JPS62188944A - Surface condition measuring apparatus - Google Patents

Surface condition measuring apparatus

Info

Publication number
JPS62188944A
JPS62188944A JP61030361A JP3036186A JPS62188944A JP S62188944 A JPS62188944 A JP S62188944A JP 61030361 A JP61030361 A JP 61030361A JP 3036186 A JP3036186 A JP 3036186A JP S62188944 A JPS62188944 A JP S62188944A
Authority
JP
Japan
Prior art keywords
substrate
light
mirror
foreign matter
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61030361A
Other languages
Japanese (ja)
Inventor
Michio Kono
道生 河野
Eiichi Murakami
栄一 村上
Akiyoshi Suzuki
章義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61030361A priority Critical patent/JPS62188944A/en
Priority to US07/014,033 priority patent/US4795911A/en
Publication of JPS62188944A publication Critical patent/JPS62188944A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable an increase in separate detection rate of a foreign matter for a circuit pattern, by arranging an optical axis of a focusing section of a light receiving means to be positioned on the incidence side with respect to a normal within an incidence surface of a substrate. CONSTITUTION:A polygon mirror 2 and a projection section 4 compose a part of a projection means. A mirror 2 is rotated to scan over a substrate 5 from a point B1 to point B2 while the substrate 5 is moved in the direction of the arrow S1 or S2 to scan the whole of substrate 5. A focusing section 6 is provided on the incidence side with respect to a normal on an incidence surface of the substrate 5 and focus scattered luminous fluxes from a foreign matter on the substrate 5 and then introduced to a light receiving surface 9 with a lens 8. The focusing section 6, the mirror 7 and the lens 8 composed a part of a light receiving means. On the other hand, with the rotation of the mirror 2, a luminous flux emitted at the reflection point PG is scattered by the foreign matter on the substrate 5 to be focused 6. This can achieve a higher separate detection rate of a foreign matter for a circuit pattern.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は表面状態測定装置に関し、特に半導体製造装置
で使用される回路パターンが形成されているレチクルや
フォトマスク等の基板上に回路パターン以外の異物、例
えば不透過性のゴミ等を検出する際に好適な表面状態測
定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a surface condition measuring device, and particularly to a surface condition measuring device that is used in semiconductor manufacturing equipment to measure a surface condition on a substrate such as a reticle or a photomask on which a circuit pattern is formed. The present invention relates to a surface condition measuring device suitable for detecting foreign matter such as impermeable dust.

(従来の技術) 一般にIC製造工程においてはレチクル又はフォトマス
ク等の基板上に形成されている露光用の回路パターンを
半導体焼付は装置(ステッパー又はマスクアライナ−)
によりレジストが塗布されたウニ八面上に転写して製造
している。
(Prior Art) Generally, in the IC manufacturing process, a semiconductor printing device (stepper or mask aligner) is used to print a circuit pattern for exposure formed on a substrate such as a reticle or a photomask.
It is manufactured by transferring it onto eight surfaces of sea urchins coated with resist.

この際、基板面上にゴミ等の異物が存在すると転写する
際、異物も同時に転写されてしまいIC製造の歩留りを
低下させる原因となってくる。
At this time, if foreign matter such as dust is present on the substrate surface, the foreign matter will also be transferred at the time of transfer, causing a decrease in the yield of IC manufacturing.

特にレチクルを使用し、ステップアンドリピート方法に
より縁り返してウニ八面上に回路パターンを焼付ける場
合、レチクル面上の1個の異物がウェハ全面に焼付けら
れてしまいIC製造(’) 3p filりを大きく低
下させる原因となってくる。
In particular, when using a reticle and printing a circuit pattern on eight sides by turning the edges using the step-and-repeat method, a single foreign object on the reticle surface is printed onto the entire wafer surface, resulting in IC manufacturing (') 3p fil. This will cause a significant decrease in performance.

その為、IC製造過程においては基板上の異物の存在を
検出するのか不可欠となっており、従来より種々の検査
方法か提案されている。例えば第2図は異物か等友釣に
光を散乱する性質を利用する方法の一例である。同図に
おいては、走査用ミラー11とレンズ12を介してレー
ザーIOからの光束をハーフミラ−13により2つに分
け、2つのミラー14.45により各々基板15の表面
と裏面に入射させ、走査用ミラー11を回転若しくは振
動させて基板15上を走査している。そして基板15か
らの直接の反射光及び透過光の光路から離れた位置に複
数の受光部16.17.18を設け、これら複数の受光
部16.17.18からの出力信号を用いて基板15上
の仄、物の存在を検出している。
Therefore, in the IC manufacturing process, it is essential to detect the presence of foreign matter on the substrate, and various inspection methods have been proposed. For example, FIG. 2 shows an example of a method that utilizes the property of foreign objects to scatter light equally. In the figure, the beam from the laser IO is divided into two by a half mirror 13 via a scanning mirror 11 and a lens 12, and is made incident on the front and back surfaces of a substrate 15 by two mirrors 14 and 45, respectively. The mirror 11 is rotated or vibrated to scan the substrate 15. A plurality of light receiving sections 16, 17, 18 are provided at positions away from the optical path of direct reflected light and transmitted light from the substrate 15, and output signals from these plurality of light receiving sections 16, 17, 18 are used to The presence of objects above is being detected.

即ち回路パターンからの回折光は方向性が強い為、各受
光部からの出力値は異なるが異物に光束が入射すると入
射光束は等友釣に散乱される為、複数の受光部からの出
力値が各々等しくなってくる。従ってこのときの出力値
を比較することにより異物の存在を検出している。
In other words, since the diffracted light from the circuit pattern has strong directionality, the output value from each light receiving part will be different, but if the light beam is incident on a foreign object, the incident light flux will be scattered equally, so the output values from multiple light receiving parts will be different. Each becomes equal. Therefore, the presence of foreign matter is detected by comparing the output values at this time.

又第3図は異物が入射光束の偏光特性を乱す性質を利用
する方法の一例である。同図において偏光子19、走査
用ミラー+1そしてレンズ12を介してレーザー10か
らの光束を所定の偏光状態の光束としハーフミラ−13
により2つに分け、2つのミラー14.45により各々
基板15の表面と裏面に入射させて走査用ミラー11に
より基板15上を走査している。そして基板15からの
直接の反射光及び透過光の光路から離れた位置に各々検
光子20.21を前方に配置した2つの受光部21.2
3を設けている。
Furthermore, FIG. 3 shows an example of a method that utilizes the property that foreign matter disturbs the polarization characteristics of an incident light beam. In the same figure, the light beam from the laser 10 is converted into a light beam in a predetermined polarization state through a polarizer 19, a scanning mirror +1, and a lens 12, and then a half mirror 13
The light beam is divided into two parts by two mirrors 14 and 45, and the light is incident on the front and back surfaces of the substrate 15, respectively, and the scanning mirror 11 scans the substrate 15. Two light receiving sections 21.2 each having an analyzer 20.21 disposed in front thereof are located away from the optical paths of direct reflected light and transmitted light from the substrate 15.
There are 3.

そして回路パターンからの回折光と異物からの散乱光と
の偏光比率の違いから生ずる受光量の差を2つの受光部
21.23より検出し、これにより基板15上の回路パ
ターンと異物とを弁別している。
Then, the difference in the amount of light received due to the difference in polarization ratio between the diffracted light from the circuit pattern and the scattered light from the foreign object is detected by the two light receiving sections 21 and 23, thereby distinguishing between the circuit pattern on the board 15 and the foreign object. Separate.

しかしながら第2図、第3図に示す検出方法はいずれも
受光部には入射光束の直接の反射光及び透過光は入射し
ないが回路パターンからの各次数の回折光の一部が入射
してしまう。この為、回路パターンからの回折光と異物
からの散乱光の双方の出力差をとる場合、異物の反射率
や形状等が異ってくると双方の出力差が変動し異物の検
出率が低下してくる欠点があった。
However, in both of the detection methods shown in Figures 2 and 3, the direct reflected light and transmitted light of the incident light beam do not enter the light receiving section, but a portion of the diffracted light of each order from the circuit pattern enters the light receiving section. . For this reason, when taking the output difference between the diffracted light from the circuit pattern and the scattered light from a foreign object, if the reflectance or shape of the foreign object differs, the output difference between both will fluctuate and the detection rate of the foreign object will decrease. There were some drawbacks.

(発明が解決しようとする問題点) 本発明は基板上に存在しているゴミ等どのような状態の
異物であっても回路パターンと高い精度で分離検出する
ことのできる高い分離検出率を有した表面状態測定装置
の提供を目的とする。
(Problems to be Solved by the Invention) The present invention has a high separation detection rate that allows foreign substances such as dust on a board to be detected separately from circuit patterns in any state with high accuracy. The purpose of the present invention is to provide a surface condition measuring device with

(問題点を解決するための手段) パターンが形成されている基板に対して投光手段により
該基板に対し斜め上方から光束を入射し該基板を走査し
、受光手段により前記基板からの散乱光束を受光し、該
受光手段からの出力信号を利用して前記基板の表面状態
を測定する際、前記受光手段の集光部の光軸が前記基板
の入射面内の法線に対して入射側にくるように配置した
ことである。
(Means for Solving the Problem) A light projecting means illuminates a substrate on which a pattern is formed with a light beam obliquely from above to scan the substrate, and a light receiving means collects a scattered light beam from the substrate. When measuring the surface condition of the substrate using the output signal from the light receiving means, the optical axis of the light condensing part of the light receiving means is on the incident side with respect to the normal to the incident plane of the substrate. It was arranged so that it would come to a close.

この他、本発明の特徴は実施例において記載さく実施例
) 第1図は本発明の一実施例の光学系の概略図である。同
図において光源であるレーザー1からの光束をポリゴン
ミラー2により一方向へ反射させ、例えばf−θレンズ
を有する投光部4によりレチクル等の被測定物である基
板5上の回路パターンが形成されている点Oに集光して
いる。
In addition, the features of the present invention will be described in Examples. Fig. 1 is a schematic diagram of an optical system according to an embodiment of the present invention. In the figure, a light beam from a laser 1, which is a light source, is reflected in one direction by a polygon mirror 2, and a circuit pattern is formed on a substrate 5, which is an object to be measured such as a reticle, by a light projector 4 having, for example, an f-θ lens. The light is focused on point O.

ポリゴンミラー2と投光部4は投光手段の一部を構成し
ている。そしてポリゴンミラー2を回転させ基板S上を
点B、から点B2方向に走査すると共に、基板5を矢印
S1若しくは矢印S2方向に移動させることにより基板
5上の全面を走査している。
The polygon mirror 2 and the light projecting section 4 constitute part of a light projecting means. The polygon mirror 2 is rotated to scan the substrate S from point B to point B2, and the entire surface of the substrate 5 is scanned by moving the substrate 5 in the direction of arrow S1 or arrow S2.

そして基板5の入射面の法線に対して入射側に集光部6
を設け、基板5上の異物からの散乱光束を集光し、ミラ
ー7を介して点P6゛に集光し、その後レンズ8により
受光面9に導光している。
A light condensing section 6 is located on the incident side with respect to the normal to the incident surface of the substrate 5.
is provided to condense the scattered light beam from the foreign matter on the substrate 5, condense it at a point P6' via the mirror 7, and then guide it to the light receiving surface 9 by the lens 8.

集光部6とミラー7そしてレンズ8は受光手段の一部を
構成している。レンズ8の光軸8、の延長上のミラー7
との交点71と基板5上の交点Oとを結ぶ線は集光部6
の光軸であり、叉点0とポリゴンミラー2の反射点P6
を結ぶ線は投光部5の光軸である。
The condensing section 6, mirror 7, and lens 8 constitute a part of the light receiving means. Mirror 7 on the extension of optical axis 8 of lens 8
The line connecting the intersection 71 with the intersection O on the substrate 5 is the light condensing part 6
is the optical axis of , and the intersection point 0 and the reflection point P6 of the polygon mirror 2
The line connecting them is the optical axis of the light projecting section 5.

本実施例における点PGはポリゴンミラー2の回転に伴
って、その反射点P6から発散した光束か基板5上の異
物で散乱し、集光部6により集光する位置である。
In this embodiment, point PG is the position where, as the polygon mirror 2 rotates, the light beam diverging from the reflection point P6 is scattered by foreign matter on the substrate 5 and is focused by the condenser 6.

第4図は第1図の実施例における入射光束と基板5上の
回路パターンから生じる回折光の説明図である。今、基
板上の回路パターン面が模式的に描いた球体Sの赤道面
に一致しているとする。現在使用されている半導体回路
パターンの基板上の回路パターンの形状は殆どが例えば
T、、T2で示すその縦横方向で互いに直交しているパ
ターンで構成されている。今、バタニンT2の矢印Iで
示す方向の斜め上方から入射角度αで光束を入射させる
。そうすると図中点A、μ、A°で形成される平面が入
射面となり基板5からの直接の反射光は矢印I°で示す
方向に反射される。このとき球体Sとの交点なPoとす
ると、点P°を中心にして各々のパターンT、、T2と
直交する方向に各次数の回折像が形成する。回路パター
ンが孤立線の場合はその回折像Qは第5図(八)に示す
如く、パターンTと直交する方向に連続的に現われる。
FIG. 4 is an explanatory diagram of the incident light beam and the diffracted light generated from the circuit pattern on the substrate 5 in the embodiment of FIG. Now, it is assumed that the circuit pattern surface on the board corresponds to the equatorial plane of the schematically drawn sphere S. Most of the shapes of circuit patterns on substrates of semiconductor circuit patterns currently in use are composed of patterns indicated by T, . . . T2, which are perpendicular to each other in the vertical and horizontal directions. Now, a light beam is made to enter at an incident angle α from diagonally above the direction indicated by the arrow I of the batanine T2. Then, the plane formed by points A, μ, and A° in the figure becomes an incident plane, and the direct reflected light from the substrate 5 is reflected in the direction indicated by the arrow I°. At this time, if Po is the intersection point with the sphere S, then diffraction images of each order are formed in a direction orthogonal to each pattern T, , T2 with the point P° as the center. When the circuit pattern is an isolated line, its diffraction image Q appears continuously in the direction orthogonal to the pattern T, as shown in FIG. 5(8).

又、回路パターンがメモリーのような綬り返しパターン
の場合はその回折像Qは第5図(II)に示す如く離散
的に現われる。
If the circuit pattern is a repeating pattern such as a memory pattern, the diffraction image Q appears discretely as shown in FIG. 5(II).

いずれも場合でも直接の反射光束の点P°から遠ざかる
程、回路パターンからの回折像の強度は弱くなる。即ち
点P′から入射面内の法線μを過ぎ入射光束の入射側の
球体と交わる点Pの近傍までくると回折光の強度はかな
り弱くなってくる。
In either case, the intensity of the diffraction image from the circuit pattern becomes weaker as the distance from the point P° of the directly reflected light beam increases. That is, the intensity of the diffracted light becomes considerably weaker when it passes from the point P' to the vicinity of the point P, which passes through the normal μ in the plane of incidence and intersects with the sphere on the incident side of the incident light beam.

これに対して異物の散乱光は等方向に生じるので入射側
にも多く現われる。
On the other hand, since the scattered light from foreign objects is generated in the same direction, a large amount appears on the incident side as well.

そこで本実施例では受光手段の集光部の光軸が直接の反
射光の光路からなるべく遠い位置、即ち入射面内の法線
μに対して入射側にくるように配置することにより回路
パターンからの回折光の影響をなるべく少なくして基板
5上の異物からの散乱光のみを主に受光するようにして
いる。
Therefore, in this embodiment, the optical axis of the condensing part of the light receiving means is placed as far away from the optical path of the direct reflected light as possible, that is, on the incident side with respect to the normal μ in the incident plane. The influence of the diffracted light is reduced as much as possible, so that only the scattered light from the foreign matter on the substrate 5 is mainly received.

これにより回路パターンに対する異物の分離検出率を高
めている。尚、分離検出率を高めるには仮りに集光部の
光軸が点P上にくるように配置したとすると点P′と点
Pの中心Oに対して張る角δが大きい程、例えば60°
くδ<180°の範囲に設定するのが好ましい。
This increases the rate of separation and detection of foreign matter from circuit patterns. In order to increase the separation detection rate, if the optical axis of the condensing part is placed on point P, then the larger the angle δ between point P' and the center O of point P, for example 60 °
It is preferable to set it in the range of δ<180°.

尚、第4図において入射光束が基板を透過する直接透過
光についても反射光束と同様に球体Sとの交点をP”と
し点Pと点P”の中心0に対して張る角をδとしたとき
前述と同様に張る角δを設定するのが良い。
In addition, in Figure 4, for the directly transmitted light in which the incident light beam passes through the substrate, the intersection with the sphere S is P'', and δ is the angle between the points P and the center 0 of the points P'', as in the case of the reflected light beam. In this case, it is better to set the extending angle δ in the same way as described above.

又、本実施例において集光部の光軸が投光部の光軸に対
して±45度以内となるように各要素を配置するのが回
路パターンに対する異物の分離検出率を効果的に高める
ことが出来るので好ましい。
Furthermore, in this embodiment, arranging each element so that the optical axis of the condensing section is within ±45 degrees with respect to the optical axis of the light projecting section effectively increases the rate of separating and detecting foreign objects from the circuit pattern. It is preferable because it can be done.

尚、投光部の光軸が基板に対して仮りに60度の角度を
なしているときは集光部の光軸は入射面内の法線に対し
て入射側にくるように基板に対して15度から90度の
範囲となる。
In addition, if the optical axis of the light emitter is at an angle of 60 degrees with respect to the substrate, the optical axis of the converging section should be aligned with the substrate so that it is on the incident side with respect to the normal line within the incident plane. The angle ranges from 15 degrees to 90 degrees.

第6図は本発明の他の実施例の光学系の概略図である。FIG. 6 is a schematic diagram of an optical system according to another embodiment of the present invention.

本実施例では第1図の実施例における投光部4と集光部
6とを1つの光学系61より構成し、基板5への入射光
束の入射方向と同一の方向より異物からの散乱光束を集
光する場合てあり、これに伴い第1図のミラー7の代わ
りにハーフミラ−62を用い、入射光束及び散乱光束の
一部を透過及び反射させている。その他、第1図に示す
要素と同一要素には同符番な付しである。
In this embodiment, the light projecting section 4 and the condensing section 6 in the embodiment shown in FIG. Accordingly, a half mirror 62 is used in place of the mirror 7 in FIG. 1 to transmit and reflect a portion of the incident light beam and the scattered light beam. Other elements that are the same as those shown in FIG. 1 are given the same reference numerals.

尚、第1図、第6図に示す実施例においてレンズ8の光
学的作用としてはポリゴンミラー2の反射点P。と共役
な点P6゛を受光面9上に結像させるものでも良く、又
基板5と受光面9を共役関係とし、点P。から発した光
束を平行光束として受光面9に導光させるものでも良い
In the embodiments shown in FIGS. 1 and 6, the optical function of the lens 8 is the reflection point P of the polygon mirror 2. It is also possible to form an image on the light-receiving surface 9 at a point P6' that is conjugate with .Also, the substrate 5 and the light-receiving surface 9 may be in a conjugate relationship and the point P. The light beam emitted from the light beam may be guided to the light-receiving surface 9 as a parallel light beam.

(発明の効果) 本発明によれば基板上の回路パターンから生じる回折光
を空間配置的に避けて基板上に存在している異物からの
散乱光束だけを選択的に受光することができる為、回路
パターンに対する異物の分離検出率の高い表面状態測定
装置を達成することができる。
(Effects of the Invention) According to the present invention, it is possible to spatially avoid the diffracted light generated from the circuit pattern on the board and selectively receive only the scattered light flux from the foreign matter existing on the board. It is possible to achieve a surface condition measuring device with a high rate of separating and detecting foreign substances from circuit patterns.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の光学系の概略図、第4図は
第1図の実施例における入射光束と回路パターンによる
回折光の説明図、第5図(八)。 (ロ)は回路パターンと回折像との関係を示す説明図、
第6図は本発明の他の一実施例の光学系の概略図、第2
図、第3図は各々従来の表面状態測定装置の一例である
。図中1は光源、2はポリゴンミラー、4は投光部、5
は基板、6は集光部、7はミラー、8はレンズ、9は受
光面、lOは光学系、11はハーフミラ−である。
FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention, FIG. 4 is an explanatory diagram of an incident light beam and diffracted light due to a circuit pattern in the embodiment of FIG. 1, and FIG. 5 (8). (b) is an explanatory diagram showing the relationship between the circuit pattern and the diffraction image;
FIG. 6 is a schematic diagram of an optical system according to another embodiment of the present invention;
3 and 3 each show an example of a conventional surface condition measuring device. In the figure, 1 is a light source, 2 is a polygon mirror, 4 is a light projector, and 5
6 is a substrate, 6 is a condenser, 7 is a mirror, 8 is a lens, 9 is a light-receiving surface, IO is an optical system, and 11 is a half mirror.

Claims (3)

【特許請求の範囲】[Claims] (1)パターンが形成されている基板に対して投光手段
により該基板に対し斜め上方から光束を入射し該基板を
走査し、受光手段により前記基板からの散乱光束を受光
し、該受光手段からの出力信号を利用して前記基板の表
面状態を測定する際、前記受光手段の集光部の光軸が前
記基板の入射面内の法線に対して入射側にくるように配
置したことを特徴とする表面状態測定装置。
(1) A light beam is incident on a substrate on which a pattern is formed obliquely from above by a light projecting means to scan the substrate, a light receiving means receives a scattered light beam from the substrate, and the light receiving means When measuring the surface condition of the substrate using the output signal from the substrate, the optical axis of the condensing part of the light receiving means is arranged on the incident side with respect to the normal to the incident plane of the substrate. A surface condition measuring device featuring:
(2)前記集光部の光軸が前記投光手段の投光部の光軸
に対して±45度以内となるように配置したことを特徴
とする特許請求の範囲第1項記載の表面状態測定装置。
(2) The surface according to claim 1, wherein the optical axis of the light converging section is arranged within ±45 degrees with respect to the optical axis of the light projecting section of the light projecting means. Condition measuring device.
(3)前記集光部を前記投光手段の一部の光学系より構
成したことを特徴とする特許請求の範囲第1項記載の表
面状態測定装置。
(3) The surface condition measuring device according to claim 1, wherein the light converging section is constituted by a part of the optical system of the light projecting means.
JP61030361A 1986-02-14 1986-02-14 Surface condition measuring apparatus Pending JPS62188944A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61030361A JPS62188944A (en) 1986-02-14 1986-02-14 Surface condition measuring apparatus
US07/014,033 US4795911A (en) 1986-02-14 1987-02-12 Surface examining apparatus for detecting the presence of foreign particles on the surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61030361A JPS62188944A (en) 1986-02-14 1986-02-14 Surface condition measuring apparatus

Publications (1)

Publication Number Publication Date
JPS62188944A true JPS62188944A (en) 1987-08-18

Family

ID=12301722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61030361A Pending JPS62188944A (en) 1986-02-14 1986-02-14 Surface condition measuring apparatus

Country Status (1)

Country Link
JP (1) JPS62188944A (en)

Similar Documents

Publication Publication Date Title
CA2078731C (en) Positional deviation measuring device and method thereof
US20080094628A1 (en) Surface inspection apparatus and surface inspection method
WO1992008167A1 (en) Proximity alignment using polarized illumination and double conjugate projection lens
JPH04273008A (en) Surface condition inspection device
JPH0915163A (en) Method and equipment for inspecting foreign substance
JPH04215015A (en) Surface position detecting device
JPH04232951A (en) Face state inspecting device
JPH075115A (en) Surface condition inspection apparatus
JPS6333834A (en) Surface state inspecting apparatus
US5162867A (en) Surface condition inspection method and apparatus using image transfer
JPH05332943A (en) Surface state inspection device
JPH0145973B2 (en)
US5448350A (en) Surface state inspection apparatus and exposure apparatus including the same
US5602639A (en) Surface-condition inspection method and apparatus including a plurality of detecting elements located substantially at a pupil plane of a detection optical system
JPH02206706A (en) Position detector
JPH0621877B2 (en) Surface condition measuring device
JP2006250843A (en) Surface inspection device
JPS62188944A (en) Surface condition measuring apparatus
JPH0621876B2 (en) Surface condition measuring device
JPH0247541A (en) Measuring apparatus of state of surface
JPH02186248A (en) Surface condition inspecting device
JPS62274248A (en) Surface stage measuring instrument
JPH04339245A (en) Inspecting device for surface condition
JPS62188949A (en) Surface condition measuring apparatus
JPS6347641A (en) Apparatus for inspecting surface state