JPS63238232A - Fine copper wire and its production - Google Patents

Fine copper wire and its production

Info

Publication number
JPS63238232A
JPS63238232A JP62071173A JP7117387A JPS63238232A JP S63238232 A JPS63238232 A JP S63238232A JP 62071173 A JP62071173 A JP 62071173A JP 7117387 A JP7117387 A JP 7117387A JP S63238232 A JPS63238232 A JP S63238232A
Authority
JP
Japan
Prior art keywords
wire
9ppm
bonding
annealing
copper wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62071173A
Other languages
Japanese (ja)
Inventor
Masaaki Kurihara
正明 栗原
Toru Tanigawa
徹 谷川
Shoji Shiga
志賀 章二
Toshiaki Inaba
稲葉 年昭
Ichiro Kaga
加賀 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FURUKAWA TOKUSHU KINZOKU KOGYO KK
Furukawa Electric Co Ltd
Original Assignee
FURUKAWA TOKUSHU KINZOKU KOGYO KK
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FURUKAWA TOKUSHU KINZOKU KOGYO KK, Furukawa Electric Co Ltd filed Critical FURUKAWA TOKUSHU KINZOKU KOGYO KK
Priority to JP62071173A priority Critical patent/JPS63238232A/en
Publication of JPS63238232A publication Critical patent/JPS63238232A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/432Mechanical processes
    • H01L2224/4321Pulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Abstract

PURPOSE:To obtain a fine copper wire by which good bonding characteristics for a semi-conductor can be obtd., by repeatedly executing wire drawing and annealing to a Cu alloy ingot contg. limited ratios of one or more kinds among Cr, Zr, Ag and Sn and specifying the final working ratio thereof. CONSTITUTION:The ingot contg. the total 0.2-9.5ppm of one or more kinds among 0.1-25ppm Cr, 0.1-9ppm Zr, 0.1-9ppm Ag, and 0.1-9ppm Sn and consisting of the balance Cu is cast in a vacuum or nonoxidizing atmosphere. Said ingot is repeatedly subjected to the wire drawing and annealing treatment to the desired wire diameter. At this time, the final working ratio is at least regulated to 70-99.99% and the ingot is subjected to the annealing treatment to produce the copper thin wire having 2-20% elongation. After the annealing treatment, 1-5% working is executed to the wire at need. Said fine copper wire has excellent deformability, has high wire strength and in which cold softening and sagging of a loop are not generated. The wire furthermore has the bonding characteristics equal to or above gold.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子機器用に用いられる銅細線、特に半導体の
製造にボンディングワイヤとして用いる銅細線とその製
造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin copper wire used for electronic equipment, particularly a thin copper wire used as a bonding wire in the manufacture of semiconductors, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

ICやトランジスタ等の半導体の製造において、S1チ
ツプ上の回路素子と外部の電源への接続や、外部との情
報のヤリとりを行なうため、回路素子に接続した電極パ
ッドと、半導体のリード間に線径15〜100μmの金
やアルミニウム又はアルミニウム合金等の細線が用いら
れている。
In the manufacture of semiconductors such as ICs and transistors, in order to connect the circuit elements on the S1 chip to an external power supply and to exchange information with the outside world, there is a connection between the electrode pads connected to the circuit elements and the leads of the semiconductor. A thin wire made of gold, aluminum, aluminum alloy, or the like with a wire diameter of 15 to 100 μm is used.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このうちアルミニウムやアルミニウム合金は電源との接
続が同種の金属で行える利点を有し、安価でおる。しか
しポールボンドが困難なため、生産性に劣る超音波を用
いたウェッジボンドが行なわれ、更に耐食性が劣るため
、樹脂封止型の半導体では、透湿水によるワイヤの腐食
が生じる。その結果一部の機密封止型半導体に使用され
ているにすぎない。
Among these, aluminum and aluminum alloys have the advantage that they can be connected to the power source using the same type of metal, and are inexpensive. However, since pole bonding is difficult, wedge bonding using ultrasonic waves is performed, which is inferior in productivity. Furthermore, since corrosion resistance is inferior, in resin-sealed semiconductors, wires are corroded by moisture permeable water. As a result, it is only used in some hermetically sealed semiconductors.

一方、金は耐食性に優れ、生産性の高いボールボンディ
ングを利用できる利点を有し、樹脂封止型の半導体を中
心に広く利用されている。
On the other hand, gold has the advantage of excellent corrosion resistance and the ability to use highly productive ball bonding, and is widely used mainly in resin-sealed semiconductors.

しかしながら素材である金が著しく高価であるばかりか
、電極パッドのアルミニウムやアルミニウム合金と脆弱
なA 、e −A uの金属間化合物を形成したり、あ
るいは透湿水の存在下でアルミニウと電食対を形成して
アルミニウムを腐食せしめる等により、電気回路の断線
を生じることが知られている。特に半導体の高度集積化
によって熱発生による温度上昇やチップ面積の増大によ
る透湿水経路の短縮と共に多ピン化による信頼性の大巾
な低下が懸念される。
However, not only is the material gold extremely expensive, but it can also form fragile A, e-Au intermetallic compounds with the aluminum or aluminum alloy of the electrode pad, or cause electrolytic corrosion with aluminum in the presence of permeable water. It is known that the formation of a pair causes corrosion of aluminum, leading to breakage of electrical circuits. In particular, with the high degree of integration of semiconductors, there are concerns that the temperature will rise due to heat generation, the permeable water path will be shortened due to an increase in the chip area, and reliability will be drastically reduced due to the increase in the number of pins.

このため金に代替でき、かつ特性的にも金に劣らないワ
イヤの開発が望まれ、銅のワイヤが提案されている。し
かしその変形能が金に劣り、電極パッド下にクランクを
生じたり電極のアルミニウムとの接合が不十分であると
いう問題点を生じている。特に高集積ICでは、電極パ
ッド下に5iOz等の脆い絶縁層が存在する例が多く、
金に匹敵するかまたはそれ以上の変形能を有する銅ワイ
ヤの開発が期待されている。
Therefore, there is a desire to develop a wire that can replace gold and has properties comparable to gold, and copper wire has been proposed. However, its deformability is inferior to that of gold, resulting in problems such as crank formation under the electrode pad and insufficient bonding with the aluminum electrode. Especially in highly integrated ICs, there are many cases where a fragile insulating layer such as 5iOz exists under the electrode pad.
The development of copper wires with deformability comparable to or better than gold is expected.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果、長期信頼性の面で
は脆弱な界面相の形成がAuの数分の1以下であり、ポ
ールボンディングにおいては電極パッドのA1との接合
性が良いのでボール浮き率が小さく、ざらには低荷重、
低超音波出力を要求される高集積ICにおいても良好な
ボンディング特性が得られる銅細線及びその製造方法を
開発したものである。これにより、AUに比べはるかに
安価で変形能に優れ、ワイヤ強度が高く、常温軟化によ
るループのダレを生じないワイヤの供給が可能になった
In view of this, the present invention has been developed as a result of various studies.In terms of long-term reliability, the formation of a fragile interfacial phase is less than a fraction of that of Au, and in pole bonding, the bonding property with electrode pad A1 is good, so the ball Low floating rate, low load,
We have developed a thin copper wire and a method for manufacturing the same that can provide good bonding characteristics even in highly integrated ICs that require low ultrasonic output. This has made it possible to supply a wire that is much cheaper than AU, has excellent deformability, has high wire strength, and does not cause loop sagging due to softening at room temperature.

即ち本発明銅細線は、Cr0.1〜2.51)I)mと
、Z r0.1〜9pDm 、 A1.1〜9ppm 
、 Sn0.1〜91)$)mの何れか1種又は2種以
上とを合計0.2〜9.5ppm含み、残部Cuからな
ることを特徴とするものである。
That is, the copper wire of the present invention contains Cr0.1-2.51)I)m, Zr0.1-9pDm, and A1.1-9ppm.
, Sn0.1-91)$)m in a total amount of 0.2-9.5 ppm, and the balance is Cu.

また本発明銅細線の製造法は、真空又は非酸化性雰囲気
で鋳造したCr0.1〜2.5ppmと、Z r0.1
〜9Dt)m 、 A1.1〜91)l)m 、 Sn
0.1〜9 DDmの何れか1種又は2種以上とを合計
0.2〜9.5ppm含み、残部Cuからなる鋳塊を伸
線加工と焼鈍処理を繰返して所定の線径にするに当り、
少なくとも最終加工率を70〜99.99%とし、これ
を焼鈍処理により2〜20%の伸びとすることを特徴と
するものである。
In addition, the method for manufacturing the copper wire of the present invention includes casting in a vacuum or non-oxidizing atmosphere with Cr0.1 to 2.5ppm and Zr0.1.
~9Dt)m, A1.1~91)l)m, Sn
An ingot containing one or more of 0.1 to 9 DDm in a total amount of 0.2 to 9.5 ppm and the remainder consisting of Cu is repeatedly subjected to wire drawing and annealing to obtain a predetermined wire diameter. Hit,
It is characterized in that the final processing rate is at least 70 to 99.99%, and this is elongated to 2 to 20% by annealing.

〔作 用〕[For production]

本発明において合金組成を上記の如く限定したのは次の
理由によるものである。
The reason why the alloy composition is limited as described above in the present invention is as follows.

半導体素子とインナーリード間のワイヤボンディングは
、ポールボンディングされる例が多い。ポールボンディ
ングにおいて、細線はト12炎又は放電により先端をメ
ルトしてボールが形成されるが、ボールが真球に近く偏
芯していないこと、ボールが電極であるアルミニウムパ
ッドに容易に接合すること、ワイヤのループが適当な高
さを保持すること、ステッチ側の接合が十分であること
が必要とされる。
Wire bonding between a semiconductor element and an inner lead is often pole bonding. In pole bonding, a ball is formed by melting the tip of a thin wire using a flame or electric discharge, but the ball must be close to a true sphere and not eccentric, and the ball must be easily bonded to the aluminum pad that is the electrode. , it is necessary that the wire loops hold the proper height, and that the stitch side joints are sufficient.

銅は純度の向上により、変形能が優れたものとなるも、
常温軟化し易くループのダレを生じたりすること、ロッ
トにより特性のバラツキを生じ易いこと、またボールボ
ンディング時に電極パッドのアルミニウムと接合しない
、ボール浮き現象を生じ易い等の欠点を有している。こ
れを解消するためCuにCr0.1〜2.5ppmとZ
 r0.1〜9ppm 、 A g0.i 〜9ppm
 、 S n0.1〜91)Dmの何れか1種又は2種
以上とを合計0.2〜9.5ppm添加したもので、こ
れ等の添加は上記欠点を解消すると共に、チップの機械
的損傷を防止するため、低荷重、低超音波出力条件を要
求される高集積ICのボールボンディングにおいても金
に匹敵する以上のボンディング特性が得られる。しかし
て各添加元素の合計含有量が下限未満では添加の効果が
得られず、上限を越えるとボール形状を悪化するためで
ある。
Copper has improved deformability due to improved purity, but
It has disadvantages such as being easily softened at room temperature and causing loop sagging, being prone to variations in properties depending on the lot, not bonding with the aluminum of the electrode pad during ball bonding, and easily causing the ball floating phenomenon. To solve this problem, add 0.1 to 2.5 ppm of Cr and Z to Cu.
r0.1-9ppm, A g0. i ~9ppm
, S n 0.1 to 91) Dm in a total amount of 0.2 to 9.5 ppm, and these additions eliminate the above drawbacks and prevent mechanical damage to the chip. In order to prevent this, bonding properties comparable to or better than gold can be obtained even in ball bonding of highly integrated ICs that require low load and low ultrasonic output conditions. However, if the total content of each additive element is less than the lower limit, the effect of addition cannot be obtained, and if it exceeds the upper limit, the shape of the ball will deteriorate.

また以上の作用は高純度の銅で、より有効に発現される
もので、その不純物は少ないほど良く、純度99.99
9%以上、望ましくは99.9999%以上の純銅を用
いるとよい。
In addition, the above-mentioned effects are more effectively expressed with high-purity copper, and the fewer impurities it has, the better.
It is preferable to use pure copper of 9% or more, preferably 99.9999% or more.

次に本発明製造法は非酸化性雰囲気又は真空中で鋳造し
た上記組成の銅合金鋳塊を必要に応じて熱間加工を行な
い、その後伸線加工と焼鈍を繰り返して所定線径とした
後、最終焼鈍を行なって所定の性能とするものでおる。
Next, in the manufacturing method of the present invention, a copper alloy ingot having the above composition that is cast in a non-oxidizing atmosphere or vacuum is hot worked as necessary, and then wire drawing and annealing are repeated to obtain a predetermined wire diameter. Then, final annealing is performed to achieve the specified performance.

この際少なくとも焼鈍前の最終加工率は70〜99.9
9%、好ましくは90〜99.95%とし、更に150
〜400°Cの温度で所定時間焼鈍することにより、伸
びを2〜20%、好ましくは6〜16%に調整すればよ
り優れた特性とすることができる。また焼鈍により細線
の特性を発現する代わりに、過剰に焼鈍した後、1〜5
%の加工率の伸線加工を行なって同様の特性とすること
もできる。
At this time, the final processing rate at least before annealing is 70 to 99.9.
9%, preferably 90 to 99.95%, and further 150%
By annealing at a temperature of ~400°C for a predetermined period of time, better properties can be obtained by adjusting the elongation to 2 to 20%, preferably 6 to 16%. Also, instead of developing fine wire characteristics through annealing, after excessive annealing, 1 to 5
It is also possible to obtain similar characteristics by performing wire drawing processing at a processing rate of .

銅細線としては前記のボール及びステッチ側ボンディン
グ性と共にループ形状やワイヤ強度が実用的に重要であ
る。これ等の特性にはワイヤの機械的特性が関与するけ
れども半導体の種類やボンディング方式及び装置条件に
よって要求される特性は異なる。しかしながら伸びが著
しく小さいと、ループ高さが大きくなり、ワイヤ間での
ショートを引起す原因となる他、ワイヤ変形能が小ざく
、ステッチボンドを行なう際に高荷重、高超音波出力を
必要とするなど、ボンディング性が低下する。一方伸び
が著しく大きいとループ高さが低くなり、チップとの接
触を招く危険があるほか、ステッチボンドでのワイヤ潰
れが大きくなり、ネック部が脆弱となり易い。またボン
ド後のワイヤ変形能が不均一となり、ボール形成が行え
ない事態が生じる。このため前記の機械的特性、特に伸
びが実用上有効であり、これ等の特性を実用的に安定し
て有利に発現するためには、製造工程、特に最終伸線工
程での加工率を70〜99.99%とし、その後の最終
焼鈍により伸びを2〜20%とするか又は過剰に焼鈍し
た後1〜5%の加工率の伸線加工を行なって伸びを2〜
20%とする必要がある。
As for the copper thin wire, the above-mentioned ball and stitch side bonding properties as well as loop shape and wire strength are practically important. These characteristics are related to the mechanical characteristics of the wire, but the characteristics required differ depending on the type of semiconductor, bonding method, and device conditions. However, if the elongation is extremely small, the loop height will become large, which may cause a short between the wires, and the wire deformability will be small, requiring high loads and high ultrasonic output when stitch bonding. etc., bonding properties deteriorate. On the other hand, if the elongation is extremely large, the loop height will be low, which may lead to contact with the chip, and the wire will be more likely to be crushed by the stitch bond, making the neck part likely to be fragile. Furthermore, the deformability of the wire after bonding becomes non-uniform, and a situation arises in which ball formation cannot be performed. Therefore, the mechanical properties mentioned above, especially the elongation, are practically effective, and in order to stably and advantageously express these properties in practical terms, the processing rate in the manufacturing process, especially in the final wire drawing process, must be increased to 70%. ~99.99% and then final annealing to bring the elongation to 2 to 20%, or excessive annealing and wire drawing at a processing rate of 1 to 5% to bring the elongation to 2 to 20%.
It needs to be 20%.

(実施例〕 以下本発明を実施例に基づき、更に詳細に説明する。(Example〕 The present invention will be explained in more detail below based on examples.

実施例1 真空溶解炉を用いて99.9996%の純銅に添加元素
を加え、第1表に示す合金組成の鋳塊ビレット(直径2
5M、長さ140m)を鋳造した。このビレットを面側
して直径20m、長さ100sとした後、熱間圧延によ
り直径10Mとし、その後直径8mまで皮ムキを入れて
伸線を行った。次にこれを加工率92%の伸線と350
℃の真空焼鈍を繰り返して、直径25μ而のワイヤとし
、R俊にアルゴン雰囲気中250〜400℃の温度とし
た走間焼鈍炉を通して焼鈍し、伸び約15%前後のワイ
ヤを製造した。これ等について破断強度(Bjりと伸び
(Ei)を測定した。その結果を第1表に併記した。尚
ワイヤ中の酸素量は何れも51)pm以下であった。
Example 1 Additional elements were added to 99.9996% pure copper using a vacuum melting furnace, and an ingot billet (diameter 2
5M, length 140m) was cast. This billet was flattened to a diameter of 20 m and a length of 100 s, then hot rolled to a diameter of 10 m, and then stripped to a diameter of 8 m and wire drawn. Next, this is wire drawn with a processing rate of 92% and 350
A wire with a diameter of 25 μm was obtained by repeating vacuum annealing at a temperature of 0.degree. The breaking strength (Bj) and elongation (Ei) of these wires were measured.The results are also listed in Table 1.The amount of oxygen in the wire was 51) pm or less in all cases.

次に上記ワイヤについて10%flz−N2雰囲気中で
、ボンディング条件を、荷重35g、超音波出力0.0
2W 、時間30 m Sec、ステージ温度275℃
としてマニュアル型のワイヤボンダーでボールボンドを
行ない、次の項目について比較試験を行なった。その結
果を第2表に示す。
Next, the above wire was bonded in a 10% flz-N2 atmosphere with a load of 35 g and an ultrasonic output of 0.0.
2W, time 30mSec, stage temperature 275℃
Ball bonding was performed using a manual wire bonder, and comparative tests were conducted on the following items. The results are shown in Table 2.

(1)ボールの形状(真球度、偏芯) (2)ボールの歪(ボールアップ直後のボール径と押潰
したボール径との比較) 、(3)ボール浮き(Siウェハ上に蒸着した1μ而厚
さのA1にボールボンドした時の接合不成功率〉 (4)チップ割れ (5)接合ワイヤ破断モード(ボンディング後ワイヤプ
ル試験を行なった時の破断の部位が接合部かワイヤ切れ
かをみる。ワイヤ切れの割合(%)で示す。) (6)ループ形状(ボンディング後のループの形状) 尚、(5)、(f))の項目については、基材としてメ
ッキレスのCu−0,15%Cr−0,1%Sn含金条
(厚さ0.25rNr1)を用いた。
(1) Ball shape (sphericity, eccentricity), (2) Ball distortion (comparison of ball diameter immediately after ball up and crushed ball diameter), (3) Ball floating (deposited on Si wafer) Bonding failure rate when ball bonding to A1 with a thickness of 1 μm (4) Chip cracking (5) Bonding wire fracture mode (when performing a wire pull test after bonding, check whether the fracture occurs at the joint or the wire breaks) ) (6) Loop shape (loop shape after bonding) For items (5) and (f), non-plated Cu-0,15 is used as the base material. %Cr-0.1% Sn containing metal strip (thickness 0.25rNr1) was used.

第1表及び第2表から明らかなように本発明合金Nα1
〜4は何れもAu線を用いた従来合金Nα11と同等以
上の特性を有することが判る。これに対しCr等を添加
しない比較合金Nα10やCr等を添加するもその添加
量が少ない比較合金Nα5,6はほぼ同じレベルのボー
ル変形能を有するも、常温軟化し易く、更にボール浮き
率が大きく、ループ形状が適当でないことが判る。
As is clear from Tables 1 and 2, the alloy Nα1 of the present invention
It can be seen that all of the alloys No. 4 to No. 4 have properties equivalent to or better than those of the conventional alloy Nα11 using Au wire. On the other hand, comparative alloys Nα10, which do not contain Cr, etc., and comparative alloys Nα5 and 6, which have small amounts of Cr, etc. added, have almost the same level of ball deformability, but they tend to soften at room temperature and have a lower ball floating rate. It is clear that the loop shape is not appropriate.

またCr等を過剰添加した比較合金Nα7〜9は変形能
が小ざく、チップ割れを起し、ループ形状やステッチボ
ンド性も悪いことが判る。
In addition, it can be seen that comparative alloys Nα7 to Nα9 containing excessive amounts of Cr, etc. have small deformability, cause chip cracking, and have poor loop shape and stitch bonding properties.

実施例2 実施例1における本発明合金Nα2と同じ合金組成の鋳
塊ビレットを用いてワイヤを製造した。
Example 2 A wire was manufactured using an ingot billet having the same alloy composition as the alloy Nα2 of the present invention in Example 1.

この場合最終伸線加工率を80.99.95 、99.
99%とすると共に、焼鈍温度を変えて種々の伸びのも
のとし、それ以外は実施例1と同様にして行った。
In this case, the final wire drawing processing rate is 80.99.95, 99.
The process was carried out in the same manner as in Example 1 except that the elongation was set at 99% and the annealing temperature was changed to obtain various elongations.

これ等のワイヤについて実施例1の条件でメッキレスの
Qu−0,15%Cr−0,1%Sn合金条(厚さ、2
5m>にボールボンドを行い、そのプル試験を行なって
、ワイヤ破断モードの割合いを求めた。その結果を第1
図に示す。
These wires were prepared under the conditions of Example 1 using a non-plated Qu-0,15%Cr-0,1%Sn alloy strip (thickness: 2
Ball bonding was performed at a distance of 5 m>, and a pull test was performed to determine the percentage of wire breakage mode. The result is the first
As shown in the figure.

図から明らかなように高加工率でも伸びが2〜20%の
範囲内で良好なボンディング特性が1qられることが判
る。
As is clear from the figure, even at a high processing rate, good bonding properties can be achieved within the range of 2 to 20% elongation.

〔発明の効果〕〔Effect of the invention〕

本発明の銅細線は変形能が優れるばかりか、ワイヤ強度
が高く、常温軟化せず、ループのダレを生じない。また
ボールボンディングにおいて電極パッドのアルミニウム
との接合性がよく、ボール浮き率が小さいという優れた
特性を有する。更に本発明の銅細線によればチップの機
械的損傷を防止できるため、低荷重、低超音波出力条件
を要求される高集積ICのボールボンドにおいて、金に
匹敵する以上のボンディング特性が得られ、安価な銅線
により金線を有利に代替できる。
The thin copper wire of the present invention not only has excellent deformability, but also has high wire strength, does not soften at room temperature, and does not cause loop sagging. Furthermore, in ball bonding, it has excellent properties such as good bondability with aluminum of the electrode pad and low ball floating rate. Furthermore, since the copper wire of the present invention can prevent mechanical damage to the chip, bonding properties comparable to or better than gold can be obtained in ball bonds for highly integrated ICs that require low load and low ultrasonic output conditions. , cheap copper wire can advantageously replace gold wire.

このように本発明は高純度銅の特性を追求して得られた
もので上記特性のほか長期の信頼性について、前記の如
<Ai/AUが固相拡散して脆弱な界面相を形成し、パ
ープルプラーグ現象を起し易いが、A、i!/Cuはこ
れに比し数分の1以下でおることが知られており、この
点からも工業上の効果は極めて大きい。
In this way, the present invention was obtained by pursuing the characteristics of high-purity copper, and in addition to the above characteristics, the long-term reliability is improved by the fact that Ai/AU diffuses into the solid phase and forms a brittle interfacial phase as described above. , it is easy to cause the purple plug phenomenon, but A, i! /Cu is known to be less than a fraction of this, and from this point of view as well, the industrial effect is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第11図はCu−0,15%Cr−0,1%Sn合金条
にボールボンドしたワイヤの破断モード中、正常なワイ
ヤ切れの割合を、ワイヤの最終伸線加工率と伸びの関係
を示す説明図である。 第1図 ワイヤ伸び1%)
Figure 11 shows the ratio of normal wire breakage during the fracture mode of a wire ball-bonded to a Cu-0,15%Cr-0,1%Sn alloy strip, and the relationship between the final drawing rate and elongation of the wire. It is an explanatory diagram. Figure 1 Wire elongation 1%)

Claims (5)

【特許請求の範囲】[Claims] (1)Cr0.1〜2.5ppmと、Zr0.1〜9p
pm,Ag0.1〜9ppm,Sn0.1〜9ppmの
何れか1種又は2種以上とを合計0.2〜9.5ppm
含み、残部Cuからなる銅細線。
(1) Cr0.1-2.5ppm and Zr0.1-9p
pm, Ag0.1-9ppm, Sn0.1-9ppm, and one or more of them in a total of 0.2-9.5ppm
A thin copper wire consisting of copper and the remainder Cu.
(2)残部Cuが純度99.999wt%以上の純銅か
らなる特許請求の範囲第1項記載の銅細線。
(2) The thin copper wire according to claim 1, wherein the remainder Cu is pure copper with a purity of 99.999 wt% or more.
(3)真空又は非酸化性雰囲気で鋳造した、Cr0.1
〜2.5ppmと、Zr0.1〜9ppm,Ag0.1
〜9ppm,Sn0.1〜9ppmの何れか1種又は2
種以上とを合計0.2〜9.5ppm含み、残部Cuか
らなる鋳塊を伸線加工と焼鈍処理を繰返して所定の線径
にするに当り、少なくとも最終加工率を70〜99.9
9%とし、これを焼鈍処理により2〜20%の伸びとす
ることを特徴とする銅細線の製造法。
(3) Cr0.1 cast in vacuum or non-oxidizing atmosphere
~2.5ppm, Zr0.1~9ppm, Ag0.1
~9ppm, Sn0.1~9ppm any one or two
When an ingot containing a total of 0.2 to 9.5 ppm of Cu and the remainder is Cu is repeatedly drawn and annealed to a predetermined wire diameter, the final processing rate is at least 70 to 99.9.
A method for manufacturing thin copper wire, characterized in that the elongation is 9% and the elongation is made 2 to 20% by annealing.
(4)残部Cuが99.999wt%以上の純銅からな
る特許請求の範囲第3項記載の銅細線の製造法。
(4) The method for manufacturing a thin copper wire according to claim 3, which is made of pure copper with a balance Cu of 99.999 wt% or more.
(5)焼鈍処理後に、1〜5%の加工を加えて2〜20
%の伸びとする特許請求の範囲第3項又は第4項記載の
銅細線の製造法。
(5) After annealing, add 1-5% processing to 2-20%
% elongation of the copper wire according to claim 3 or 4.
JP62071173A 1987-03-25 1987-03-25 Fine copper wire and its production Pending JPS63238232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071173A JPS63238232A (en) 1987-03-25 1987-03-25 Fine copper wire and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071173A JPS63238232A (en) 1987-03-25 1987-03-25 Fine copper wire and its production

Publications (1)

Publication Number Publication Date
JPS63238232A true JPS63238232A (en) 1988-10-04

Family

ID=13453002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071173A Pending JPS63238232A (en) 1987-03-25 1987-03-25 Fine copper wire and its production

Country Status (1)

Country Link
JP (1) JPS63238232A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077005A (en) * 1989-03-06 1991-12-31 Nippon Mining Co., Ltd. High-conductivity copper alloys with excellent workability and heat resistance
JPH0417214A (en) * 1990-05-10 1992-01-22 Sumitomo Electric Ind Ltd Electric wire conductive body for harness
CN104835797A (en) * 2015-03-23 2015-08-12 辽宁凯立尔电子科技有限公司 Copper-palladium-silver alloy bonding wire and method for preparing same
EP3349246A1 (en) * 2015-06-15 2018-07-18 Nippon Micrometal Corporation Bonding wire for semiconductor device
CN109402445A (en) * 2018-11-09 2019-03-01 上海理工大学 A kind of anti-oxidant acid bronze alloy bonding wire and preparation method thereof
US10468370B2 (en) 2015-07-23 2019-11-05 Nippon Micrometal Corporation Bonding wire for semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5077005A (en) * 1989-03-06 1991-12-31 Nippon Mining Co., Ltd. High-conductivity copper alloys with excellent workability and heat resistance
JPH0417214A (en) * 1990-05-10 1992-01-22 Sumitomo Electric Ind Ltd Electric wire conductive body for harness
CN104835797A (en) * 2015-03-23 2015-08-12 辽宁凯立尔电子科技有限公司 Copper-palladium-silver alloy bonding wire and method for preparing same
CN104835797B (en) * 2015-03-23 2017-09-26 辽宁凯立尔电子科技有限公司 A kind of copper palladium-silver bonding wire and preparation method thereof
EP3349246A1 (en) * 2015-06-15 2018-07-18 Nippon Micrometal Corporation Bonding wire for semiconductor device
EP3282473A4 (en) * 2015-06-15 2018-09-19 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10137534B2 (en) 2015-06-15 2018-11-27 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10414002B2 (en) 2015-06-15 2019-09-17 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10610976B2 (en) 2015-06-15 2020-04-07 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10737356B2 (en) 2015-06-15 2020-08-11 Nippon Micrometal Corporation Bonding wire for semiconductor device
US10468370B2 (en) 2015-07-23 2019-11-05 Nippon Micrometal Corporation Bonding wire for semiconductor device
CN109402445A (en) * 2018-11-09 2019-03-01 上海理工大学 A kind of anti-oxidant acid bronze alloy bonding wire and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH0216580B2 (en)
JPH0555580B2 (en)
JPS63238232A (en) Fine copper wire and its production
JPS63235440A (en) Fine copper wire and its production
JPH0464121B2 (en)
JPS63235442A (en) Fine copper wire and its production
JPH0520494B2 (en)
JP2656236B2 (en) Semiconductor device
JP3323185B2 (en) Gold wire for connecting semiconductor elements
JP3612180B2 (en) Gold-silver alloy fine wire for semiconductor devices
JPS63247325A (en) Fine copper wire and its production
JPS62290835A (en) Au-alloy extra fine wire for semiconductor device bonding wire
JPS61255045A (en) Bonding wire for semiconductor device and manufacture thereof
WO2019151130A1 (en) Bonding wire
JPS6365034A (en) Fine copper wire and its production
JPS63241942A (en) Fine copper wire and manufacture thereof
JPS63243243A (en) Fine copper wire and its production
JPS63238233A (en) Fine copper wire and its production
JPS6365037A (en) Fine copper wire and its production
JPS63247324A (en) Fine copper wire and its production
JP3615901B2 (en) Gold alloy wire for semiconductor element bonding
JPS6365035A (en) Fine copper wire and its production
JP2830520B2 (en) Method of manufacturing bonding wire for semiconductor device
JPH11214425A (en) Gold alloy wire for bonding
JPS63239960A (en) Thin copper wire and manufacture thereof