JPH0675039B2 - Surface condition measuring device - Google Patents

Surface condition measuring device

Info

Publication number
JPH0675039B2
JPH0675039B2 JP63198280A JP19828088A JPH0675039B2 JP H0675039 B2 JPH0675039 B2 JP H0675039B2 JP 63198280 A JP63198280 A JP 63198280A JP 19828088 A JP19828088 A JP 19828088A JP H0675039 B2 JPH0675039 B2 JP H0675039B2
Authority
JP
Japan
Prior art keywords
light
substrate
scanning
optical system
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63198280A
Other languages
Japanese (ja)
Other versions
JPH0247541A (en
Inventor
道生 河野
栄一 村上
章義 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63198280A priority Critical patent/JPH0675039B2/en
Publication of JPH0247541A publication Critical patent/JPH0247541A/en
Publication of JPH0675039B2 publication Critical patent/JPH0675039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は表面状態測定装置に関し、特に半導体製造装置
で使用される回路パターンが形成されているレチクルや
フオトマスク等の基板上における回路パターン以外の異
物、例えば不透過性のゴミ等を検出する際に好適な表面
状態測定装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a surface condition measuring apparatus, and particularly to a surface state measuring apparatus other than a circuit pattern on a substrate such as a reticle or a photomask on which a circuit pattern used in a semiconductor manufacturing apparatus is formed. The present invention relates to a surface condition measuring device suitable for detecting foreign matter, such as impermeable dust.

(従来の技術) 一般にIC製造工程においてはレチクル又はフオトマスク
等の基板上に形成されている露光用の回路パターンを半
導体焼付け装置(ステツパー又はマスクアライナー)に
よりレジストが塗布されたウエハ面上に転写している。
(Prior Art) Generally, in an IC manufacturing process, an exposure circuit pattern formed on a substrate such as a reticle or a photomask is transferred onto a resist-coated wafer surface by a semiconductor printing apparatus (stepper or mask aligner). ing.

この際、基板面上にゴミ等の異物が存在すると転写する
際、異物も同時に転写されてしまいIC製造の歩留りを低
下させる原因となってくる。
At this time, if foreign matter such as dust is present on the surface of the substrate, the foreign matter is also simultaneously transferred at the time of transfer, which causes a decrease in yield of IC manufacturing.

特にレチクルを使用し、ステツプアンドリピート方法に
より繰り返してウエハ面上に回路パターンを焼付ける場
合、レチクル面上の1個の異物がウエハ全面に焼付けら
れてしまいIC製造の歩留りを大きく低下させる原因とな
ってくる。
In particular, when a reticle is used and a circuit pattern is repeatedly printed on the wafer surface by the step-and-repeat method, one foreign substance on the reticle surface is printed on the entire surface of the wafer, which causes a large decrease in the yield of IC manufacturing. Is coming.

その為、IC製造過程においては基板上の異物の存在を検
出するのが不可欠となっており、従来より種々の検査方
法が提案されている。例えば第7図は異物が等方的に光
を散乱する性質を利用する方法の一例である。同図にお
いては、走査用ミラー11とレンズ12を介してレーザ10か
らの光束をハーフミラー13により2つに分け、2つのミ
ラー14,45により各々基板15の表面と裏面に入射させ、
走査用ミラー11を回転若しくは振動させて基板15上を走
査している。そして基板15からの直接の反射光及び透過
光の光路から離れた位置に複数の受光部16,17,18を設
け、これら複数の受光部16,17,18からの出力信号を用い
て基板15上の異物の存在を検出している。
Therefore, it is essential to detect the presence of foreign matter on the substrate in the IC manufacturing process, and various inspection methods have been conventionally proposed. For example, FIG. 7 shows an example of a method of utilizing the property that a foreign substance isotropically scatters light. In the figure, the light flux from the laser 10 is divided into two by the half mirror 13 via the scanning mirror 11 and the lens 12, and is made incident on the front surface and the back surface of the substrate 15 by the two mirrors 14 and 45, respectively.
The substrate 15 is scanned by rotating or vibrating the scanning mirror 11. Then, a plurality of light receiving units 16, 17, 18 are provided at positions apart from the optical paths of the reflected light and the transmitted light directly from the substrate 15, and the substrate 15 is output by using the output signals from the plurality of light receiving units 16, 17, 18. The presence of foreign matter above is detected.

即ち回路パターンからの回折光は方向性が強い為、各受
光部からの出力値は異なるが異物に光束が入射すると入
射光束は等方的に散乱される為、複数の受光部からの出
力値が各々等しくなってくる。従ってこのときの出力値
を比較することにより異物の存在を検出している。
That is, since the diffracted light from the circuit pattern has a strong directivity, the output value from each light receiving part is different, but when a light beam enters a foreign object, the incident light beam is isotropically scattered, so the output values from multiple light receiving parts Will be equal to each other. Therefore, the presence of foreign matter is detected by comparing the output values at this time.

又、第8図は異物が入射光束の偏光特性を乱す性質を利
用する方法の一例である。同図において偏光子19、走査
用ミラー11、そしてレンズ12を介してレーザ10からの光
束を所定の偏光状態の光束としハーフミラー13により2
つに分け、2つのミラー14,45により各々基板15の表面
と裏面に入射させて走査用ミラー11により基板15上を走
査している。そして基板15からの直接の反射光及び透過
光の光路から離れた位置に各々検光子20,21を前方に配
置した2つの受光部21,23を設けている。そして回路パ
ターンからの回折光と異物からの散乱光との偏光比率の
違いから生ずる受光量の差を2つの受光部21,23より検
出し、これにより基板15上の回路パターンと異物とを弁
別している。
Further, FIG. 8 is an example of a method of utilizing the property that a foreign substance disturbs the polarization characteristic of the incident light beam. In the figure, a light beam from the laser 10 is made into a light beam in a predetermined polarization state through a polarizer 19, a scanning mirror 11, and a lens 12, and a half mirror 13 is used to
It is divided into two, and two mirrors 14 and 45 are made to enter the front surface and the back surface of the substrate 15, respectively, and the scanning mirror 11 scans the substrate 15. Then, two light receiving portions 21 and 23 having analyzers 20 and 21 arranged in front are provided at positions apart from the optical paths of the reflected light and the transmitted light directly from the substrate 15. Then, the difference in the amount of received light caused by the difference in the polarization ratio between the diffracted light from the circuit pattern and the scattered light from the foreign matter is detected by the two light receiving units 21 and 23, and the circuit pattern on the substrate 15 and the foreign matter are detected by this. Different.

しかしながら第7図,第8図に示す検出方法はいずれも
受光部には入射光束の直接の反射光及び透過光は入射し
ないが基板を走査中、走査線上のいくつかの点における
回路パターンからの各次数の回折光の一部が入射してし
まう。この為、回路パターンからの回折光と異物からの
散乱光の双方の出力差をとる場合、異物の反射率や形状
等が異ってくると双方の出力差が変動し異物の検出率が
低下してくる欠点があった。
However, in the detection methods shown in FIG. 7 and FIG. 8, neither the direct reflected light nor the transmitted light of the incident light beam is incident on the light receiving portion, but the circuit pattern at some points on the scanning line is scanned from the circuit pattern while scanning the substrate. A part of the diffracted light of each order is incident. Therefore, when the output difference between the diffracted light from the circuit pattern and the scattered light from the foreign matter is taken, if the reflectance and shape of the foreign matter are different, the output difference of both will fluctuate and the foreign matter detection rate will decrease. There was a drawback to come.

(発明が解決しようとする問題点) 本発明は基板上に存在しているゴミ等どのような状態の
異物であっても走査線上のすべての点で回路パターンと
高い精度で分離検出することのできる高い分離検出率を
有した表面状態測定装置の提供を目的とする。
(Problems to be Solved by the Invention) According to the present invention, it is possible to detect a foreign matter in any state such as dust existing on a substrate with high accuracy by separating from a circuit pattern at all points on a scanning line. An object of the present invention is to provide a surface condition measuring device having a high separation detection rate.

(問題点を解決するための手段) 本発明は、パターンが形成されている基板に光束を入射
させ、前記光束で前記基板を走査する走査手段と、前記
基板から生じる散乱光束を受ける受光手段とを有する表
面状態測定装置において、前記走査手段は走査ミラーと
走査光学系を有し、前記受光手段は受光光学系と開口絞
りを有し、前記受光光学系の光軸を前記パターンからの
回折光が生じる方向とは異なる向きに設定し、前記走査
ミラーを前記走査光学系の前側焦点位置に配置し且つ前
記開口絞りを前記受光光学系の後側焦点位置に配置する
ことにより前述の問題点を解決している。
(Means for Solving Problems) According to the present invention, a scanning means for making a light beam incident on a substrate on which a pattern is formed and scanning the substrate with the light beam, and a light receiving means for receiving a scattered light beam generated from the substrate. In the surface state measuring apparatus having the above, the scanning means has a scanning mirror and a scanning optical system, the light receiving means has a light receiving optical system and an aperture stop, and the optical axis of the light receiving optical system is diffracted light from the pattern. Is set to a direction different from the direction in which the above-mentioned problem occurs, the scanning mirror is arranged at the front focal position of the scanning optical system, and the aperture stop is arranged at the rear focal position of the light receiving optical system. Has been resolved.

この他、本発明の特徴は実施例において記載されてい
る。
Besides, the features of the present invention are described in the embodiments.

(実施例) 第1図は本発明の一実施例の光学系の概略図である。第
2図は第1図の投光系の光学原理図である。
(Example) FIG. 1 is a schematic view of an optical system of an example of the present invention. FIG. 2 is an optical principle diagram of the light projecting system of FIG.

同図に於いて、1は光源であるレーザ1、2は光偏光器
であるポリゴンミラー(ポリゴン)、101は絞り、102は
ビームエキスパンダー、61はf−θレンズ、5はレチク
ル等の被測定物である基板、62はf−θレンズ61を介し
て得られる散乱光を反射し、その光路を変えるハーフミ
ラーである。9は散乱光を受光する受光素子で、ハーフ
ミラー62で反射され一旦位置PG′に集光し散乱光をレン
ズ8を介して受光する。103は絞りである。
In the figure, 1 is a laser 1 which is a light source, 2 is a polygon mirror (polygon) which is an optical polarizer, 101 is a diaphragm, 102 is a beam expander, 61 is an f-θ lens, 5 is a measured object such as a reticle. The substrate 62 is a half mirror that reflects scattered light obtained through the f-θ lens 61 and changes its optical path. Reference numeral 9 denotes a light receiving element for receiving scattered light, which is reflected by the half mirror 62 and once focused on the position P G ′ to receive the scattered light via the lens 8. 103 is a diaphragm.

同図において光源であるレーザ1から発した平行ビーム
は第1の絞り(ピンホール)101でその径を制限された
後ビームエキスパンダー102に入る。エキスパンダー102
の内部は、例えば第2図に示す様な凸レンズ110と111と
から構成され、入射ビームの径を拡大してポリゴンミラ
ー2に向けて射出する。
In the figure, a parallel beam emitted from a laser 1 which is a light source enters a beam expander 102 after its diameter is limited by a first aperture (pinhole) 101. Expander 102
The inside of is composed of, for example, convex lenses 110 and 111 as shown in FIG. 2, and the diameter of the incident beam is enlarged and emitted toward the polygon mirror 2.

このエキスパンダーの働きは、ピンホール101とポリゴ
ンの反射点とを光学的共役関係に継ぐ事である(点
線)。こうする事により、ポリゴンの反射点が実質的に
ビーム投光系の絞りとして作用する。その結果、ポリゴ
ン2の各回転位置においてその反射面上でのビームの中
心を通る光線が投光光束の主光線となり、f−θレンズ
61を介して基板5上ビーム走査線B1−B2の各位置に入射
する。この時f−θレンズ61の光軸は基板面に対し角度
α、かつ基板の縦方向(A−A′方向)に対し角度β傾
いている。
The function of this expander is to connect the pinhole 101 and the reflection point of the polygon in an optically conjugate relationship (dotted line). By doing so, the reflection point of the polygon substantially acts as a diaphragm of the beam projection system. As a result, at each rotational position of the polygon 2, the ray passing through the center of the beam on the reflecting surface becomes the principal ray of the projected light beam, and the f-θ lens
It is incident on each position of the beam scanning lines B 1 -B 2 on the substrate 5 via 61. At this time, the optical axis of the f-θ lens 61 is inclined at an angle α with respect to the surface of the substrate and at an angle β with respect to the longitudinal direction of the substrate (direction AA ').

この様にしてポリゴンミラー2を回転させ基板5上を点
B1から点B2方向に走査すると共に、基板5を矢印S1若し
くは矢印S2方向に移動させることにより基板5上の全面
を走査している。
In this way, the polygon mirror 2 is rotated and a point is set on the substrate 5.
While scanning from B 1 in the direction of point B 2 and moving the substrate 5 in the direction of arrow S 1 or arrow S 2 , the entire surface of the substrate 5 is scanned.

そして基板5の入射面の法線に対して入射側に受光光学
系の集光部(ここではf−θレンズ61)の光軸を設け、
基板5上の異物からの散乱光束を集光し、ハーフミラー
62を介して点PG′に集光し、その後レンズ8により受光
素子9の受光面に導光している。PG′はf−θレンズ61
の後側焦点位置にあたる。
Then, the optical axis of the condensing portion (here, the f-θ lens 61) of the light receiving optical system is provided on the incident side with respect to the normal line of the incident surface of the substrate 5,
A half mirror that collects scattered light from foreign matter on the substrate 5
The light is condensed at a point P G ′ via 62 and then guided to the light receiving surface of the light receiving element 9 by the lens 8. P G ′ is an f-θ lens 61
It corresponds to the rear focus position.

f−θレンズ61とハーフミラー62そしてレンズ8は基板
5からの異物散乱光を受光する光学系の一部を構成して
いる。これを説明する。本実施例ではレンズ61が投光用
と受光用に兼用されている。そして、レンズ61の後側焦
点PG′の位置あるいはその近傍に受光光束を制限する開
口絞り103を設ける。すると、基板上ビーム走査線の各
位置において異物により散乱され、最終的に受光素子9
に到達する受光光束の主光線はこの絞り103中心を通る
光線である。絞り103を通過した異物散乱光は集光レン
ズ8の作用により受光素子9上に集められる。
The f-θ lens 61, the half mirror 62, and the lens 8 form a part of an optical system that receives the foreign substance scattered light from the substrate 5. This will be explained. In this embodiment, the lens 61 is used for both light projection and light reception. Then, an aperture stop 103 for limiting the received light beam is provided at or near the position of the rear focal point P G ′ of the lens 61. Then, at each position of the beam scanning line on the substrate, it is scattered by the foreign matter, and finally the light receiving element 9
The principal ray of the received light flux reaching the is a ray passing through the center of the diaphragm 103. The scattered light of foreign matter that has passed through the diaphragm 103 is collected on the light receiving element 9 by the action of the condenser lens 8.

第3図は本実施例における入射光束と基板5上の回路パ
ターンから生じる回折光の説明図である。今、基板上の
回路パターン面が模式的に描いた球体Sの赤道面に一致
しているとする。現在使用されている半導体回路パター
ンの基板上の回路パターンの形状は殆どが例えばT1,T2
で示すその縦横方向で互いに直交しているパターンで構
成されている。今、基板上のパターンT1及びパターンT2
に対し斜め上方の角度αと主パターンにより生ずる回折
光の方向とずらした角度βの球面上の点P0を通る方向よ
り光束を入射させる。そうすると図中点A,点μ,点A′
で形成される平面が入射面となり基板5からの直接の反
射光は矢印I′で示すように球体S上の点P0′を通過す
る方向に反射される。
FIG. 3 is an explanatory diagram of incident light flux and diffracted light generated from the circuit pattern on the substrate 5 in this embodiment. Now, it is assumed that the circuit pattern surface on the substrate coincides with the equator surface of the sphere S schematically drawn. The shape of the circuit pattern on the substrate of the semiconductor circuit pattern which is currently used is mostly T 1 , T 2
The patterns are orthogonal to each other in the vertical and horizontal directions. Now, the pattern T 1 and the pattern T 2 on the substrate
On the other hand, a light beam is made incident from a direction passing through a point P 0 on the spherical surface at an angle β which is obliquely upward and a direction β which is deviated from the direction of the diffracted light generated by the main pattern. Then point A, point μ, point A'in the figure
The plane formed by (2) serves as the incident surface, and the light directly reflected from the substrate 5 is reflected in the direction passing through the point P 0 ′ on the sphere S as shown by the arrow I ′.

又パターンT2の方向と平行の球体S上の点Pから中心点
Oに光束を入射させたとした場合の反射光の球体Sとの
交点をP′とすると、点P′を中心にして各々のパター
ンT1,T2と直交する方向に各次数の回折像が形成する。
前述の如く、回路パターンが孤立線の場合はその回折像
Qは第4図(A)に示す如く、パターンTと直交する方
向に連続的に現われる。又、回路パターンがメモリーの
ような繰り返しパターンの場合はその回折像Qは第4図
(B)に示す如く離散的に現われる。又、第4図(C)
は矢印51で示す方向より光束を基板5上に入射させた場
合、基板上の主パターンT1,T2により回折光が矢印52,53
で示す方向に、即ち入射方向と角度βだけずれた方向に
生じている様子を示している。
Further, when a light flux is made incident on the center point O from a point P on the sphere S parallel to the direction of the pattern T 2 , and P'is an intersection of the reflected light and the sphere S, the points P'are centered respectively. Diffraction patterns of respective orders are formed in the direction orthogonal to the patterns T 1 and T 2 .
As described above, when the circuit pattern is an isolated line, the diffraction image Q thereof continuously appears in the direction orthogonal to the pattern T, as shown in FIG. When the circuit pattern is a repeating pattern such as a memory, the diffraction image Q appears discretely as shown in FIG. 4 (B). Also, FIG. 4 (C)
When a light beam is incident on the substrate 5 in the direction indicated by the arrow 51, the diffracted light is reflected by the main patterns T 1 and T 2 on the substrate.
In the figure, the state occurs in the direction indicated by, that is, in the direction deviated from the incident direction by an angle β.

いずれも場合でも直接の反射光束の点P0及び点P′から
遠ざかる程、反射光及び回路パターンからの回折像の強
度は弱くなる。即ち点P0′から入射面内の法線μを過ぎ
入射光束の入射側の球体と交わる点P0の近傍までくると
回折光の強度はかなり弱くなってくる。
In either case, the intensity of the diffracted image from the reflected light and the circuit pattern becomes weaker as the distance from the point P 0 and the point P ′ of the directly reflected light flux increases. That is, the intensity of the diffracted light becomes considerably weaker from the point P 0 ′ to the vicinity of the point P 0 which intersects the sphere on the incident side of the incident light flux after passing through the normal line μ in the incident plane.

これに対して異物の散乱光は等方的に生じるので入射側
にも多く現われる。
On the other hand, the scattered light of the foreign matter is isotropically generated, and therefore a lot of it appears on the incident side.

そこで本実施例では受光光束の主光線が直接の反射光の
光路からなるべく遠い位置、即ち入射面の法線μに対し
て光束入射側で、かつ基板5上の主パターンより生じる
回折光の出射方向とずらした、例えば点P0近傍位置にく
るようにすることにより、回路パターンからの回折光の
影響をなるべく少なくして基板5上の異物からの後方散
乱光のみを主に受光するようにしている。
In view of this, in this embodiment, the principal ray of the received luminous flux is emitted as far as possible from the optical path of the direct reflected light, that is, on the luminous flux incident side with respect to the normal line μ of the incident surface, and the diffracted light generated from the main pattern on the substrate 5 is emitted. By arranging it so as to be displaced from the direction, for example, near the point P 0 , the influence of the diffracted light from the circuit pattern is reduced as much as possible, and only the backscattered light from the foreign matter on the substrate 5 is mainly received. ing.

即ち受光光束の主光線が第3図に示すように基板5に対
して角度αとなり、かつ受光光束の主光線の基板5上へ
の投影像が、基板5の主パターンによる回折光の生じる
方向である、ここでは基板5の縦横方向となす角と平行
若しくは直交方向より角度βだけずれるようにしてい
る。
That is, the principal ray of the received light beam is at an angle α with respect to the substrate 5 as shown in FIG. 3, and the projected image of the principal ray of the received light beam on the substrate 5 is the direction in which the diffracted light by the principal pattern of the substrate 5 is generated. In this case, the angle formed with the horizontal and vertical directions of the substrate 5 is parallel or orthogonal to the angle β.

以上のように基板に対する受光光束の主光線の位置を特
定し、これにより回路パターンに対する異物の分離検出
率を高めている。尚、分離検出率を高めるには仮りに受
光光束の主光線が点P0上にくるように配置したとすると
点P0′とP0の中心Oに対して張る角δが大きい程例えば
90゜<δ<180゜の範囲に設定するのが好ましい。実際
の基板上の回路パターンには基板の縦横方向に対して30
度,45度そして60度方向のパターンも存在する場合があ
る。このような基板に対しても本発明の効果を十分発揮
させる為には、受光光束の主光線の基板5面上への投影
像と基板5の縦横方向とのなす角が平行若しくは直交方
向より15度±5度の範囲内に設定するのが良い。
As described above, the position of the principal ray of the received light flux with respect to the substrate is specified, and thereby the detection rate of foreign matter separation with respect to the circuit pattern is increased. Incidentally, as the principal ray of the received light flux to temporarily to increase the separation detection rate is greater angle δ spanned with respect to the center O of P 0 When arranged to come onto the point P 0 and the point P 0 'example
It is preferable to set in the range of 90 ° <δ <180 °. The circuit pattern on the actual board is 30 in the horizontal and vertical directions of the board.
There may also be patterns in degrees, 45 degrees and 60 degrees. In order to sufficiently exert the effects of the present invention even on such a substrate, the angle formed by the projected image of the principal ray of the received light beam on the surface of the substrate 5 and the vertical and horizontal directions of the substrate 5 is not parallel or orthogonal. It is better to set within the range of 15 degrees ± 5 degrees.

これを主たる回折パターンの方向に関連づけて換言する
と、基板5上の回路パターンにより互いに略直交する方
向(基板5へ投影してみると)に生ずる主たる2つの回
折パターンの方向のいずれか一方と、受光光束の主光線
の基板5への投影像との成す角が15度±5度の範囲内に
設定するということである。
In other words, in relation to the direction of the main diffraction pattern, in other words, one of the two main directions of the diffraction pattern generated in the directions substantially orthogonal to each other (when projected onto the substrate 5) by the circuit pattern on the substrate 5, This means that the angle formed by the principal ray of the received light beam and the projected image on the substrate 5 is set within the range of 15 ° ± 5 °.

第5図、第6図は、第1図の光学配置をとった時に、基
板5上各スキヤン位置(L,O,R)において入射ビームの
主光線(図中、実線)と受光散乱光束の主光線(図中、
点線)の基板5上への投影像を示したものである。L
点、R点は中心O点に対してそれぞれ左側、右側の任意
の点をあらわす。
5 and 6 show the principal ray (solid line in the figure) of the incident beam and the received and scattered light flux at each scanning position (L, O, R) on the substrate 5 when the optical arrangement of FIG. 1 is taken. Chief ray (in the figure,
The projected image of the dotted line on the substrate 5 is shown. L
The points R and R represent arbitrary points on the left and right sides of the center O, respectively.

このうち、第5図は特に入射ビームの各主光線の投影像
が投光系光軸の基板5上への投影像00′に平行で基板5
の縦横方向に対し、βの角度をもっている。この為各走
査点は常に同じ方向から照明される事になり、全走査域
で照明状態が等しいこの条件をつくるには、第2図でポ
リゴンミラーの反射点をf−θレンズ61の前側焦点位置
におく(投光光がテレセントリツク)。又、この時、受
光光束の各主光線の基板5上投影像は角度βと概ね一致
している。即ち図中L点でβL,O点でβ(β
β)、R点でβをなす。これはf−θレンズの後側焦
点位置PG′の近傍に開口絞り103を設ける事で達成され
る。いいかえると、開口絞り103は走査線上の各点から
の受光光束の各主光線の投影像が角度15゜±5゜の範囲
にある様なPG′近傍の範囲に設ける。これにより各走査
点から常に実質的に同じ方向(ここでは回路パターンか
らの回折光の影響をなるべく少なくして基板5上の異物
からの散乱光のみを主に受光する方向、即ち角度β方
向)に散乱する光のみを受光する事になり、全走査域で
受光状態が等しくできる。第3図を用いて詳しく説明す
ると、レチクル上、ビーム走査線の各点がいま点0に相
当する。第1図の構成を第3図にあてはめると、第1図
では入射レンズ61側への戻り散乱光を受光しているの
で、実質的に第3図の球体上P0の方向に常に受光開口を
設けている事になる。先に第3図について説明したよう
に、基板上の主たる回路パターンの回折光は黒丸の方向
に跳ぶので、P0の近傍では受光されない。球体の赤道面
が基板5面上に相当し、この赤道面上に受光光束の主光
線(OP0)の投影像が角度β方向に概ね一致していれ
ば、本発明の主旨に則り、パターン回折光を除外して、
異物散乱光だけを選択的に受光する事ができる。この時
のβの値は回路パターンからの散乱光を避ける為15゜±
5゜とする。
Of these, FIG. 5 particularly shows that the projected image of each chief ray of the incident beam is parallel to the projected image 00 ′ of the projection system optical axis on the substrate 5.
Has an angle of β with respect to the vertical and horizontal directions. Therefore, each scanning point is always illuminated from the same direction, and in order to create this condition in which the illumination state is the same in the entire scanning area, the reflection point of the polygon mirror in FIG. Put it in the position (the projected light is telecentric). At this time, the projected image of each principal ray of the received light flux on the substrate 5 substantially coincides with the angle β. That is, β L at point L and β 1 at point O (β 1 =
β), β R at point R. This is achieved by providing the aperture stop 103 near the rear focal position P G ′ of the f-θ lens. In other words, the aperture stop 103 is provided in the vicinity of P G ′ such that the projected image of each principal ray of the received light beam from each point on the scanning line is in the range of 15 ° ± 5 °. As a result, the direction is always substantially the same from each scanning point (here, the influence of the diffracted light from the circuit pattern is reduced as much as possible, and only the scattered light from the foreign matter on the substrate 5 is mainly received, that is, the angle β direction). Only the light scattered by the light is received, and the light receiving state can be made equal in the entire scanning area. Explaining in detail with reference to FIG. 3, each point on the beam scanning line on the reticle now corresponds to point 0. When the configuration of FIG. 1 is applied to FIG. 3, since the returning scattered light to the incident lens 61 side is received in FIG. 1 , the light receiving aperture is substantially always in the direction of P 0 on the sphere of FIG. Will be provided. As described above with reference to FIG. 3, since the diffracted light of the main circuit pattern on the substrate jumps in the direction of the black circle, it is not received near P 0 . If the equatorial plane of the sphere corresponds to the surface of the substrate 5 and the projected image of the principal ray (OP 0 ) of the received light flux substantially coincides with the angle β direction on this equatorial plane, the pattern will be obtained according to the gist of the present invention. Excluding diffracted light,
Only the scattered light of foreign matter can be selectively received. The value of β at this time is 15 ° ± to avoid scattered light from the circuit pattern.
Set at 5 °.

そして、ビーム走査線上の各点において、このような入
射ビームの主光線と受光光束の主光線とのレチクル面上
投影像のずれ角(第5図中β−βあるいはβ−β
は±10゜以内である事が望ましい。
Then, at each point on the beam scanning line, the deviation angle (β-β L or β-β R in FIG. 5) of the projected image on the reticle surface between the principal ray of the incident beam and the principal ray of the received light flux is as described above.
Is preferably within ± 10 °.

第6図は第5図とは対照的に、特に受光光束の各主光線
の投影像が、受光系光軸のレチクル上への投影像00′に
平行である構成をとる。こうするには、第1図で受光レ
ンズ61の後側焦点位置PG′に開口絞り103を設ける(受
光系がテレセントリツク系)。この時00′の縦横方向に
対する角度(これは受光光束の各主光線の投影像の角度
β′に等しい)の値を15゜±5゜にして回路パターンの
散乱光を避ける。この場合においても入射ビームの主光
線投影像は走査線B1B2上の各位置(L,O,R)において、
受光光束主光線の投影像と概ね一致している(第6図中
β′−β′あるいはβ′−β′が±10゜以内)方が
望ましい。一般には、完全に投光系や受光系がテレセン
トリツク系であるのが望ましいが、本発明の効果(レチ
クル上全域にわたって等しくパターン出力を低減する条
件を作り出す事)を得るには、レチクル上ビーム走査線
上の各点において、受光光束の各々の主光線のレチクル
上投影像が角度β方向(基板5の縦あるいは横方向に対
し15゜±5゜方向)に概一致していれば良い。好ましく
は、入射ビームと受光光束の両投影像の成す角が±10゜
以内が良い。
In contrast to FIG. 5, FIG. 6 particularly takes a configuration in which the projected image of each principal ray of the received light beam is parallel to the projected image 00 ′ on the reticle of the optical axis of the light receiving system. To do so, an aperture stop 103 is provided at the rear focal position P G ′ of the light receiving lens 61 in FIG. 1 (the light receiving system is a telecentric system). At this time, the angle of 00 'with respect to the vertical and horizontal directions (which is equal to the angle β'of the projected image of each principal ray of the received light beam) is set to 15 ° ± 5 ° to avoid scattered light of the circuit pattern. Even in this case, the chief ray projection image of the incident beam is at each position (L, O, R) on the scanning line B 1 B 2 ,
Are largely consistent with the projected image of the received light flux principal ray (first in FIG. 6 β'-β L 'or β'-β R' is within ± 10 °) is desirable. In general, it is desirable that the light projecting system and the light receiving system are completely telecentric systems. However, in order to obtain the effect of the present invention (creating a condition that reduces the pattern output equally over the entire reticle), the beam on the reticle At each point on the scanning line, it is sufficient that the projected image on the reticle of each principal ray of the received light beam approximately coincides with the angle β direction (15 ° ± 5 ° direction with respect to the vertical or horizontal direction of the substrate 5). Preferably, the angle formed by the projected images of both the incident beam and the received light beam is within ± 10 °.

本実施例において、レンズ61は投光用、受光用の2つの
レンズに別けても良い。
In this embodiment, the lens 61 may be divided into two lenses, one for projecting light and the other for receiving light.

(発明の効果) 本発明によれば基板上の回路パターンから生じる回折光
を走査線上の全点で空間配置的に避けて基板上に存在し
ている異物からの散乱光束だけを選択的に受光すること
ができる為、回路パターンに対する異物の分離検出率の
高い表面状態測定装置を達成することができる。
(Effects of the Invention) According to the present invention, the diffracted light generated from the circuit pattern on the substrate is avoided spatially at all points on the scanning line, and only the scattered light flux from the foreign matter existing on the substrate is selectively received. Therefore, it is possible to achieve a surface state measuring device having a high foreign matter separation detection rate with respect to a circuit pattern.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の光学系の概略図、第2図は
第1図の実施例の投光系の光学原理図、第3図は第1図
の実施例における入射光束と回路パターンによる回折光
の説明図、打4図(A),(B),(C)は回路パター
ンと回折像との関係を示す説明図、第5図は第1図の実
施例における入射ビームと受光光束の関係の概略図、第
6図は本発明の他の一実施例の入射ビームと受光光束の
関係の概略図、第7図,第8図は各々従来の表面状態測
定装置の一例である。図中1は光源、2はポリゴンミラ
ー、4は投光部、5は基板、6は集光部、7はミラー、
8はレンズ、9は受光面、10は光学系、11はハーフミラ
ーである。
FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention, FIG. 2 is an optical principle diagram of a light projecting system according to the embodiment of FIG. 1, and FIG. 3 is an incident light flux in the embodiment of FIG. Explanatory drawing of diffracted light by circuit pattern, FIG. 4 (A), (B) and (C) are explanatory views showing the relationship between the circuit pattern and the diffraction image, and FIG. 5 is the incident beam in the embodiment of FIG. And FIG. 6 is a schematic view of the relationship between the incident beam and the received light flux of another embodiment of the present invention, and FIGS. 7 and 8 are examples of conventional surface condition measuring devices. Is. In the figure, 1 is a light source, 2 is a polygon mirror, 4 is a light projecting unit, 5 is a substrate, 6 is a light collecting unit, 7 is a mirror,
Reference numeral 8 is a lens, 9 is a light receiving surface, 10 is an optical system, and 11 is a half mirror.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】パターンが形成されている基板に光束を入
射させ、前記光束で前記基板を走査する走査手段と、前
記基板から生じる散乱光束を受ける受光手段とを有する
表面状態測定装置において、前記走査手段は走査ミラー
と走査光学系を有し、前記受光手段は受光光学系と開口
絞りを有し、前記受光光学系の光軸を前記パターンから
の回折光が生じる方向とは異なる向きに設定し、前記走
査ミラーを前記走査光学系の前側焦点位置に配置し且つ
前記開口絞りを前記受光光学系の後側焦点位置に配置す
ることを特徴とする表面状態測定装置。
1. A surface condition measuring apparatus comprising: a scanning means for making a light beam incident on a substrate on which a pattern is formed, and scanning the substrate with the light beam; and a light receiving means for receiving a scattered light beam generated from the substrate. The scanning means has a scanning mirror and a scanning optical system, the light receiving means has a light receiving optical system and an aperture stop, and the optical axis of the light receiving optical system is set in a direction different from the direction in which the diffracted light from the pattern is generated. Then, the surface state measuring device is characterized in that the scanning mirror is arranged at a front focal position of the scanning optical system and the aperture stop is arranged at a rear focal position of the light receiving optical system.
【請求項2】前記走査光学系と前記受光光学系が単一の
光学系を共有していることを特徴とする特許請求の範囲
第(1)項記載の表面状態測定装置。
2. The surface state measuring device according to claim 1, wherein the scanning optical system and the light receiving optical system share a single optical system.
JP63198280A 1988-08-08 1988-08-08 Surface condition measuring device Expired - Lifetime JPH0675039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63198280A JPH0675039B2 (en) 1988-08-08 1988-08-08 Surface condition measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63198280A JPH0675039B2 (en) 1988-08-08 1988-08-08 Surface condition measuring device

Publications (2)

Publication Number Publication Date
JPH0247541A JPH0247541A (en) 1990-02-16
JPH0675039B2 true JPH0675039B2 (en) 1994-09-21

Family

ID=16388500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63198280A Expired - Lifetime JPH0675039B2 (en) 1988-08-08 1988-08-08 Surface condition measuring device

Country Status (1)

Country Link
JP (1) JPH0675039B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346549A (en) * 1992-04-17 1993-12-27 Canon Inc Scanning optical device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621876B2 (en) * 1986-02-14 1994-03-23 キヤノン株式会社 Surface condition measuring device

Also Published As

Publication number Publication date
JPH0247541A (en) 1990-02-16

Similar Documents

Publication Publication Date Title
US4645924A (en) Observation apparatus with selective light diffusion
US7834993B2 (en) Surface inspection apparatus and surface inspection method
JP2514037B2 (en) Detection optical system
JPH04232951A (en) Face state inspecting device
JPH0915163A (en) Method and equipment for inspecting foreign substance
JPH04273008A (en) Surface condition inspection device
JPH04215015A (en) Surface position detecting device
US5162867A (en) Surface condition inspection method and apparatus using image transfer
JPH075115A (en) Surface condition inspection apparatus
US4406546A (en) Photoelectric detecting device
JPH05332943A (en) Surface state inspection device
JPH02292813A (en) Automatic focussing device
JPH0145973B2 (en)
US5448350A (en) Surface state inspection apparatus and exposure apparatus including the same
JPH0621877B2 (en) Surface condition measuring device
JPH0675039B2 (en) Surface condition measuring device
JPH0621876B2 (en) Surface condition measuring device
US4660966A (en) Optical alignment apparatus
JPH06188173A (en) Surface position detector
JP3218727B2 (en) Foreign matter inspection device
US4739158A (en) Apparatus for the detection of pattern edges
JP2962752B2 (en) Pattern inspection equipment
JPH04339245A (en) Inspecting device for surface condition
JPH05259031A (en) Tilt detector
JPH0739955B2 (en) Surface displacement detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070921

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080921

Year of fee payment: 14

EXPY Cancellation because of completion of term