JPS6364211A - Fine copper wire and manufacture thereof - Google Patents

Fine copper wire and manufacture thereof

Info

Publication number
JPS6364211A
JPS6364211A JP61208896A JP20889686A JPS6364211A JP S6364211 A JPS6364211 A JP S6364211A JP 61208896 A JP61208896 A JP 61208896A JP 20889686 A JP20889686 A JP 20889686A JP S6364211 A JPS6364211 A JP S6364211A
Authority
JP
Japan
Prior art keywords
wire
ppm
copper wire
pole
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61208896A
Other languages
Japanese (ja)
Other versions
JPH0464121B2 (en
Inventor
徹 谷川
志賀 章二
正明 栗原
耕三 奥田
加賀 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP61208896A priority Critical patent/JPS6364211A/en
Publication of JPS6364211A publication Critical patent/JPS6364211A/en
Publication of JPH0464121B2 publication Critical patent/JPH0464121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01022Titanium [Ti]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/011Groups of the periodic table
    • H01L2924/01105Rare earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012055N purity grades, i.e. 99.999%

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子機器用途に用いられる銅細線に関し、特
に半導体製造に用いられるポンディングワイヤに関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin copper wire used in electronic equipment, and particularly to a bonding wire used in semiconductor manufacturing.

(従来の技術) ICやトランジスタ等の半導体の製造において、Siチ
ップ上の回路素子と外部の電貯への接路素子に接続した
バンドと、半導体のリード間にvj径15〜100μm
の金やアルミニウムあるいはアルミニウム合金等のfB
線が用いられている。
(Prior art) In the manufacture of semiconductors such as ICs and transistors, a band with a vj diameter of 15 to 100 μm is formed between the circuit element on the Si chip, the band connected to the connection element to the external storage, and the lead of the semiconductor.
fB of gold, aluminum or aluminum alloy, etc.
lines are used.

(発明が解決しようとする問題点) 4のうち、アルミニウムやアルミニウム合金は電源との
接合は同種金属で行える利点を有し、安価であるけれど
もポールポンドが困難であり、生産性に劣る超音波を用
いるウェッジポンドが行われているのみならず、さらに
耐食性に劣るために、樹脂封止型の半導体では透湿水に
よるワイヤの腐食が生じるので、一部の気密封止型半導
体に専ら使用されている。
(Problems to be Solved by the Invention) Out of 4, aluminum and aluminum alloys have the advantage that they can be joined to the power source using the same metal, and although they are inexpensive, pole-pounding is difficult and ultrasonic waves are inferior in productivity. Wedge pounding is not only carried out using methane, but it is also used exclusively for some hermetically sealed semiconductors because the corrosion resistance of resin-sealed semiconductors is poor, and the wires are corroded by moisture permeation in resin-sealed semiconductors. ing.

一方、金は耐食性に優れ、生産性の高いポールポンディ
ングを利用できる等の利点を有し、樹脂封止型の半導体
を中心に広く利用されている。しかしながら、素材であ
る金が著しく高価であるばかりか、電極′バッドのアル
ミニウムやアルミニウム合金と脆弱なAn−Auの金属
間化合物を形成したり、あるいは透湿水の存在下でアル
ミニウムと電食対を形成してアルミニウムを腐食せしめ
る等により、′心気回路の断線を生じることが知られて
いる。特に半導体の高度集積化によって熱発生による温
度」二昇やチップ面積の増大による透湿水経路の短縮と
ともに多ピン化による信頼性の大幅な低下が懸念される
On the other hand, gold has advantages such as excellent corrosion resistance and the ability to use highly productive pole bonding, and is widely used mainly in resin-sealed semiconductors. However, not only is the material gold extremely expensive, but it also forms a fragile An-Au intermetallic compound with the aluminum or aluminum alloy of the electrode pad, or forms electrolytic corrosion with aluminum in the presence of permeable water. It is known that due to the formation of aluminum and corrosion of aluminum, breakage of the cardiac circuit can occur. In particular, there are concerns that as semiconductors become more highly integrated, the temperature will rise due to heat generation, the moisture permeable path will shorten due to an increase in chip area, and reliability will significantly decrease due to the increase in the number of pins.

このために金に代科でき、かつ、特性的にも金に劣らな
いワイヤの開発が望まれていた。
For this reason, it has been desired to develop a wire that can be substituted for gold and has properties comparable to gold.

このために、銅のワイヤが提案されているけれども、そ
の変形能が金に劣り、パー2ド下にクラックを生じたり
、電極のアルミニウムとの接合が不十分であるという問
題点を生じている。特に高集積ICでは、電極バーノド
下にS i O2等の脆い絶縁層が存在する例が多く、
金に匹敵するかまたはそれ以」−の変形能を有する銅ワ
イヤの開発が期待されていた。
For this reason, copper wire has been proposed, but its deformability is inferior to that of gold, causing problems such as cracks occurring under the pad and insufficient bonding with the aluminum electrode. . In particular, in highly integrated ICs, there are many cases where a fragile insulating layer such as SiO2 exists under the electrode bar.
It was hoped that copper wire would be developed with deformability comparable to or better than that of gold.

(問題点を解決するための手段) 本発明は−1−記に鑑みて鋭、α検討の結果成されたも
のであり、0.1〜9ppmのTi、!=0.1〜9p
pmc7)、Nb、Mg、Ca、希土類元素、Hf、 
 V、  Ta、  Pd、  Pt、  Au、  
Cd、  B。
(Means for Solving the Problems) The present invention has been achieved as a result of intensive α studies in view of -1-, and includes Ti of 0.1 to 9 ppm! =0.1~9p
pmc7), Nb, Mg, Ca, rare earth elements, Hf,
V, Ta, Pd, Pt, Au,
Cd, B.

A文、 In、  St、  Ge、  Pb、  P
、  Sb、  Biから成る群から選ばれた少なくと
も1種以上の元素とを合計で0.2〜9.5ppm含有
し、残部Cuから成ることを特徴とする銅細線及び真空
または非酸化性雰囲気下でPf造された0、1〜9pp
mのTiと0.1〜9ppmの、Nb、Mg、Ca、希
土類元素、Hf、V、Ta、Pd、Pt、Au、Cd、
B、All、In、Si、Ge、Pb、P、Sb、Bi
から成る群から選ばれた少なくとも1種以上の元素とを
合計で0.2〜9.5ppm含有し、残部Cuから成る
鋳塊を、伸線加工と焼鈍処理を繰り返して所定の線径に
するに当り、少なくとも最終加工率を70〜99.99
%とし、焼鈍処理により2〜20%の伸びとすることを
特徴とする銅細線の製造方法を提供するものである。
A sentence, In, St, Ge, Pb, P
, Sb, and Bi in a total amount of 0.2 to 9.5 ppm, and the balance is Cu, and the copper wire is produced in vacuum or in a non-oxidizing atmosphere. 0, 1~9pp made by Pf
m of Ti and 0.1 to 9 ppm of Nb, Mg, Ca, rare earth elements, Hf, V, Ta, Pd, Pt, Au, Cd,
B, All, In, Si, Ge, Pb, P, Sb, Bi
An ingot containing a total of 0.2 to 9.5 ppm of at least one element selected from the group consisting of 0.2 to 9.5 ppm, with the remainder being Cu, is repeatedly drawn and annealed to a predetermined wire diameter. At least the final processing rate is 70 to 99.99.
%, and provides a method for producing thin copper wire characterized by elongation of 2 to 20% by annealing.

本発明の銅細線の!IJ造は、非敢化性雰囲気、もしく
は真空中で前記組成の銅合金の鋳塊ビレシトの後伸線加
工と焼鈍を繰り返して所定線径とした後、最終焼鈍を行
って所定の性能とする工程により行うことができる。こ
の際少なくとも焼鈍前の最終加工率を70〜99.99
%、好ましくは90〜99.95%とし、さらに150
〜400°Cの温度で所定時間焼鈍して伸びを2〜20
%、i17ましくは6〜16%に調整すると、より優れ
た特性とすることができる。また、焼鈍により細線の特
性を発現する代わりに、過剰に焼鈍した後、1〜5%の
加工・Vの伸線加工を行って同様の特性としてもよい。
The thin copper wire of the present invention! In IJ construction, after an ingot of a copper alloy with the above composition is drawn in a non-hardening atmosphere or in a vacuum, wire drawing and annealing are repeated to obtain a predetermined wire diameter, and final annealing is performed to achieve a predetermined performance. This can be done by steps. At this time, the final processing rate before annealing is at least 70 to 99.99.
%, preferably 90 to 99.95%, and further 150%
Annealing at a temperature of ~400°C for a predetermined time to achieve an elongation of 2~20
%, i17 or 6 to 16%, more excellent characteristics can be obtained. Moreover, instead of developing the characteristics of a fine wire by annealing, the same characteristics may be obtained by excessively annealing and then performing a 1 to 5% processing/V wire drawing process.

半導体素子とインナーリード間のワイヤポンディングは
ボールポンディングされる例が多い。
Ball bonding is often used for wire bonding between a semiconductor element and an inner lead.

ボールポンディングにおいて、細線はH2炎又は放電に
より先端をメルトしてポールな形成されるがポールが真
球に近く偏芯していないこと。
In ball pounding, the thin wire is formed into a pole by melting the tip with H2 flame or electric discharge, but the pole must be close to a true sphere and not eccentric.

ポールが電極であるアルミニウムパッドに容易に接合す
ること、ワイヤのループが適当な高さを保jV すX 
、−P  i ÷−,4−+!’n /7’l 1eA
 A<4− ’r> −74本X−b等が必要とされる
The pole should be easily joined to the aluminum pad which is the electrode, and the wire loop should be kept at the appropriate height.
, −P i ÷ −, 4−+! 'n /7'l 1eA
A<4-'r>-74 pieces X-b, etc. are required.

銅は純度の向上により、変形能が優れたものとできるけ
れども、常温軟化し易くループのブレを生じたりするこ
と、ロフトによる特性のバラツキを生じ易いこと、また
ポールポンディング時に電極パッドのアルミニウムと接
合しない、ポール浮き現象を生じ易いことなどの欠点を
有していた。
Copper can be made to have excellent deformability by improving its purity, but it tends to soften at room temperature, causing loops to waver, and variations in properties due to loft. It has disadvantages such as not bonding and easy to cause pole floating phenomenon.

また、従来Ti弔独でも、ポンディング特性の改と効果
が知られているけれども、Tiそれ自身02やN2と反
応し易く、そのため特性のバラツキが大きいこと、また
Tiの添加によってECが大\きく変化することが欠点
として知られていた。
In addition, although it is known that conventional Ti additives can improve the bonding properties, Ti itself easily reacts with 02 and N2, resulting in large variations in properties, and the addition of Ti increases EC. It was known that its shortcoming was that it changed rapidly.

;(発明によれば、0.1〜9ppmのTiと0.1〜
9ppmの、Nb、Mg、Ca、希土類元素、Hf、V
、Ta、Pd、Pt、Au、Cd、B、IQ、In、S
t、Ge、Pb、P、Sb、Biから成る群から選ばれ
た1種又は2種以上の元素を合計で0.2〜9.5pp
m添加することにより、−1−記に述へた欠点を解消で
きるばかりではなく、チップの機械的損傷を防止するた
めに、低荷重、低超音波出力を要求される高集枯ICに
対するポールポンドでも金に匹敵する以上のポンディン
グ特性を得ることができる。
(According to the invention, 0.1-9 ppm Ti and 0.1-9 ppm Ti
9ppm of Nb, Mg, Ca, rare earth elements, Hf, V
, Ta, Pd, Pt, Au, Cd, B, IQ, In, S
A total of 0.2 to 9.5 pp of one or more elements selected from the group consisting of t, Ge, Pb, P, Sb, and Bi.
By adding m, it is possible to not only eliminate the drawbacks mentioned in -1-, but also to prevent mechanical damage to the chip. Even with pounds, you can obtain pounding properties that are more than comparable to gold.

以上の効果は、Nb、Mg、Ca、希土類元素、Hf、
V、Ta、Pd、Pt、Au、Cd、B、An、I n
、S i、Ge、Pb、P、Sb、B iをベースの銅
に添加後、Tiを添加すること及び、99.999%以
上、好ましくは99.9999%以上の純銅を使用する
ことにより一層発現できる。
The above effects include Nb, Mg, Ca, rare earth elements, Hf,
V, Ta, Pd, Pt, Au, Cd, B, An, In
, Si, Ge, Pb, P, Sb, and Bi to the base copper, and then adding Ti and using pure copper of 99.999% or more, preferably 99.9999% or more. It can be expressed.

銅1細線については以上のポール及びステッチ側ポンデ
ィング性と共にループ形状やワイヤ強度が実用的に重要
である。これらの特性には、ワイヤの機械的特性が関与
するけれども半導体の種類や、ポンディング方式及び装
置条件によって要求される特性は異なる。しかしながら
、伸びが著しく小さいと、ループ高さが大きくなり、ワ
イヤ間でのショートを引起こす原因となる他、ワイヤ変
形能が小さく、ステッチポンドを行うに高荷重、高超音
波出力を必要とするほど、ポンディング性が低下する。
Regarding the copper 1 fine wire, the loop shape and wire strength are practically important as well as the above-mentioned pole and stitch side bonding properties. Although these characteristics are related to the mechanical characteristics of the wire, the characteristics required differ depending on the type of semiconductor, bonding method, and equipment conditions. However, if the elongation is extremely small, the loop height becomes large, causing a short between the wires, and the wire deformability is small, making it necessary to use high loads and high ultrasonic power to perform stitch pounding. , the poundability decreases.

一方、伸びが著しく大きいと、ループ高さが低くなり、
チップとの接触を招く危険がある他、ステッチポンドで
のワイヤ遣れが大きくなり、ネック部が脆弱となり易い
、また、ポンド後のワ・イヤテイルが不均一となり、ポ
ール形成が行えない骸態が生じることとなる。
On the other hand, if the elongation is significantly large, the loop height will be low;
In addition to the risk of contact with the tip, the wire threading at the stitch pond becomes large, which tends to make the neck part fragile, and the wire and ear tail after the stitch pound become uneven, making it impossible to form a pole. This will occur.

このため、前記の機械的特性が実用上有効である。これ
らの特性を実用的に安定して有利に発現するためには、
製造工程、特に最終伸線工程での加工率が4νに重要で
あり、前記加工範囲が必要とされる。
Therefore, the mechanical properties described above are practically effective. In order to stably and advantageously exhibit these properties in practical terms,
The processing rate in the manufacturing process, especially in the final wire drawing process is important to 4ν, and the above processing range is required.

(実施例) 次に本発明を実施例に基づきさらに詳しく説1!1する
(Examples) Next, the present invention will be explained in more detail based on Examples 1!1.

実施例1 真空溶解炉を用いて99.9996%の純銅に添加元素
を加え第1表の実験No、1〜22に示しを鋳造した。
Example 1 Using a vacuum melting furnace, additive elements were added to 99.9996% pure copper, and the samples shown in Experiment Nos. 1 to 22 in Table 1 were cast.

このビレットを画用して約20m+w(直径)XIoo
ms(長さ)とした後、熱間圧延で直径約10+uaと
し、その後直118mmまで皮ムギを入れて伸線を行っ
た。
Approximately 20m + w (diameter) XIoo using this billet
ms (length), hot rolled to a diameter of about 10+ua, and then wire-drawn with barley added to a straight line of 118 mm.

さらに92%の加工率での伸線と、350℃での真空焼
鈍を繰り返して、直径25JLmのワイヤとした。最後
にアルゴン雰囲気中250〜400°Cの温度とした走
間焼鈍炉で焼鈍を行い、伸び約15%前後にしたワイヤ
を製造した。この実験No、1〜22で得られたワイヤ
の機械的特性を第2表に示した。同表中8文は破断強度
、Elは伸びである。
Further, wire drawing at a processing rate of 92% and vacuum annealing at 350° C. were repeated to obtain a wire with a diameter of 25 JLm. Finally, annealing was performed in a running annealing furnace at a temperature of 250 to 400°C in an argon atmosphere to produce a wire with an elongation of about 15%. The mechanical properties of the wires obtained in Experiment Nos. 1 to 22 are shown in Table 2. In the same table, 8th sentence is the breaking strength, and El is the elongation.

ワイヤ中の配素15はいずれも5ppm以下であった。The content of element 15 in the wires was 5 ppm or less in all cases.

これらのワイヤを10%H2−N2雰囲気中で、ポンデ
ィング条件を、荷%35 g、超音波出力0.02W、
時間30m5ec、ステージ温度275℃としてマニュ
アル型のワイヤボンダーでポールポンドを行い、次の項
目について比較試験した。
These wires were bonded in a 10% H2-N2 atmosphere under the following conditions: load: 35 g; ultrasonic output: 0.02 W;
Pole bonding was performed using a manual wire bonder at a stage temperature of 275° C. for a time of 30 m5 ec, and comparative tests were conducted on the following items.

l)ポールの形状(真球度、偏芯) 2)ポールの歪(ポールアップ直後のポールの径と押潰
した後のポール径との比較) 3)ポール浮き(Siウェハ上に蒸着したlpm厚のA
nにポールポンドした時の接合不成功率) 4)チップ割れ 5)接合ワイヤ破断モード(ポンディング後ワイヤプル
試験を行った時の破断の部位が接合部かワイヤリJれか
をみる。ワイヤ切れの割合(%)で示す、) 6)ループ形状(ポンディング後のループの形状) メッキレスc7)Cu−0,15cr−0,1Sn合金
条(0,25mm厚)を用いた。
l) Pole shape (sphericity, eccentricity) 2) Pole distortion (comparison of pole diameter immediately after pole up and pole diameter after crushing) 3) Pole floating (LPM deposited on Si wafer) Thick A
4) Chip cracking 5) Joining wire breakage mode (When performing a wire pull test after pounding, check whether the breakage occurs at the joint or at the wire. Rate of wire breakage) (expressed in %) 6) Loop shape (shape of loop after bonding) Platingless c7) Cu-0,15cr-0,1Sn alloy strip (0.25 mm thick) was used.

この結果を第2表に示した。同表の結果から本発明に対
して実験NO,16(無添加)や実験No。
The results are shown in Table 2. From the results in the same table, experiment No. 16 (no additive) and experiment No. for the present invention.

18〜21(過剰添加)はポール変形能が小さく、ポー
ル浮き率が大きいこと、ループ形状が適当でなく、接合
強度が弱いことが分る。
It can be seen that samples Nos. 18 to 21 (excessive addition) have low pole deformability, high pole floating ratio, inappropriate loop shape, and weak bonding strength.

/′ /′ 実施例2 実施例1の実験No、2と同じ合金組成の鋳塊ビレット
を用いてワイヤを製造した。この場合最終伸線加工率を
80.99.95.99.97%とするとともに、焼鈍
温度を変えて種々の伸びのものを作った以外は実施例1
と同様にして行った。
/'/' Example 2 A wire was manufactured using an ingot billet having the same alloy composition as in Experiment No. 2 of Example 1. In this case, the final wire drawing rate was set to 80.99.95.99.97%, and the annealing temperature was changed to produce wires with various elongations.
I did it in the same way.

これらワイヤについて実施例1の条件でメッキレスのC
u−0,15Cr−0,lsn合金条(0,25m11
厚)にポールポンドを行い、そのプル試験を実施して、
ワイヤ破断モードの割合を求めた。
These wires were plated-free C under the conditions of Example 1.
u-0,15Cr-0,lsn alloy strip (0,25m11
(thickness) and perform a pull test on it,
The percentage of wire breakage mode was determined.

結果を第1図に示した。The results are shown in Figure 1.

同図の結果より高加工率でも、2〜20%の範囲内で良
好なポンディング特性が得られることがわかる。
From the results shown in the figure, it can be seen that even at a high processing rate, good bonding characteristics can be obtained within the range of 2 to 20%.

(発明の効果) 本発明の銅A11l線は変形能が慟れるばかりでなく、
ワイヤ強度が高ぐ、常温軟化せず、ループの+1−一+
1□−1−jltj腎1 ルポンディングにおいて電極パッドやリードフレームと
のポンディング性に優れ、ポンディング性のバラツキも
少なく、ポール浮き率が大きいという優れた効果を奏す
る。
(Effect of the invention) The copper A11l wire of the present invention not only has excellent deformability but also
High wire strength, does not soften at room temperature, +1-1+ of the loop
1□-1-jltj kidney 1 In bonding, it has excellent bonding properties with electrode pads and lead frames, little variation in bonding properties, and a high pole floating rate.

さらに本発明の銅細線によれば、チップの機械的損傷を
防止できるため低荷重、低超音波出力条件を要求される
高集積ICのポールポンドにおいても金に匹敵する以上
のポンディング特性が得られる。
Furthermore, the thin copper wire of the present invention can prevent mechanical damage to the chip, and therefore has bonding properties comparable to or better than that of gold even in pole pounds of highly integrated ICs that require low load and low ultrasonic output conditions. It will be done.

本発明によれば安価な銅線を用いて金線を有利に代任で
きる。
According to the present invention, inexpensive copper wire can be advantageously substituted for gold wire.

本発明は、高純度Cuの特性を追求して得られた成果で
あり、上記の効果のほか長期の信頼性については、前述
の如< A l / A uは固相拡散して脆弱な界面
相を形成し、パープルプラーグ現象を 、起こし易いが
、An−Cuはこれに比して数分の1以下であることが
知られており、この意味でも効果は極めて大きい。
The present invention is the result of pursuing the characteristics of high-purity Cu, and in addition to the above-mentioned effects, long-term reliability is due to Although it is easy to form a phase and cause a purple plug phenomenon, it is known that An-Cu is less than a few times smaller than this, and in this sense, it is extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1父はCu  0.15Cr  0.l5n8にポー
ルポンドしたワイヤの破断モード中、正常なワイヤ切れ
の割合を、ワイヤの最終伸線加工率と伸びについて比較
し痘結果である。 特許出願人 古河電気工業株式会社 同   古河特殊金属工業株式会社 代理人 弁理士 飯 r[l  敏 三 第  1  
g ワイヤイ甲び(壬)
The first father was Cu 0.15Cr 0. During the breakage mode of the wire pole-pounded at 15n8, the percentage of normal wire breakage was compared with respect to the final drawing rate and elongation of the wire. Patent applicant Furukawa Electric Co., Ltd. Agent Furukawa Special Metals Co., Ltd. Patent attorney Toshizo Ii 1st
G Waiyai Kobi (壬)

Claims (4)

【特許請求の範囲】[Claims] (1)0.1〜9ppmのTiと0.1〜9ppmの、
Nb、Mg、Ca、希土類元素、Hf、V、Ta、Pd
、Pt、Au、Cd、B、Al、In、Si、Ge、P
b、P、Sb、Biから成る群から選ばれた少なくとも
1種以上の元素とを合計で0.2〜9.5ppm含有し
、残部Cuから成ることを特徴とする銅細線。
(1) 0.1 to 9 ppm Ti and 0.1 to 9 ppm,
Nb, Mg, Ca, rare earth elements, Hf, V, Ta, Pd
, Pt, Au, Cd, B, Al, In, Si, Ge, P
1. A thin copper wire characterized by containing a total of 0.2 to 9.5 ppm of at least one element selected from the group consisting of B, P, Sb, and Bi, with the remainder being Cu.
(2)残部のCuが純度99.999重量%以上のCu
である特許請求の範囲第1項記載の銅細線。
(2) The remaining Cu is Cu with a purity of 99.999% by weight or more
A thin copper wire according to claim 1.
(3)真空または非酸化性雰囲気下で鋳造された0.1
〜9ppmのTiと0.1〜9ppmの、Nb、Mg、
Ca、希土類元素、Hf、V、Ta、Pd、Pt、Au
、Cd、B、Al、In、Si、Ge、Pb、P、Sb
、Biから成る群から選ばれた少なくとも1種以上の元
素とを合計で0.2〜9.5ppm含有し、残部Cuか
ら成る鋳塊を、伸線加工と焼鈍処理を繰り返して所定の
線径にするに当り、少なくとも最終加工率を70〜99
.99%とし、焼鈍処理により2〜20%の伸びとする
ことを特徴とする銅細線の製造方法。
(3) 0.1 cast under vacuum or non-oxidizing atmosphere
~9ppm Ti and 0.1~9ppm Nb, Mg,
Ca, rare earth elements, Hf, V, Ta, Pd, Pt, Au
, Cd, B, Al, In, Si, Ge, Pb, P, Sb
, Bi, and at least one element selected from the group consisting of Bi in a total amount of 0.2 to 9.5 ppm, with the remainder being Cu. The ingot is repeatedly drawn and annealed to a predetermined wire diameter. In order to achieve this, the final processing rate should be at least 70 to 99.
.. 99% and elongation of 2 to 20% by annealing.
(4)焼鈍処理後に1〜5%の加工を加えて2〜20%
の伸びとする特許請求の範囲第3項記載の銅細線の製造
方法。
(4) 2-20% by adding 1-5% processing after annealing treatment
A method for manufacturing a fine copper wire according to claim 3, wherein the elongation is as follows.
JP61208896A 1986-09-05 1986-09-05 Fine copper wire and manufacture thereof Granted JPS6364211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61208896A JPS6364211A (en) 1986-09-05 1986-09-05 Fine copper wire and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61208896A JPS6364211A (en) 1986-09-05 1986-09-05 Fine copper wire and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6364211A true JPS6364211A (en) 1988-03-22
JPH0464121B2 JPH0464121B2 (en) 1992-10-14

Family

ID=16563924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61208896A Granted JPS6364211A (en) 1986-09-05 1986-09-05 Fine copper wire and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6364211A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264110A (en) * 1988-04-13 1989-10-20 Hitachi Cable Ltd Insulating coated conductor excellent in flexibility
US6331234B1 (en) 1999-06-02 2001-12-18 Honeywell International Inc. Copper sputtering target assembly and method of making same
WO2003036710A1 (en) * 2001-10-23 2003-05-01 Sumitomo Electric Wintec, Incorporated Bonding wire
US6758920B2 (en) 1999-11-24 2004-07-06 Honeywell International Inc. Conductive integrated circuit metal alloy interconnections, electroplating anodes; metal alloys for use as a conductive interconnection in an integrated circuit; and physical vapor deposition targets
US6849139B2 (en) 1999-06-02 2005-02-01 Honeywell International Inc. Methods of forming copper-containing sputtering targets
JP2008153625A (en) * 2006-11-21 2008-07-03 Sumitomo Metal Mining Co Ltd Copper bonding wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120693A (en) * 1984-07-06 1986-01-29 Toshiba Corp Bonding wire
JPS62102551A (en) * 1985-10-30 1987-05-13 Toshiba Corp Semiconductor device
JPS62102552A (en) * 1985-10-30 1987-05-13 Toshiba Corp Semiconductor device
JPS62102553A (en) * 1985-10-30 1987-05-13 Toshiba Corp Semiconductor device
JPS62142734A (en) * 1985-12-18 1987-06-26 Toshiba Corp Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6120693A (en) * 1984-07-06 1986-01-29 Toshiba Corp Bonding wire
JPS62102551A (en) * 1985-10-30 1987-05-13 Toshiba Corp Semiconductor device
JPS62102552A (en) * 1985-10-30 1987-05-13 Toshiba Corp Semiconductor device
JPS62102553A (en) * 1985-10-30 1987-05-13 Toshiba Corp Semiconductor device
JPS62142734A (en) * 1985-12-18 1987-06-26 Toshiba Corp Semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01264110A (en) * 1988-04-13 1989-10-20 Hitachi Cable Ltd Insulating coated conductor excellent in flexibility
US6331234B1 (en) 1999-06-02 2001-12-18 Honeywell International Inc. Copper sputtering target assembly and method of making same
US6645427B1 (en) 1999-06-02 2003-11-11 Honeywell International Inc. Copper sputtering target assembly and method of making same
US6849139B2 (en) 1999-06-02 2005-02-01 Honeywell International Inc. Methods of forming copper-containing sputtering targets
US6758920B2 (en) 1999-11-24 2004-07-06 Honeywell International Inc. Conductive integrated circuit metal alloy interconnections, electroplating anodes; metal alloys for use as a conductive interconnection in an integrated circuit; and physical vapor deposition targets
US6858102B1 (en) * 2000-11-15 2005-02-22 Honeywell International Inc. Copper-containing sputtering targets, and methods of forming copper-containing sputtering targets
WO2003036710A1 (en) * 2001-10-23 2003-05-01 Sumitomo Electric Wintec, Incorporated Bonding wire
JP2008153625A (en) * 2006-11-21 2008-07-03 Sumitomo Metal Mining Co Ltd Copper bonding wire

Also Published As

Publication number Publication date
JPH0464121B2 (en) 1992-10-14

Similar Documents

Publication Publication Date Title
JPH0520493B2 (en)
WO2012169067A1 (en) High-strength, high-elongation-percentage gold alloy bonding wire
JP4482605B1 (en) High purity Cu bonding wire
JP2000040710A (en) Gold alloy fine wire for bonding
WO2011118009A1 (en) HIGH-PURITY Cu BONDING WIRE
JPS6364211A (en) Fine copper wire and manufacture thereof
JP4726206B2 (en) Gold alloy wire for bonding wire with high initial bondability, high bond reliability, high roundness of crimped ball, high straightness, high resin flow resistance and low specific resistance
JPS63235440A (en) Fine copper wire and its production
JPS6365036A (en) Fine copper wire and its production
US5989364A (en) Gold-alloy bonding wire
JPH0520494B2 (en)
JPS63238232A (en) Fine copper wire and its production
JP3323185B2 (en) Gold wire for connecting semiconductor elements
JPS63235442A (en) Fine copper wire and its production
JPS61255045A (en) Bonding wire for semiconductor device and manufacture thereof
JPS6365034A (en) Fine copper wire and its production
JP2003059964A (en) Bonding wire and manufacturing method therefor
JP2745065B2 (en) Bonding wire for semiconductor device
JP2830520B2 (en) Method of manufacturing bonding wire for semiconductor device
JPS63247325A (en) Fine copper wire and its production
JPS6222451B2 (en)
JPS6365035A (en) Fine copper wire and its production
JPS6365037A (en) Fine copper wire and its production
JP2779683B2 (en) Bonding wire for semiconductor device
JPS63241942A (en) Fine copper wire and manufacture thereof