JPS62274248A - Surface stage measuring instrument - Google Patents

Surface stage measuring instrument

Info

Publication number
JPS62274248A
JPS62274248A JP61118863A JP11886386A JPS62274248A JP S62274248 A JPS62274248 A JP S62274248A JP 61118863 A JP61118863 A JP 61118863A JP 11886386 A JP11886386 A JP 11886386A JP S62274248 A JPS62274248 A JP S62274248A
Authority
JP
Japan
Prior art keywords
measurement
scattered light
reticle
foreign matter
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61118863A
Other languages
Japanese (ja)
Other versions
JPH0547091B2 (en
Inventor
Eiichi Murakami
栄一 村上
Michio Kono
道生 河野
Akiyoshi Suzuki
章義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61118863A priority Critical patent/JPS62274248A/en
Publication of JPS62274248A publication Critical patent/JPS62274248A/en
Priority to US07/348,177 priority patent/US4886975A/en
Priority to US07/406,090 priority patent/US5017798A/en
Publication of JPH0547091B2 publication Critical patent/JPH0547091B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4711Multiangle measurement
    • G01N2021/4719Multiangle measurement using a optical fibre array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95676Masks, reticles, shadow masks

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To detect a foreign matter bearing surface on a substrate in a short time with high accuracy by specifying the arrangement of means which detect the incidence direction of luminous flux scanning measurement surface and scattered light generated by foreign matter. CONSTITUTION:A pericle top surface 2a and a reticle reverce surface 1b are scanned by luminous flux 3 and a pericle reverse surface 2b and a reticle top surface 1a are scanned by luminous flux 4; and planed formed by the pieces of luminous flux 3 and 4 are equalized and the line l of intersection of one plane 3a between the two present planes and a plane 4a formed by scattered light which is detected by the optical part 5c of a detecting means 9c as to scattered light generated by the foreign matter on the measurement surface 1a is present above a measurement surface 2a. The scattered light generated when the luminous flux 3 impinges on the foreign matter P on the surface 2a is converged on the optical part 5a of a detecting means 9a and outputted from a photodetector 8a after being increased. Further, the light is cut off by visual field stops 6b, 6c, and 6d arranged nearby positions conjugate to measurement surfaces 1b, 1a, and 2b and the presence of the foreign matter is detected with the outputs of the photodetectors 8a-8d without varying the outputs of detecting means 9b, 9c and 9d.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は表面状態測定装置に関し、特に半導体製造装置
で使用される回路パターンが形成されているレチクルや
フォトマスク等の基板上及び基板にペリクル保j!膜を
装着したときのペリクル保護膜面上に例えば不透過性の
ゴミ等の異物が付着していたときに、この異物を精度良
く検出する表面状態測定装置に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a surface condition measuring device, and particularly to a reticle, a photomask, etc. on which a circuit pattern is formed, which is used in semiconductor manufacturing equipment. Keep the pellicle on and to the substrate! The present invention relates to a surface condition measuring device that accurately detects foreign matter such as impermeable dust when it is attached to the surface of a pellicle protective film when the membrane is attached.

(従来の技術) 一般にIC’jfJ造工程においてはレチクルやフォト
マスク等の基板上に形成されている露光用の回路パター
ンを半導体焼付は装置(ステッパー又はマスクアライナ
−)によりレジストが塗布されたウニ八面上に転写して
製造している。
(Prior Art) In general, in the IC'jfJ manufacturing process, semiconductor printing is performed on a circuit pattern for exposure formed on a substrate such as a reticle or photomask using a device (stepper or mask aligner) on a resist-coated surface. It is manufactured by transferring it onto eight sides.

このとき基板面上にゴミ等の異物が存在すると回路パタ
ーンをウニ八面上に転写する際、異物も同時に転写され
てしまいIC製造の歩留りを低下させる原因となってく
る。
At this time, if foreign matter such as dust is present on the substrate surface, when the circuit pattern is transferred onto the surface of the substrate, the foreign matter will also be transferred at the same time, causing a decrease in the yield of IC manufacturing.

特にステップアンドリピート方式によりレチクル面上の
回路パターンをウニ八面上に繰り返して投影露光する場
合にはレチクル面上の1つのゴミがウェハ全面に焼付け
られてしまい歩留りを太きく低下させる原因となってく
る。
In particular, when a step-and-repeat method is used to project and expose a circuit pattern on the reticle surface repeatedly over eight surfaces, a single piece of dust on the reticle surface is printed onto the entire wafer surface, causing a significant decrease in yield. It's coming.

この為近年IC製造道程においては基板上の異物の存在
を検出するのが不可欠となっており、従来より種々の検
査方法が提案されている。例えば第2図(A)は異物が
等方向に光を散乱する性質を利用する方法の一例である
Therefore, in recent years, it has become essential to detect the presence of foreign matter on a substrate in the IC manufacturing process, and various inspection methods have been proposed. For example, FIG. 2(A) is an example of a method that utilizes the property of foreign matter to scatter light in the same direction.

同図においてレーザー20から放射された光束をf−θ
レンズ22の入射瞳近傍に配置したポリゴンミラー21
で反射させ、f−θレンズ22を通過させた後、収差補
正板23を介してレチクル24面上を不図示のレチクル
ステージを矢印27方向に沿って移動させながら順次走
査している。
In the figure, the luminous flux emitted from the laser 20 is expressed as f-θ
A polygon mirror 21 placed near the entrance pupil of the lens 22
After the light is reflected by the f-theta lens 22, the reticle stage (not shown) is sequentially scanned on the surface of the reticle 24 via the aberration correction plate 23 while moving in the direction of the arrow 27.

一般にレチクル24面上の回路パターンは殆どが規則性
を有している為、回路パターンから生ずる回折光もある
規則に従った方向に射出する。
In general, most of the circuit patterns on the surface of the reticle 24 have regularity, so that the diffracted light generated from the circuit patterns is also emitted in a direction according to a certain rule.

一方レチクル24面のゴミからは等方向に散乱光が生ず
る。従ってこのとき集光レンズ26−1と受光器26−
2から成る検出系26を回路パターンから生ずる回折光
の射出方向と異った方向に配置することによりゴミから
生ずる散乱光のみを検出するようにしている。
On the other hand, dust on the surface of the reticle 24 generates scattered light in the same direction. Therefore, at this time, the condenser lens 26-1 and the light receiver 26-
By arranging the detection system 26 consisting of two components in a direction different from the emission direction of the diffracted light generated from the circuit pattern, only the scattered light generated from dust is detected.

しかしながらこの方法はレチクル24の表面と裏面を各
々光束で走査し、測定する必要があり、多くの時間を要
し、又機構的に大変面倒であった。
However, this method requires scanning and measuring the front and back surfaces of the reticle 24 with a light beam, which takes a lot of time and is mechanically very troublesome.

又第2図(B)に示すようにレチクル24の上下にペリ
クル保護膜28a 、 28bを装着したときはペリク
ル而にもゴミが付着してくる場合もある。この場合検出
系26によりどの面にゴミが付着しているのかも判別し
なければならなく、この判別を精度良く行うのは大変難
しく又機構的にも大変複雑になってくる傾向があった。
Further, when pellicle protective films 28a and 28b are attached to the top and bottom of the reticle 24 as shown in FIG. 2(B), dust may also adhere to the pellicle. In this case, it is necessary to use the detection system 26 to determine which surface the dust is attached to, and it is very difficult to accurately perform this determination, and the mechanism tends to become very complicated.

(発明が解決しようとする問題点) 本発明はレチクルやフォトマスク等の基板面上のゴミや
欠陥等の異物の存在及び大きさ更には基板にペリクル保
護膜を装着し被測定面の数が増加した場合でもどの面に
異物が存在しているのかを高精度にしかも短時間に容易
に測定することのできる、特に半導体製造装置に好適な
表面状態測定装置の提供を目的とする。
(Problems to be Solved by the Invention) The present invention solves the problem of the presence and size of foreign objects such as dust and defects on the surface of a substrate such as a reticle or photomask, and also by attaching a pellicle protective film to the substrate, thereby reducing the number of surfaces to be measured. It is an object of the present invention to provide a surface state measuring device which is particularly suitable for semiconductor manufacturing equipment and can easily measure on which surface foreign matter is present even when the amount of foreign matter is increased, with high precision and in a short time.

(問題点を解決する為の手段) 積層している複数の測定面を同時に光束で走査し、該測
定面から生じる散乱光束を各測定面毎に設けた複数の検
出手段で検出することにより前記複数の測定面の表面状
態を測定する表面状態測定装置において、前記複数の測
定面のうち任意の1つの測定面aを走査する光束によっ
て形成される平面と前記1つの測定面aとは異なる測定
面す上の異物より生ずる散乱光のうち該測定面すに対応
する検出手段により検出される散乱光が形成する平面の
2つの平面より形成される交線が前記積層している複数
の測定面の上方若しくは下方に存在するように前記光束
と前記検出手段を配置したことである。
(Means for solving the problem) A plurality of laminated measurement surfaces are simultaneously scanned with a light beam, and a plurality of detection means provided for each measurement surface detects the scattered light beam generated from the measurement surfaces. In a surface condition measuring device that measures the surface condition of a plurality of measurement surfaces, a plane formed by a light beam scanning any one measurement surface a among the plurality of measurement surfaces is different from the one measurement surface a. The intersection line formed by two planes of the planes formed by the scattered light detected by the detection means corresponding to the measurement surface out of the scattered light generated by the foreign object on the measurement surface is the plurality of laminated measurement surfaces. The light beam and the detection means are arranged so as to be above or below the light beam.

この他本発明の特徴は実施例において記載されている。Other features of the invention are described in the Examples.

(実施例) 第1図(A)は本発明の一実施例の光学系の概略図であ
る。
(Embodiment) FIG. 1(A) is a schematic diagram of an optical system according to an embodiment of the present invention.

同図において1はレチクル、Ia、 lbは各々レチク
ル表面とレチクル裏面、2a、 2bは各々レチクル1
面上にゴミか付着するのを防止する為のペリクル上面と
ペリクル下面、3.4は各々不図示の光源、例えばレー
ザーからの光束であり、同じく不図示のポリゴンミラー
等の走査手段により光束3はペリクル上面2aとレチク
ル裏面1bを、光束4はペリクル下面2bとレチクル上
面1aを各々紙面と垂直方向に走査している。58〜5
dは各々複数のセルフォックレンズを一次元方向に配置
した光学部材であり、各々の光学部材5a〜5dは各々
測定面2a。
In the figure, 1 is the reticle, Ia and lb are the front and back surfaces of the reticle, respectively, and 2a and 2b are the reticle 1.
The upper surface of the pellicle and the lower surface of the pellicle are used to prevent dust from adhering to the surfaces. Reference numerals 3 and 4 are luminous fluxes from a light source (not shown), such as a laser, and the luminous flux 3 is scanned by a scanning means such as a polygon mirror (also not shown). The light beam 4 scans the pellicle top surface 2a and the reticle back surface 1b, and the light beam 4 scans the pellicle bottom surface 2b and the reticle top surface 1a, respectively, in a direction perpendicular to the plane of the paper. 58-5
d is an optical member in which a plurality of SELFOC lenses are arranged in one dimension, and each of the optical members 5a to 5d is a measurement surface 2a.

Ib、 Ia、 2bに焦点を合わしている。68〜6
dは各々光学部材58〜5dを介した各測定面と共役な
位置近傍に配置した視野絞り、7a〜7dは各々の視野
絞り68〜6dを通過した光束を受光器8a〜8dに導
光する為のライトガイドである。
The focus is on Ib, Ia, and 2b. 68-6
d is a field stop arranged near a position conjugate with each measurement surface via the optical members 58 to 5d, and 7a to 7d guide the light beams passing through each of the field stops 68 to 6d to light receivers 8a to 8d. It is a light guide for

本実施例における光学部材5a、視野絞り6a、ライト
ガイド7aそして受光W8aは検出手段9aの一部を構
成している。他の光学部材5b〜5d、視野絞り6b〜
6d、  ライトガイド7b〜7d、受光器8b〜8d
についても同様に各々検出手段9b、 9c、 9dの
一部を構成している。
In this embodiment, the optical member 5a, field stop 6a, light guide 7a, and light receiving W8a constitute a part of the detection means 9a. Other optical members 5b to 5d, field stop 6b to
6d, light guides 7b to 7d, light receivers 8b to 8d
Similarly, the detection means 9b, 9c, and 9d each constitute a part of the detection means 9b, 9c, and 9d.

本実施例ではレチクル上面1a、レチクル下面lb、ペ
リクル上面2aそしてペリクル下面2bは各々測定面と
なっている。
In this embodiment, the reticle upper surface 1a, the reticle lower surface 1b, the pellicle upper surface 2a, and the pellicle lower surface 2b each serve as measurement surfaces.

尚本実施例において4つの光束を用い各々の測定面に光
束を入射させ走査しても良い。
In this embodiment, four light beams may be used and the light beams may be incident on each measurement surface for scanning.

第1図CB)は第1図(A)の一部分の斜視図であり、
同図は第1図(A)の光束3と光束4とが測定面を走査
する状態を示している。
Figure 1 CB) is a perspective view of a portion of Figure 1 (A);
This figure shows a state in which the light beams 3 and 4 of FIG. 1(A) scan the measurement surface.

又第1図(C)は第1図(8)の矢印IO方向から見た
ときの概略図である。
Further, FIG. 1(C) is a schematic diagram when viewed from the direction of arrow IO in FIG. 1(8).

本実施例では第1図(8) 、 (C)に示すように、
各々の測定面を走査する光束によって形成される複数の
平面のうち任意の1つの測定面a(例えば本実施例では
ペリクル上面2a)を走査する光束3によって形成され
る平面3aと測定面aとは異なる測定面b(例えば本実
施例ではレチクル表面1a)上に存在するゴミ等の異物
より生ずる散乱光のうち測定面すに対応する検出手段9
Cにより検出される散乱光が形成する平面4aの2つの
平面より形成される交・線2が、積層した複数の測定面
の上方若しくは下方に存在するように光束3,4そして
検出手段9Cを配置している。
In this example, as shown in FIG. 1 (8) and (C),
The plane 3a formed by the light beam 3 scanning any one measurement surface a (for example, the pellicle top surface 2a in this embodiment) among the plurality of planes formed by the light beams scanning each measurement surface, and the measurement surface a. is the detection means 9 corresponding to the measurement surface out of the scattered light generated by foreign matter such as dust existing on a different measurement surface b (for example, the reticle surface 1a in this embodiment).
The light beams 3, 4 and the detection means 9C are arranged so that the intersection line 2 formed by the two planes of the plane 4a formed by the scattered light detected by C exists above or below the plurality of laminated measurement surfaces. It is placed.

第1図(B) 、 ((:)では光学部材5C1検出手
段9Cのみ示しているが他の光学部材5a、 5b、 
5dそして検出手段9a、 9b、 9dも航述の要件
を満足するように配置している。
FIG. 1(B), ((:) shows only the optical member 5C1 and the detection means 9C, but other optical members 5a, 5b,
5d and the detection means 9a, 9b, 9d are also arranged to satisfy the requirements for navigation.

第1図(A)に示す実施例では光束3はペリクル上面2
aとレチクル下面1bを走査している為、ペリクル上面
2aとレチクル下面1bを走査する光束によって形成さ
れる平面は同一となる。
In the embodiment shown in FIG. 1(A), the light beam 3 is
Since the pellicle upper surface 2a and the reticle lower surface 1b are scanned, the planes formed by the light beams scanning the pellicle upper surface 2a and the reticle lower surface 1b are the same.

又光束4も光束3と同様であり、ペリクル下面2bとレ
チクル上面1aを走査している為、ペリクル下面2bと
レチクル上面1aを走査する光束によって形成される平
面は同一となる。
Also, the light beam 4 is similar to the light beam 3, and since it scans the pellicle lower surface 2b and the reticle upper surface 1a, the planes formed by the light beams scanning the pellicle lower surface 2b and the reticle upper surface 1a are the same.

従って本実施例では平面は全体として2つ存在すること
になり(4つの光束を用いたときは4つの平面が存在す
ることになる。)これら2つの平面のうち一方の平面、
例えば平面3aと測定面la上の異物より生ずる散乱光
のうち第1図(B)で示す如く検出手段9Cの光学部材
5Cで検出される散乱光が形成する平面4aの2つの平
面より形成される交線2が第1図(C)に示すように測
定面2aの上方(下方であっても良い。)に存在するよ
うに各要素を構成している。
Therefore, in this example, there are two planes in total (when four light beams are used, there are four planes). One of these two planes,
For example, the plane 4a is formed by the plane 3a and the plane 4a formed by the scattered light detected by the optical member 5C of the detection means 9C as shown in FIG. Each element is configured such that the intersection line 2 exists above (or may be below) the measurement surface 2a, as shown in FIG. 1(C).

次に本実施例の動作について第1図(A)。Next, FIG. 1(A) shows the operation of this embodiment.

(B) 、 (C)を用いて説明する。This will be explained using (B) and (C).

今、仮りに測定面2a上の位置11にゴミ等の異物Pが
存在しているとする。そうすると光束3が異物Pに当た
ると異物からは等友釣に散乱光が生じる。このとき検出
手段9aは測定面2aに焦点が合わされている為に光学
部材5aは散乱光束を効率的に集光する。この結果受光
器8aからの出力は増大する。
Now, it is assumed that a foreign object P such as dust exists at a position 11 on the measurement surface 2a. Then, when the light beam 3 hits the foreign object P, scattered light is generated from the foreign object in an even manner. At this time, since the detection means 9a is focused on the measurement surface 2a, the optical member 5a efficiently condenses the scattered light flux. As a result, the output from the light receiver 8a increases.

一方、他の検出手段9b、 9c、 9dは各々の測定
面tb、 la、 2bと共役の位置近傍には視野絞り
6b。
On the other hand, the other detection means 9b, 9c, and 9d have a field stop 6b near the position conjugate to the respective measurement surfaces tb, la, and 2b.

6c、 6dが配置されているので測定面2a上の異物
Pからの散乱光束は視野絞り6b、 6c、 6dによ
って遮光される。この結果受光P58b、 8c、 8
dからの出力は変化しない。
6c and 6d are arranged, the scattered light flux from the foreign object P on the measurement surface 2a is blocked by the field stops 6b, 6c, and 6d. As a result, the received light P58b, 8c, 8
The output from d does not change.

本実施例では、このときの4つの受光器88〜8dから
の出力信号を利用して測定面上の異物の存在の検出及び
受光器88〜8dからの出力信号の大小を測定すること
により異物の大小も同時に判別している。
In this embodiment, the presence of foreign matter on the measurement surface is detected using the output signals from the four light receivers 88 to 8d at this time, and the foreign matter is detected by measuring the magnitude of the output signals from the light receivers 88 to 8d. The size of the image is also determined at the same time.

又複数の検出手段を用いることにより高速に異物の存在
を検出している。
Furthermore, by using a plurality of detection means, the presence of foreign matter can be detected at high speed.

これに対して第3図(A) 、 (B)は第1図(C)
に示す実施例と同様に光束3でペリクル上面2aとレチ
クル裏面!bを走査し、光束4でペリクル下面2bとレ
チクル表面1aを走査し、検出手段31aがレチクル1
aからの散乱光を検出する為に配置されている場合であ
るが本実施例と異なるのはペリクル上面2aを走査する
光束によって形成される平面とレチクル表面1aから生
ずる散乱光のうち検出手段3Iaで検出される散乱光に
よって形成される平面の2つの平面が形成する交線2が
第3図(^)では測定面の1つであるペリクル上面2a
と交差しており、第3図(B)ではべりタル上面2aと
レチクル裏面1bとの間に存在していることである。第
3図(A)においてはレチクル表面la上からの散乱光
を検出すべき検出手段31aがペリクル上面2a上に付
着しているゴミから生ずる散乱光も検出してしまう為、
ゴミの付着面の判別が困難になってくる。
In contrast, Figures 3 (A) and (B) are similar to Figure 1 (C).
As in the embodiment shown in , the pellicle top surface 2a and the reticle back surface are illuminated with a luminous flux of 3! b, the light beam 4 scans the pellicle lower surface 2b and the reticle surface 1a, and the detection means 31a detects the reticle 1.
The difference from this embodiment is that the detection means 3Ia is arranged to detect the scattered light from the reticle surface 1a and the plane formed by the light beam scanning the pellicle upper surface 2a. The intersection line 2 formed by the two planes formed by the scattered light detected in FIG.
In FIG. 3(B), it is present between the top surface 2a of the belter and the back surface 1b of the reticle. In FIG. 3(A), the detection means 31a that is supposed to detect the scattered light from the reticle surface la also detects the scattered light generated from the dust adhering to the pellicle top surface 2a.
It becomes difficult to distinguish the surface on which dust is attached.

一般に測定面上に存在するゴミより生ずる散乱光の強さ
はゴミの大きさに比例する。この為多くの場合、検出手
段からの出力信号の大きさを測定すれば、ゴミの大きさ
もある程度判別できる。
Generally, the intensity of scattered light generated by dust present on a measurement surface is proportional to the size of the dust. Therefore, in many cases, the size of dust can be determined to some extent by measuring the size of the output signal from the detection means.

しかしながら前述のように検出手段が対応する測定面以
外の他の測定面からの散乱光を受光してしまうと検出手
段からの出力信号が変化してしまいゴミの大きさを精度
良く判別するのが困難になフてくる。
However, as mentioned above, if the detection means receives scattered light from a measurement surface other than the corresponding measurement surface, the output signal from the detection means changes, making it difficult to accurately determine the size of dust. It becomes difficult.

更に第3図(ロ)ではステージが矢印32方向に移動し
、第3図(C)の如くになったとき、検出手段31aは
ペリクル枠33による散乱光を検出してしまい、あたか
もゴミが存在しているものと誤認検出してしまう場合が
生ずる。
Furthermore, in FIG. 3(B), when the stage moves in the direction of the arrow 32 and becomes as shown in FIG. 3(C), the detection means 31a detects the scattered light by the pellicle frame 33, and it appears as if there is dust. There may be cases where it is mistakenly detected as something that is being detected.

この為本実施例では第1図(B) 、 (C)に示すよ
うに複数の測定面のうち任意の1つの測定面2aを走査
する光束3によって形成される平面3aと測定面2aと
異った測定面Ia上の異物より生ずる散乱光のうち検出
手段9cで検出される散乱光が形成する平面4aの2つ
の平面より形成される交線2が複数の測定面の上方若し
くは下方に存在するように各要素を構成している。
Therefore, in this embodiment, as shown in FIGS. 1B and 1C, the plane 3a formed by the light beam 3 scanning any one measurement surface 2a among the plurality of measurement surfaces is different from the measurement surface 2a. The intersection line 2 formed by the two planes of the plane 4a formed by the scattered light detected by the detection means 9c out of the scattered light generated by a foreign object on the measurement surface Ia, which is generated by a foreign object on the measurement surface Ia, exists above or below the plurality of measurement surfaces. Each element is configured so that

これによりゴミ等の異物の存在している面を検出すると
共に検出手段からの出力信号の大小により異物の大きさ
も同時に判別するのを容易にしている。
This makes it easy to detect the surface on which a foreign object such as dust is present, and to simultaneously determine the size of the foreign object based on the magnitude of the output signal from the detection means.

第4図〜第7図は各々本発明の他の一実施例の一部分の
概略図であり、各々第1図(C)と同様のものである。
FIGS. 4 to 7 are partial schematic diagrams of other embodiments of the present invention, and each is similar to FIG. 1(C).

第4図は測定面1aを走査する光束によって形成される
平面と測定面1b上の異物より生ずる散乱光のうち検出
手段9bで検出される散乱光が形成する平面の2つの平
面より形成される交線2が複数の測定面の下方で交差す
る場合である。
FIG. 4 shows a plane formed by two planes: a plane formed by the light beam scanning the measurement surface 1a, and a plane formed by the scattered light detected by the detection means 9b among the scattered light generated by a foreign object on the measurement surface 1b. This is a case where the intersection line 2 intersects below a plurality of measurement planes.

第5図は光束3がレチクル1に垂直に入射する場合、第
6図は光束3により走査されるレチクル裏面1bから生
ずる散乱光を検出手段9bによりレチクル1に対し垂直
に受光する場合、第7図は測定面1aを走査する光束に
より形成される平面と測定面lb上の異物より生ずる散
乱光のうち検出手段9bで検出される散乱光が形成する
平面の2つの平面が互いに平行となり、即ち2つの平面
より形成される交線2が無限遠に存在する場合である。
FIG. 5 shows the case where the light beam 3 is incident perpendicularly on the reticle 1, and FIG. The figure shows that two planes, the plane formed by the light beam scanning the measurement surface 1a and the plane formed by the scattered light detected by the detection means 9b among the scattered light generated by the foreign object on the measurement surface lb, are parallel to each other, that is, This is a case where the intersection line 2 formed by two planes exists at an infinite distance.

いずれの実施例においても前述の交線1が積層している
複数の測定面間に存在しないように各要素を構成してい
る。
In each embodiment, each element is constructed so that the above-mentioned intersection line 1 does not exist between a plurality of laminated measurement surfaces.

(発明の効果) 本発明によれば各々の測定面を走査する光束の入射方向
及び各々の測定面上の異物から生ずる散乱光を検出する
為の検出手段の配置を航述の如く特定することにより、
異物の存在する測定面を精度良く、短時間で検出するこ
とができ、かつ異物の大きさも同時に高精度に判別する
ことのできる表面状態測定装置を達成することができる
(Effects of the Invention) According to the present invention, the direction of incidence of the light beam scanning each measurement surface and the arrangement of the detection means for detecting the scattered light generated from foreign matter on each measurement surface are specified as described above. According to
It is possible to achieve a surface condition measuring device that can accurately detect a measurement surface where a foreign object is present in a short time, and can also determine the size of the foreign object with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明の一実施例の光学系の概略図、第
1図(B) 、 (C)は各々第1図の一部分の説明図
、第2図(八) 、 (B)は各々従来の一実施例の説
明図、第3図(A) 、 (B) 、 ((:)は本発
明の構成を比較する為の説明図、第4図から第7図は各
々本発明の他の一実施例の一部分の説明図である。 図中1はレチクル、2a、 2bは各々ペリクル上面と
ペリクル下面、3,4は光束、9a、 9b、 9c、
 9dは各々検出手段、2は交線、Pはゴミである。 特許出願人  キャノン株式会社 矛   11図 (8) 、(n 第   1  口CC) 箒   :3+¥1 葛   5   図 $   6   図 第   7   辺
Figure 1 (A) is a schematic diagram of an optical system according to an embodiment of the present invention, Figures 1 (B) and (C) are explanatory diagrams of a portion of Figure 1, respectively, and Figures 2 (8) and (B 3(A), (B), ((:) are explanatory diagrams for comparing the configuration of the present invention, and FIGS. 4 to 7 are explanatory diagrams of a conventional embodiment, respectively. 1 is an explanatory diagram of a part of another embodiment of the invention. In the figure, 1 is a reticle, 2a and 2b are an upper surface of a pellicle and a lower surface of a pellicle, respectively, 3 and 4 are luminous fluxes, and 9a, 9b, 9c,
9d is a detection means, 2 is an intersection line, and P is dust. Patent Applicant: Canon Co., Ltd. Iko Figure 11 (8), (n 1st mouth CC) Broom: 3 + ¥1 Kudzu 5 Figure $ 6 Figure 7th side

Claims (1)

【特許請求の範囲】[Claims] (1)積層している複数の測定面を同時に光束で走査し
、該測定面から生じる散乱光束を各測定面毎に設けた複
数の検出手段で検出することにより前記複数の測定面の
表面状態を測定する表面状態測定装置において、前記複
数の測定面のうち任意の1つの測定面aを走査する光束
によって形成される平面と前記1つの測定面aとは異な
る測定面b上の異物より生ずる散乱光のうち該測定面b
に対応する検出手段により検出される散乱光が形成する
平面の2つの平面より形成される交線が前記積層してい
る複数の測定面の上方若しくは下方に存在するように前
記光束と前記検出手段を配置したことを特徴とする表面
状態測定装置。
(1) The surface condition of the plurality of measurement surfaces is determined by simultaneously scanning a plurality of laminated measurement surfaces with a light beam and detecting the scattered light beam generated from the measurement surfaces with a plurality of detection means provided for each measurement surface. In a surface condition measuring device for measuring a surface condition, a plane formed by a light beam scanning any one measurement surface a among the plurality of measurement surfaces and a foreign substance on a measurement surface b different from the one measurement surface a. Of the scattered light, the measurement surface b
The light beam and the detection means are arranged so that the intersection line formed by the two planes formed by the scattered light detected by the detection means corresponding to the light flux is located above or below the plurality of laminated measurement surfaces. A surface condition measuring device characterized by having:
JP61118863A 1986-02-14 1986-05-23 Surface stage measuring instrument Granted JPS62274248A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61118863A JPS62274248A (en) 1986-05-23 1986-05-23 Surface stage measuring instrument
US07/348,177 US4886975A (en) 1986-02-14 1989-05-02 Surface examining apparatus for detecting the presence of foreign particles on two or more surfaces
US07/406,090 US5017798A (en) 1986-02-14 1989-09-12 Surface examining apparatus for detecting the presence of foreign particles on two or more surfaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61118863A JPS62274248A (en) 1986-05-23 1986-05-23 Surface stage measuring instrument

Publications (2)

Publication Number Publication Date
JPS62274248A true JPS62274248A (en) 1987-11-28
JPH0547091B2 JPH0547091B2 (en) 1993-07-15

Family

ID=14746996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61118863A Granted JPS62274248A (en) 1986-02-14 1986-05-23 Surface stage measuring instrument

Country Status (1)

Country Link
JP (1) JPS62274248A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140742A (en) * 1988-02-25 1990-05-30 Eastman Kodak Co Reticle inspection method and apparatus
US4999511A (en) * 1989-03-15 1991-03-12 Canon Kabushiki Kaisha Surface state inspecting device for inspecting the state of parallel first and second surfaces
JP2011258880A (en) * 2010-06-11 2011-12-22 Canon Inc Foreign matter inspecting device, exposure unit using the same, and manufacturing method of device using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260632A (en) * 1985-05-15 1986-11-18 Hitachi Ltd Foreign matter detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61260632A (en) * 1985-05-15 1986-11-18 Hitachi Ltd Foreign matter detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140742A (en) * 1988-02-25 1990-05-30 Eastman Kodak Co Reticle inspection method and apparatus
US4999511A (en) * 1989-03-15 1991-03-12 Canon Kabushiki Kaisha Surface state inspecting device for inspecting the state of parallel first and second surfaces
JP2011258880A (en) * 2010-06-11 2011-12-22 Canon Inc Foreign matter inspecting device, exposure unit using the same, and manufacturing method of device using the same

Also Published As

Publication number Publication date
JPH0547091B2 (en) 1993-07-15

Similar Documents

Publication Publication Date Title
JP2933736B2 (en) Surface condition inspection device
JP3253177B2 (en) Surface condition inspection device
JP2734004B2 (en) Positioning device
JPH0580497A (en) Surface state inspecting device
JP3183046B2 (en) Foreign particle inspection apparatus and method for manufacturing semiconductor device using the same
JP3259331B2 (en) Surface condition inspection device
JPS6333834A (en) Surface state inspecting apparatus
JP3101290B2 (en) Surface condition inspection device, exposure apparatus, and surface condition inspection method
JPH07209202A (en) Surface state inspection equipment, exposure apparatus employing it, and production of device using the exposure apparatus
US5448350A (en) Surface state inspection apparatus and exposure apparatus including the same
JPH0792096A (en) Foreign matter inspection device, and manufacture of exposing device and device with it
JP3360321B2 (en) Surface position detecting apparatus and method, and exposure apparatus and method
CN110658196A (en) Defect detection device and defect detection method
JPS62274248A (en) Surface stage measuring instrument
EP0019941B1 (en) Reduction projection aligner system
JPH04122042A (en) Foreign matter inspection device
JPS60237347A (en) Apparatus for inspecting foreign matter
JPS62274247A (en) Surface stage measuring instrument
JPS62188949A (en) Surface condition measuring apparatus
JPH0462457A (en) Surface state inspecting device
JPH0621877B2 (en) Surface condition measuring device
JPH046898B2 (en)
JP2897085B2 (en) Horizontal position detecting apparatus and exposure apparatus having the same
JPH0247541A (en) Measuring apparatus of state of surface
JP3158538B2 (en) Apparatus and method for optical inspection of substrate surface

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term