても、ペリクル膜厚が0.
02μmばらついただけで、受光光量は2.5 (=4
9/20)倍変動することになる。
Incidentally, if the horizontal axis is the incident angle of the beam on the pellicle film surface and the vertical axis is the transmittance when the beam passes through the pellicle film once, the result will be as shown in FIG. Therefore, in Figure 3, for example, if we consider the case where S-polarized light is incident at an incident angle of 75 degrees with respect to the normal to the beam lot, the transmittance in this case is at most 70% and at minimum 4.
It is 5%. Considering the surface of the substrate, the light flux that is finally charged and converted must pass through the pellicle film twice, once when it enters and once when it is received.If the receiving angle is also 75°, then the amount of received light will vary by the square of this. . That is, the maximum is 49% and the minimum is 20%. Therefore, even if there are exactly the same foreign matter on the substrate, the pellicle film thickness will be 0.
With a variation of only 0.02 μm, the amount of received light is 2.5 (=4
9/20) will fluctuate twice as much.

このような大きな変動の起こる原因は、ペリクル膜なる
ものが通常、ニトロセルロースなどの誘電体物質ででき
ているために、これに入射した光束はその内部で多重反
射を繰り返すうちに微小な膜厚差でも最終的にはビーム
の波長(He−Neの場合0.6328μm)に対して
、干渉条件をずらし得る光路長変化となることにある。
The reason for such large fluctuations is that the pellicle film is usually made of a dielectric material such as nitrocellulose, and the light beam incident on the pellicle undergoes multiple reflections within the pellicle film, resulting in a minute film thickness. Even the difference ultimately results in an optical path length change that can shift the interference condition with respect to the beam wavelength (0.6328 μm in the case of He-Ne).

そして、この傾向は、ビームがペリクル膜面の法線に対
して大きな角度で入射する程大きくなる。
This tendency becomes larger as the beam is incident at a larger angle to the normal to the pellicle film surface.

また、このような受光量の変動だけでなく、受光光量自
体もペリクル膜が無いときに比べ平均して約35%に低
減してしまうという欠点もある。
In addition to such fluctuations in the amount of received light, there is also the drawback that the amount of received light itself is reduced to about 35% on average compared to when there is no pellicle film.

同じ様な問題はべりタル膜に限らず、平行平面ガラスを
用いたときにも起きる。つまり、平行平面ガラスの厚み
が例えば2mm以下と薄く、レーザ光の可干V歩距離内
にある時は、前述ペリクル膜と同じ理由で透過光量の減
衰がおきる。また、その厚みが厚い時でも、ビームのガ
ラスに入射する際と、射出する際に、フレネル反射が大
きくなってしまい、同様な透過光量の低減が生じる。
A similar problem occurs not only when using a Betartal film but also when parallel plane glass is used. That is, when the parallel plane glass is thin, for example, 2 mm or less, and is within the V walking distance of the laser beam, the amount of transmitted light is attenuated for the same reason as the pellicle film described above. Furthermore, even when the thickness is large, Fresnel reflection increases when the beam enters the glass and when it exits the glass, resulting in a similar reduction in the amount of transmitted light.

本発明の目的は、このような従来技術の問題点に鑑み、
表面状態検査装置において、ペリクル膜等の有無にかか
わらず、またペリクル膜等の膜厚にばらつきがあっても
、異物の検出感度が高く安定した検査が行なえるように
することにある。
In view of the problems of the prior art, an object of the present invention is to
It is an object of the present invention to enable a surface condition inspection device to perform a stable inspection with high foreign matter detection sensitivity regardless of the presence or absence of a pellicle film or the like and even if the thickness of the pellicle film varies.

[課題を解決するための手段] 上記目的を達成するため本発明では、基板上にレーザビ
ームを入射させその散乱光を検出して該基板の表面状態
を検査する表面状態検査装置において、該レーザビーム
をP偏光とし、かつ基板面に対し75°以下の入射角で
入射するようにしている。また、検出される前記散乱光
が基板面の法線となす角は75°以下となるようにして
いる。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a surface condition inspection apparatus that inspects the surface condition of the substrate by making a laser beam incident on the substrate and detecting its scattered light. The beam is P-polarized and is made incident on the substrate surface at an incident angle of 75° or less. Further, the angle between the detected scattered light and the normal to the substrate surface is set to be 75° or less.

基板面の上には通常、防塵用ペリクル膜のような光透過
性の光学薄膜あるいは光学平板が基板にほぼ平行に装着
される。
A light-transmissive optical thin film or optical flat plate, such as a dustproof pellicle film, is usually mounted on the substrate surface substantially parallel to the substrate.

[作用] この構成において、レチクル等の基板に光学薄膜として
例えば防塵用ペリクル膜が装着されているとすれば、例
えばレチクルの基板の場合、ガラス面あるいはパターン
面の表面状態はべりタル膜を通して走査し検査されるが
、その際、照明光として用いられるレーザビームはP(
扁光であるため、ペリクル膜の膜厚変化に対する透過率
変化および低下は従来用いていたS偏光の場合よりも少
なく、入射角が75°以下であれば想定されるII!厚
変化に対し実用上十分な透過率の変動および低下の範囲
内で検査が行なわれる。したがって、ペリクル膜等の有
無やその膜厚のばらつきにかかわらず、異物の検出感度
が高く安定した検査が行なわれる。
[Function] In this configuration, if a dustproof pellicle film is attached as an optical thin film to a substrate such as a reticle, for example, in the case of a reticle substrate, the surface condition of the glass surface or pattern surface can be scanned through the ferrite film. The laser beam used as illumination light is P(
Because it is polarized light, the change and decrease in transmittance due to changes in the thickness of the pellicle film are smaller than in the case of conventionally used S-polarized light, which is expected if the incident angle is 75° or less. Inspection is performed within a range of practically sufficient variation and decrease in transmittance with respect to thickness changes. Therefore, regardless of the presence or absence of a pellicle film or the like and variations in its film thickness, a stable inspection can be performed with high foreign object detection sensitivity.

[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.

′fSx図(a)および(b)は本発明の一実施例に係
る表面状態検出装置によりレチクル面の検査をする様子
を示す側面図および概略下面図である。
'fSx Figures (a) and (b) are a side view and a schematic bottom view showing how a reticle surface is inspected by a surface condition detection device according to an embodiment of the present invention.

同図において、1はレチクル、1uはレチクル1」二面
のガラス面、11はレチクル1下面のパタニングを施し
たパターン面、2および3はそれぞれガラス面1uおよ
びパターン面11を保護するペリクル膜、4はペリクル
l]@2上面の上ペリクル而、5はペリクル膜3下面の
下ペリクル面、6はこれら各面を走査するレーザビーム
、78〜7dはレーザビーム6が操作するこれら各面上
の走査点P、〜P4に物点を有するとともに点P、′〜
Pa’ に再結像するレンズまたはミラーによる受光素
子、88〜8dはそれぞれ点P。
In the figure, 1 is the reticle, 1u is the two glass surfaces of the reticle 1, 11 is the patterned surface of the lower surface of the reticle 1, 2 and 3 are pellicle films that protect the glass surface 1u and the pattern surface 11, respectively. 4 is the upper pellicle on the upper surface of pellicle l]@2, 5 is the lower pellicle surface on the lower surface of the pellicle membrane 3, 6 is the laser beam that scans each of these surfaces, and 78 to 7d are the pellicles on each of these surfaces operated by the laser beam 6. There is an object point at the scanning point P,~P4, and the point P,'~
Light-receiving elements 88 to 8d, which are lenses or mirrors that refocus images on Pa', are points P, respectively.

〜P、′上あるいはその近傍に配置され点P、〜P4以
外から発する不用な光束を遮断する視野絞り、98〜9
dはそれぞれ視野絞り88〜8dの後方に配置され受光
素子7a〜7dが集光する光束を伝達する光ファイバ等
の光量伝達素子、10a〜10dは光量伝達素子98〜
9dによって伝達されてくる光束を光電変を奏する光電
変換素子である。
A field diaphragm, 98-9, which is placed on or near ~P,' and blocks unnecessary light beams emitted from points other than points P, ~P4.
d is a light amount transmission element such as an optical fiber, which is arranged behind the field stops 88 to 8d, and transmits the light beam condensed by the light receiving elements 7a to 7d, and 10a to 10d are light amount transmission elements 98 to 10d.
This is a photoelectric conversion element that performs photoelectric conversion on the luminous flux transmitted by 9d.

レーザビーム6は、図中矢印りで示すようなP偏光で、
その偏向面は紙面内(入射断面内)にあり、第2図を用
いて前述したようにポリゴンミラーや振動ミラーを用い
て第1図の紙面を横切る方向に走査される。また、レー
ザビーム6によってレチクル全面が走査されるように、
レチクル1は不図示のステージにより矢印Sの方向に移
動される。
The laser beam 6 is P-polarized light as shown by the arrow in the figure.
The deflection plane is within the plane of the paper (inside the incident cross section), and as described above with reference to FIG. 2, it is scanned in a direction across the plane of the paper of FIG. 1 using a polygon mirror or a vibrating mirror. In addition, so that the entire surface of the reticle is scanned by the laser beam 6,
Reticle 1 is moved in the direction of arrow S by a stage (not shown).

上ペリクル面4に対するレーザビーム6の入射角θ1は
75°以下となるように設定される。また、受光素子7
bおよび70等の受光光学系の光軸P、P2’ および
Ps Ps ’ は上または下ペリクル面4または5の
法線に対しそれぞれ75°以下の角度θ2およびθ、を
なすように構成される。
The incident angle θ1 of the laser beam 6 with respect to the upper pellicle surface 4 is set to be 75° or less. In addition, the light receiving element 7
The optical axes P, P2' and Ps Ps' of the light receiving optical systems such as b and 70 are configured to make angles θ2 and θ of 75° or less with respect to the normal to the upper or lower pellicle surface 4 or 5, respectively. .

受光素子78〜7dとしては本実施例は特にセルフォッ
クレンズアレーを用いているが他にシリンドリカルレン
ズのような一次元結像素子が使用できる。
As the light-receiving elements 78 to 7d, a SELFOC lens array is particularly used in this embodiment, but other one-dimensional imaging elements such as cylindrical lenses can also be used.

次に第1図(b)を用いて本実施例の異物検出原理を説
明する。第1図(b)は本実施例の表面状態検出装置の
下面概略図であり、本図においてはペリクル11! 3
、受光素子7d等の部材は簡略化のため省略されている
。受光素子7Cは図のような複数のセルフォックレンズ
7caより成るセルフォックレンズアレイである(セル
フォックレンズ7caの大きさは実際より大きく描かれ
ている)。℃はレチクル下面1℃上での走査レーザビー
ムの軌跡(走査線)である、走査レーザビームはレチク
ル上面1uに対して斜め上方から、かつその走査線がレ
チクルの縦あるいは横方向(ここではX方向)と15゛
をなすように入射させる。
Next, the foreign object detection principle of this embodiment will be explained using FIG. 1(b). FIG. 1(b) is a schematic bottom view of the surface state detection device of this embodiment, and in this figure, the pellicle 11! 3
, the light receiving element 7d, and other members are omitted for the sake of simplification. The light receiving element 7C is a Selfoc lens array consisting of a plurality of Selfoc lenses 7ca as shown in the figure (the size of the Selfoc lenses 7ca is drawn larger than it actually is). ℃ is the locus (scanning line) of the scanning laser beam at 1℃ above the bottom surface of the reticle. direction) and make an angle of 15°.

各セルフォックレンズの光軸7C℃はすべて互いに平行
で、且つすべての光軸の延長線はレチクル下面lfl上
で走査線Iと直交する。よって各光軸のレチクル下面I
J2上への投影像はレチクルの縦あるいは横方向(ここ
ではY方向)と15°をなす。またすべてのセルフォッ
クレンズ7caの物体側焦点位置は走査線℃上に来るよ
うに設けられる。更に各セルフォックレンズ7caの受
光NAは±15°未溝に制限されている。ここでパター
ンからの散乱光はパターンが縦あるいは横方向に対しO
”、30°、45°、60°、90°から成るとすると
、同じく縦あるいは横方向に対し0°、30’ 、45
°、60”   90°方向に発生する。各セルフォッ
クレンズ7caの光軸のレチクル下面IIl上への投影
像はY方向と15°をなし且つ受光NAは±15°15
°ので、走査線に上に来たパターンからの散乱光は各セ
ルフォックレンズへの入射角が必ずNAより大きくなっ
てしまい、けられて通過できない。これに対し異物から
の散乱光は指向性がないので必ず一部各セルフオツクレ
ンズを通過する。したがって各セルフォックレンズを通
過した光をそれぞれ光量伝達素子9cで受光して検出す
るようにすれば異物のみからの散乱光を検出できる事に
なる。
The optical axes 7C° of each SELFOC lens are all parallel to each other, and the extension lines of all the optical axes are perpendicular to the scanning line I on the lower surface lfl of the reticle. Therefore, the lower surface I of the reticle for each optical axis
The projected image onto J2 forms an angle of 15° with the vertical or horizontal direction (in this case, the Y direction) of the reticle. Further, the object-side focal positions of all SELFOC lenses 7ca are arranged so as to be on the scanning line °C. Furthermore, the light receiving NA of each SELFOC lens 7ca is limited to ±15°. Here, the scattered light from the pattern is
”, 30°, 45°, 60°, and 90°.
°, 60" is generated in the 90° direction. The projected image of the optical axis of each SELFOC lens 7ca onto the lower surface IIl of the reticle forms an angle of 15° with the Y direction, and the receiving NA is ±15°15
Therefore, the incident angle of the scattered light from the pattern above the scanning line to each SELFOC lens is always greater than the NA, and it is eclipsed and cannot pass through. On the other hand, since the scattered light from foreign objects has no directivity, a portion of it necessarily passes through each self-cleaning lens. Therefore, if the light passing through each SELFOC lens is received and detected by the light amount transmission element 9c, it is possible to detect the scattered light only from the foreign matter.

この構成において、レーザビーム6が75°以下の入射
角度θ1で上ペリクル面4に入射され各面が走査される
が、その際に、上下のペリクル膜面4,5またはガラス
面1uもしくはパターン面11に付着した異物にレーザ
ビーム6が当たると、レーザビーム6は異物によって散
乱され、その散乱光束の一部が受光素子78〜7dによ
って集光され、そして光量伝達素子98〜9dを経て光
電変換素子10a〜10dいずれかへ伝達される。伝達
された異物の情報を含む光信号はその光電変換素子によ
って電気信号に変換され、所定の信号処理を経て異物の
存在が検出されることになる。
In this configuration, the laser beam 6 is incident on the upper pellicle surface 4 at an incident angle θ1 of 75° or less and each surface is scanned. When the laser beam 6 hits the foreign matter attached to the laser beam 11, the laser beam 6 is scattered by the foreign matter, and a part of the scattered light flux is collected by the light receiving elements 78 to 7d, and then passes through the light transmitting elements 98 to 9d for photoelectric conversion. The signal is transmitted to any of the elements 10a to 10d. The transmitted optical signal containing information on the foreign object is converted into an electrical signal by the photoelectric conversion element, and the presence of the foreign object is detected through predetermined signal processing.

ここで、レーザビーム6が75’の入射角でP偏向入射
されるとすれば、ペリクルflI2を透過するに際し、
第4図が示すように、膜厚ばらつき002μmに対し、
最大透過率の95〜87%の範囲で透過率が変動するこ
とになる。また、受光素子7bの光軸P2P2’ につ
いての角度θ、が同しく75°であるとすれば、受光素
子7bによる受光光量は透過率変動の2乗すなわち90
〜76%の範囲で変動する。
Here, if the laser beam 6 is incident with a P polarization at an incident angle of 75', upon passing through the pellicle flI2,
As shown in Figure 4, for a film thickness variation of 002 μm,
The transmittance will vary within the range of 95% to 87% of the maximum transmittance. Furthermore, if the angle θ of the light receiving element 7b with respect to the optical axis P2P2' is also 75°, the amount of light received by the light receiving element 7b is the square of the transmittance fluctuation, that is, 90°.
It varies in the range of ~76%.

したがって従来例においてはガラス面上にまったく同じ
異物があってもペリクル膜の厚さのばらつきによって受
光光量は245倍まで変動したのに対し、本実施例の場
合は最悪でも1.18(立90/76)倍すなわちわず
か18%までの変動に抑えることかできる。また、この
ような変動だけでなく受光光量自体もペリクル膜がない
場合の83%以上となり、従来例では65%にまでも低
減したのに対し17%以内の低減に抑えることができる
Therefore, in the conventional example, even if there was exactly the same foreign object on the glass surface, the amount of received light varied up to 245 times due to variations in the thickness of the pellicle film, whereas in the case of the present example, the amount of received light varied by a factor of 1.18 (90%) at worst. /76) times, or only 18%. In addition to such fluctuations, the amount of received light itself is 83% or more of that without the pellicle film, and can be suppressed to within 17%, whereas it was reduced to 65% in the conventional example.

また、このような効果に基づき、以下のシステム的利点
が生じる。
Furthermore, based on such effects, the following system advantages arise.

■ ペリクル膜を装着したレチクルと装着しないレチク
ルとで受光素子に跳び込む異物の散乱光量がほぼ等しい
ので、同一の感度設定で両方のレチクルを検査すること
ができる。
- Since the amount of scattered light from foreign objects that jumps into the light-receiving element is almost the same between a reticle with a pellicle film and a reticle without a pellicle film, both reticles can be inspected with the same sensitivity setting.

■ ペリクル膜厚のばらつきに関係なく、常に安定した
検出感度を保つことができる。
■ Stable detection sensitivity can always be maintained regardless of variations in pellicle film thickness.

第5図は本発明の他の実施例に係る表面状態検出装置に
よりレチクル面の検査をする様子を示す。第1図と同一
記号を付した部材は共通とする。
FIG. 5 shows how a reticle surface is inspected by a surface condition detection device according to another embodiment of the present invention. Components with the same symbols as in FIG. 1 are the same.

第1図の場合と異る点は、レーザビームをレチクルに対
し上からのビーム6uと、下からのビーム6flとに分
けて入射している点である。これを実現するためには、
例えば第2図において切換えミラー13をハーフミラ−
に替えればいい。
The difference from the case of FIG. 1 is that the laser beam is incident on the reticle separately into a beam 6u from above and a beam 6fl from below. To achieve this,
For example, in FIG. 2, the switching mirror 13 is replaced with a half mirror.
Just change it to

本実施例の利点は次の通りである。The advantages of this embodiment are as follows.

実際のレチクルにおいては、基板の下側の面に回路パタ
ーンAが不透過性のクロムや酸化クロムでプリントされ
ている。したがって、例えば第1図で示したようにレチ
クルの上方だけからレーザビームを入射させた場合、上
ペリクル面4とガラス面1u(レチクル上面)上の点P
lとP、にはビームが到達するので、これらの面の表面
状態の検査はできる。しかし、レチクル下面1ftにク
ロムのパターンがある場合、ビームがこれによって遮ぎ
られでしまう。そのため、このクロム上に付着している
ごみや、ビームの延長線上にある下ペリクル面5上のご
み(P4点上)が照明されなくなり、これらの面上の表
面状態の検査ができなくなる。
In an actual reticle, the circuit pattern A is printed on the lower surface of the substrate using opaque chromium or chromium oxide. Therefore, for example, when the laser beam is incident only from above the reticle as shown in FIG.
Since the beam reaches L and P, the surface condition of these surfaces can be inspected. However, if there is a chrome pattern on the bottom surface of the reticle, the beam will be blocked by this pattern. Therefore, the dust adhering to this chromium and the dust on the lower pellicle surface 5 (above point P4) located on the extension line of the beam are not illuminated, making it impossible to inspect the surface condition on these surfaces.

これに対し、第5図に示すようにビームを上下から入射
させると、回路パターンの有無にかかわらず、常に、上
側のビーム6uが上ペリクル面4とガラス面1uを照明
し、下側のビーム6JZが下ペリクル面5とパターン面
IIlとを照明するので、これら4面の表面状態を同時
に検査することがでざる。
On the other hand, when the beam is incident from above and below as shown in FIG. 5, the upper beam 6u always illuminates the upper pellicle surface 4 and the glass surface 1u, and the lower beam Since 6JZ illuminates the lower pellicle surface 5 and pattern surface IIl, it is impossible to inspect the surface condition of these four surfaces at the same time.

この実施例においても、上下のビーム6uおよび61の
ペリクル面4および5に対する入射角θ1およびθIは
75′″以下が望ましいし、ガラス面1u、パターン面
iILの各受光系の光軸P2 P2’ 、Ps P3’
 も上下のペリクル面45に刻し、756以下であるの
が望ましい。
In this embodiment as well, the incident angles θ1 and θI of the upper and lower beams 6u and 61 with respect to the pellicle surfaces 4 and 5 are preferably 75'' or less, and the optical axis P2 P2' of each light receiving system on the glass surface 1u and pattern surface iIL is , Ps P3'
It is desirable that the number is 756 or less.

また、レーザビームの走査はポリゴンミラーや1辰動ミ
ラーを用いる代わりに、例えばシリンドリカルし・ンズ
といった一次元結像素子を用いて、各検査面上にシート
状のビームを形成するようにしてもよい。
Furthermore, instead of using a polygon mirror or a single-axis mirror for scanning the laser beam, a one-dimensional imaging element such as a cylindrical lens may be used to form a sheet-shaped beam on each inspection surface. .

前述実施例では異物からの後方散乱光あるいは上方散乱
光を受光する受光系になっているが、側方散乱光や前方
散乱光を受光するようにしても良い。
In the above-mentioned embodiment, the light receiving system receives back scattered light or upward scattered light from a foreign object, but it may be configured to receive side scattered light or forward scattered light.

[発明の効果] 以上説明したように本発明によれば、照明用のレーザビ
ームをP偏光で、かつ光学薄膜あるいは光学平板等の保
護膜に対し75°以下の入射角で入射させて走査し、さ
らには検出される散乱光を保護膜の法線に対し75°以
下の角度のものとしたため、光干渉性のある保護膜を通
しても基板面上の異物を高感度で安定して検出すること
ができる。
[Effects of the Invention] As explained above, according to the present invention, a laser beam for illumination is P-polarized and is incident on a protective film such as an optical thin film or an optical flat plate at an incident angle of 75° or less for scanning. Furthermore, since the detected scattered light is at an angle of 75° or less with respect to the normal line of the protective film, foreign matter on the substrate surface can be detected stably with high sensitivity even through the protective film that has optical interference. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は、本発明の一実施例に係る
表面状態検出装置によりレチクル面の検査をする様子を
示す模式図、 第2図は、従来例に係る表面状態検出装置によりレチク
ル面の検査をする様子を示す模式図、第3図は、他の従
来例に係る表面状態検出装置によりレチクル面の検査を
する様子を示す模式第4図は、ペリクル膜の入射角およ
び膜厚に対する透過率の特性を示すグラフ、そして第5
図は、本発明の他の実施例に係る表面状態検出装置によ
りレチクル面の検査をする様子を示す模式図である。 1、レチクル、 1u ガラス面、 1λ:パターン面、 2,3:ベリクル膜、 4:上ペリクル面、 5:下ペリクル面、 6.8u、842:レーザビーム、 78〜7cm受光素子、 88〜8d:視野絞り、 98〜9d:光ファイバ、 10:レーザ、 10a 〜10d:光電変換素子、 11:走査用ミラー 12:レンズ、 13.14,15:ミラー
FIGS. 1(a) and (b) are schematic diagrams showing how a reticle surface is inspected by a surface state detection device according to an embodiment of the present invention, and FIG. 2 is a surface state detection device according to a conventional example. FIG. 3 is a schematic diagram showing how the reticle surface is inspected using another conventional surface state detection device. FIG. 4 is a schematic diagram showing how the reticle surface is inspected using another conventional surface state detection device. A graph showing the characteristics of transmittance with respect to film thickness, and the fifth
The figure is a schematic diagram showing how a reticle surface is inspected by a surface condition detection device according to another embodiment of the present invention. 1. Reticle, 1u glass surface, 1λ: pattern surface, 2, 3: velicle film, 4: upper pellicle surface, 5: lower pellicle surface, 6.8u, 842: laser beam, 78-7cm photodetector, 88-8d : Field stop, 98-9d: Optical fiber, 10: Laser, 10a-10d: Photoelectric conversion element, 11: Scanning mirror 12: Lens, 13.14, 15: Mirror

Claims (3)

【特許請求の範囲】[Claims] (1)基板上にレーザビームを入射させその散乱光を検
出して該基板の表面状態を検査する表面状態検査装置に
おいて、該レーザビームはP偏光でありかつ基板面の法
線に対し75°以下の入射角で入射されることを特徴と
する表面状態検査装置。
(1) In a surface condition inspection device that injects a laser beam onto a substrate and detects its scattered light to inspect the surface condition of the substrate, the laser beam is P-polarized light and is 75° with respect to the normal to the substrate surface. A surface condition inspection device characterized in that the incident angle is as follows.
(2)検出される前記散乱光が基板面の法線となす角は
75°以下である請求項1記載の表面状態検査装置。
(2) The surface condition inspection device according to claim 1, wherein the angle between the detected scattered light and the normal to the substrate surface is 75° or less.
(3)前記レーザービームは前記基板に装着されたペリ
クルを介して前記基板上に入射され、且つ前記ペリクル
面の法線に対し75°以下の入射角で入射されることを
特徴とする請求項1記載の表面状態検査装置。
(3) The laser beam is incident on the substrate via a pellicle attached to the substrate, and is incident at an incident angle of 75° or less with respect to a normal to the pellicle surface. 1. The surface condition inspection device according to 1.
JP1004695A 1989-01-13 1989-01-13 Surface condition inspection device Expired - Fee Related JPH07104288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1004695A JPH07104288B2 (en) 1989-01-13 1989-01-13 Surface condition inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1004695A JPH07104288B2 (en) 1989-01-13 1989-01-13 Surface condition inspection device

Publications (2)

Publication Number Publication Date
JPH02186248A true JPH02186248A (en) 1990-07-20
JPH07104288B2 JPH07104288B2 (en) 1995-11-13

Family

ID=11591023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1004695A Expired - Fee Related JPH07104288B2 (en) 1989-01-13 1989-01-13 Surface condition inspection device

Country Status (1)

Country Link
JP (1) JPH07104288B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829354A (en) * 1993-06-08 1996-02-02 Mitsubishi Electric Corp Detection and inspection method of small foreign matter scanning-type probe microscope used therefor, and manufacture of semiconductor element and liquid crystal display element using them
WO1998052025A1 (en) * 1997-05-14 1998-11-19 Idemitsu Petrochemical Co., Ltd. Surface inspection instrument and surface inspection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273141A (en) * 1985-09-27 1987-04-03 Hitachi Ltd Method and apparatus for detecting defect in transparent sample
JPS62188949A (en) * 1986-02-14 1987-08-18 Canon Inc Surface condition measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273141A (en) * 1985-09-27 1987-04-03 Hitachi Ltd Method and apparatus for detecting defect in transparent sample
JPS62188949A (en) * 1986-02-14 1987-08-18 Canon Inc Surface condition measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829354A (en) * 1993-06-08 1996-02-02 Mitsubishi Electric Corp Detection and inspection method of small foreign matter scanning-type probe microscope used therefor, and manufacture of semiconductor element and liquid crystal display element using them
WO1998052025A1 (en) * 1997-05-14 1998-11-19 Idemitsu Petrochemical Co., Ltd. Surface inspection instrument and surface inspection method
DE19880793C1 (en) * 1997-05-14 2003-08-07 Idemitsu Petrochemical Co Surface testing device and surface testing method

Also Published As

Publication number Publication date
JPH07104288B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
US4595289A (en) Inspection system utilizing dark-field illumination
US4831274A (en) Surface inspecting device for detecting the position of foreign matter on a substrate
JP3259331B2 (en) Surface condition inspection device
JP3183046B2 (en) Foreign particle inspection apparatus and method for manufacturing semiconductor device using the same
JPH04273008A (en) Surface condition inspection device
JPH04232951A (en) Face state inspecting device
JPH075115A (en) Surface condition inspection apparatus
US5907396A (en) Optical detection system for detecting defects and/or particles on a substrate
JPS5965428A (en) Foreign substance detector
US5602639A (en) Surface-condition inspection method and apparatus including a plurality of detecting elements located substantially at a pupil plane of a detection optical system
JPH10282007A (en) Defect inspection method of foreign matter and apparatus therefor
JPH02186248A (en) Surface condition inspecting device
JP2001041719A (en) Inspection device and method of transparent material and storage medium
JPH0621877B2 (en) Surface condition measuring device
JP3042225B2 (en) Surface condition inspection method and surface condition inspection device using the same
JP3336392B2 (en) Foreign matter inspection apparatus and method
JP2006266817A (en) Surface inspection apparatus
JPH04339245A (en) Inspecting device for surface condition
JPH0621876B2 (en) Surface condition measuring device
JPS62188949A (en) Surface condition measuring apparatus
JP2006313107A (en) Inspection device, inspection method, and method of manufacturing pattern substrate using them
JPH0547091B2 (en)
JPS6333648A (en) Surface condition inspecting device
JPH11194097A (en) Foreign material inspection apparatus
JPS62188944A (en) Surface condition measuring apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees